-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtransform_data.py
42 lines (36 loc) · 1.44 KB
/
transform_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# -*- coding: UTF-8 -*-
class TransformData:
def __init__(self, dict_path, corpuses):
self.dict_path = dict_path
self.dictionary = self.read_dictionary()
self.reverse_dictionary = dict(zip(self.dictionary.values(), self.dictionary.keys()))
self.words_index = []
self.labels_index = []
if corpuses is not None or len(corpuses) != 0:
for _, corpus in enumerate(corpuses):
base_path = 'corpus/' + corpus + '_training'
self.read_words(base_path + '_words.txt')
self.read_labels(base_path + '_labels.txt')
def read_dictionary(self):
dict_file = open(self.dict_path, 'r', encoding='utf-8')
dict_content = dict_file.read().splitlines()
dictionary = {}
dict_arr = map(lambda item: item.split(' '), dict_content)
for _, dict_item in enumerate(dict_arr):
dictionary[dict_item[0]] = int(dict_item[1])
dict_file.close()
return dictionary
def read_words(self, path):
file = open(path, 'r', encoding='utf-8')
words = file.read().splitlines()
for index, word in enumerate(words):
self.words_index.append(list(map(int, word.split(' '))))
file.close()
def read_labels(self, path):
file = open(path, 'r', encoding='utf-8')
labels = file.read().splitlines()
for label in labels:
self.labels_index.append(list(map(int, label.split(' '))))
file.close()
def generate_batch(self):
raise NotImplementedError('must implement generate batch function')