From 8d84dfa0c5084dc56ccbe46dbe7d12f953a95f81 Mon Sep 17 00:00:00 2001 From: Kobi Felton Date: Sat, 17 Apr 2021 10:33:36 +0100 Subject: [PATCH] Mtbo figures (#122) --- ...baumgartner_catalyst_base_distribution.png | Bin 0 -> 100881 bytes .../baumgartner_catalyst_base_yields.png | Bin 0 -> 110747 bytes ...ata_distribution_similar_catalyst_base.png | Bin 0 -> 107639 bytes ...d_distribution_different_catalyst_base.png | Bin 0 -> 101527 bytes ...d_distribution_similar_equiv_time_temp.png | Bin 0 -> 106636 bytes .../multitask/multitask_paper_results.ipynb | 2440 ++++++++++------- 6 files changed, 1429 insertions(+), 1011 deletions(-) create mode 100644 experiments/multitask/figures/baumgartner_catalyst_base_distribution.png create mode 100644 experiments/multitask/figures/baumgartner_catalyst_base_yields.png create mode 100644 experiments/multitask/figures/data_distribution_similar_catalyst_base.png create mode 100644 experiments/multitask/figures/yield_distribution_different_catalyst_base.png create mode 100644 experiments/multitask/figures/yield_distribution_similar_equiv_time_temp.png diff --git a/experiments/multitask/figures/baumgartner_catalyst_base_distribution.png b/experiments/multitask/figures/baumgartner_catalyst_base_distribution.png new file mode 100644 index 0000000000000000000000000000000000000000..a4f3bd7851247d98fced02bcfbe6e9570754fc94 GIT binary patch literal 100881 zcmeFZcT|&U*FKsl>NkVnJ0nFwWJZIa1Q@B(XH?XPfQa;_bg2@0XU0)pK|~V`(h*do z211h-Y@i|ZDqSJ;CZUFU_8pvW<~`r+dzqQU;KU^aNCQqK{e)hfhzOH>;&+Usk zXSu%@{2qhBaO2ONzJ$SWy})30^#0dQ_zhL}jU#+h^3pW+(s#G_^1Vv1!)Raiy6)oc z<#NsXCm%b4=QVdXSt(g5IowZ1|xMC z{r8pMQw<-?R~QWb^lz8_5~lk66CT?2X?$+1fA+_7+@U|XB3=wiJ&4U1&aIM@D5-tg zLLNP8)_&d-ua$GKAgJ)HY$t(HS67ESB`NSPK7Eg`UhTNA&A)@!c4k0iOwM87$Aqho z_J7<6scgt9&GoccURHKEQd3GB@a)qxA;YKs^%Yj!@i<4|ubytTpadri8g?=y>wEx$zp)HHK|$c%Qa{4d9=OK(whhESbU@%5A5 ze*~jSa|Xmcql>{U6uR<8gxX~vU({}jULU3)V_)~^K)~2z?s7}Zx{Jp5yY_OTnwb4z z`?KqvKYVa0sHfH|^b~%1&yr1lOZdz0-zA+uhsZl2QAhI&FSbNK{Pl(X&#fc&|H-ZM zSl>(!3%Fd*C@e=0B(@VUX%3fplQpLLij&iOx3tM^-6xiE!WSij82Rm#mb{dWGygZh13SHOf z`O(J4NNJkmsa=@v59{pt`4%l{yM_cM*GgV=n6QU`n2Tcy_qbQgov{p>tFBAdsLF}? z8k3{*yGq;Gbjd)&%G}WWQjdEHtV&cuFmo$WtguPE!>ksU$$zLr{-MWMz0 z{>`pc;oazjnl5lI3x5B{4lWtrncj-I8lhNO2c24KcIalJZ$JGBos&Ri4UK5yBpum6lNV>ZBx z-K#cy46T9}70iD|ANeu@FU5=L)){R`ELfe$N>CnHnrE6GpHk@evk_9pG}T6=p4-~o5a@atEAMP5l=ENc=vS(b z2z-y3J{2QnL4`|6KNVivLaV9D`s#|^vzNk7O)DC_ouRB%@(LFy>uVq4Z zEfho_8^%XMH&!DmRG=|g!%B)b%;477zRxdNSo9qVPE_%AyYUc%nY}i#kn$|Vfs=^x z{Lsp8%57Shlb=H6GTi@t@8k2@8@sH-c{ZiL#kgi<3{)$4ql06d4x^LO)vt;aUfS_8 z^R?9z&ab!s`rlkqaf%K}{`L{6&qH?$DP-rw6t;AEHmXVV4-MOW$h*qt(V#kC=aVnB zeQu6igvX3zSeciZTK{i~wQ>=p;;<$6Mz!S&u;!JV*o9T+7lnms+C1^<|3P2CsTpAp zo1g2YvECn!wq-HtCay*8EhX*)K_9;nc^~%GH{Ai(3?vvbx~g-hll(_wFT~1-$~rV$ z=*+cfg;%*0wHtQ%^tiU>+q^S0VQ5KLJ~(^OAB#5R!gy=JQnz!u`v9%WwWJRnlRxr! z(8}ivadJn|AsUm^CT+6IXUZgh98!br$$Wp`e|_$qtX=H`ujy|2jkV>*ney4B#SSxy zrcHfXj0%vf8cD6dyJjQVsDIPz)_9$PkTHkb4u)CVIze*)6Pa8@cZ~X`?Ub=UZ3wk z<;0|sbAN?@=|YQ^XO~^f@OXN%8{vW;ZTShGYHliHQk9yMfX0YcAFj=_k?`D;ZoA)!?61jZCQe)O*fe*1$3pn zy58UX8gn@v6@e>uzqt2T1g*9vH#DCWsrJLtIcS|{fD9yodP6hQF2wEyRFN7 zyI0qRa7ql1Y8X@wS(TX=Hn|n7TKj4|ac#CrP7DsaMX5X_W{ z&DF{JyX`HxF9suaA2{)gfTiCjYeg^O&Dl|rt(A9EFNW?atxXk}dEDII^jZ9+O=MAl zWANvDOrDp{^<9o%p@?yN@#)s8PxL`G>Ze;m&-BxE{6F0kkg=(`vpR}SsWEhO9-1gu zbWIAz)2Snk$;oNa>dIAXeY5=jxmqz&UDw}mw`Lhp(8=vRa^bn3n&dRp%Elkg9=H$t zLyCG=TcHc(x*;oM)$hRS^ z?1grG3oI#YbG!TXF=%N5r;ChcAcz*mn$w9uqPgLO4x7dy8aE|P@baey$g!_ljj)Z-~^L*gr1gcoDZ5AflCD3htblm2c zPX4~*)~D~n4OpLx4$VH=z`BkiKf$xXrlv(A=w8Gv@_#nuZ47=v1cV#N=HbYE*fi6NAApG@UmOF0JumHcv?v4!^%yds6{b z!zMYg7vJF0U}1_wPC1}ZzOhIB5$bi?p6l&bBG^9DNsKdduaw_dUCc^G&DHvH=$5aU zr2h|M$w90`Ldq&rd8gb;hsh`u_RHE|I2f|>NtMkc#i|DfB!zCW*QXpboaeMN(vt$5 z?sF%?K35Bc4Itw=QU~Qg7RA48z`_`Md+8LFLG2HiY>yUJ5AvgJE>fhA*T9;S((Wo} zTAxaXxKLVb)1PNCq#dR{1{k9V=rck09O@Ph%4n-CLEpp9DGcoV*-5z3TlaAj1V zcc%rrt1-l|dAXeuB7gYo-MXvc!ej^%Ng0QNdIbhvEb+moH{ql1p=)N5*+ZyxyMOi| zoVsU+iNi3Y==$Gw2^YS{f7@5?+xVSW!aZ0=`=*rN7B{Naho$E~*hEVzG-wJ~Jb>$Z zLF;>}71JBCHqC}~b2)#GjOz_6U1u>+#x__OfS#HCMr8BiqI2Nv!i_|q?xWG_tB&fc z&C#%}w|Y;*o28T>hoPg|LH9|SO@@}TK0Z{s;`2$^J{PNAwZlG+7+r%VTY^#{BbIRe zq-N+)=Z84REjJ@NOKSw3nXo_Jw;Nd{TKIH{3M*gU96etZvcZDS{Uvm*XMhSXXDFEK)iJcGBG-SeJR!n*H zY_geK=~L@Ujg4{L_ygszS2W%Fme5H-3f=nACgJ+)@7RL^RmROFFZM;Y7CCqJ22AFd zK;Gb2v4@*jFIm!iDgV>_sK%BObTj7d9tfqxyVI1u*~Mc%_+q|MqslsMiW0iv3?(r0 zZYxph#m7JDVrA258Wp<4IfpEyi5RH)_PCbR{~Uhc(g1C`xQB|awFbqZKYKW4vPa0h!b3-S{7I&DLf}j( zU%JjZ#C{zl%q+{H(2dSeyR;|;(}@?aZtNO;WOFxTEO3?_(!R3tP9q6!s9nYobzxk8fHq7vGxZAoQe~7& zo9x5{%I?9Xier8)0yK{t~{CDIx+bO z(!;GiB9;T{aQUs!pv2`iU%xR3q2a>n2tt*D^XiP15F8#FHqWug;f4#4(}E2sl({qY z!~=m-`Fzt?-`p}#E19eLM4ZZd!^1aSyyAaA!Ns^bXP?G=Y-5{TmFH+f7v$WDo;|9c ze~nM1ZJ&1@^*)z{58?4c=E*FCHL`0tXYQo_^JWs@CnJ}*x&$RprR?Vc%LAdInrkn= z+2ca;Mr#Y5@8Yy+f9tZG`VT1?dv~BD9I+G*{Z^c{9Bs#^Q+w1dw^vwJ2H1W6_{!j2 z7u=~<*omu4L(v*Z?D)36vrwkwg&ZCcBjNlUa(85`OVr&1|Ypu001n2-nd57}|qxv3~+qJTB&972) z9FmW=M_imN^d6ZbIgT39Ig6Fsykm-wgy~Gi&!rbjn{IJhWgO&d!>b6dZ**Fe`)G&r zxXwF2?&gj(ZEJ6rY*`+Ockc-8gKZv1=~~g>{D}yOSn!EoWBkOQ=Fa1nXI> z3ZzEZ$Yfgw7ba!eYqq~~le7#K5)TC`-epRze_^G&lUDrRb;+q{{8_wIO9^!F9igeg zz#qt4c`i+L@u971Bu^2w&VfB5Z)Ky|v=SIP{Lsk$2DgIoGiL=_@S!gsdGMbfssE9u ziHA=!|H6D$-{~>H*Bj4tOvtgy-cGQu3NGZwr_D{zbXbLMOjR!TOCCg!d@)`bdJa_I zVV~+Pu4m|{OA#tZ>axxZ^|a>{G$?=h^eTWV4$zi=!NC{|SrHZw{=ok|bDgO=9Vs4> zs-?%2jdoGMPc%v(*@)C;1BM^Jb*J-qaIZ$ze!edw6{)~N(y!Ke^e0khWiqx#P- z%ez5!;+qC&_2k(JNjs9ZLWW~BG#{mJyP*C^bf=w(%DfgbG#5oFIiai0w$=7P9V0?6 zw90O$tfy90A@UYBn$4yIf!k}+z3acv?9A_L-#-(N(B;*fW2B02CffQC_3&<51Uzw` zlt5yR;zLNx0sJ#QO^<7Oyk;Hy9D?+ChhT%MZPa zrZ`OjY_n|Mgl%f>oj@+^v(zVy6}5n$75|T_SZA z{__((sIyY`oiSfr=fgYy73_{8s9_j}^ldD-V@4t=S(JT}_zJIVa6DuhYjuHjT94O( zpAkTjPBF;NuMtFi%VZBitEgne1w!L*D2)0%ilY^Dva!c)&a}^)od>Q&*6;Jj)uj*l zHlCx2zQukCYD*u|QiCC<52H@mX$J5sf^LQjsK8_@FUfbB>o0x)%BU>0&#zB{1mU5Q zsJt=S*~P8coA+MwyY0lixi zY{h^AXeL*KU|p0#_j8(>Tki{V;Li-|)ixGd0az!jE+O13S(3duvTtjxYAZg*D#Sly zC@EkfLsKD4eXXkzmPE4v8qZLDhfP{VD1# zr=ffww_15EaLi5ng&Zoo4N9X4sO4kW+}_?Vg+HM*cv`B^6qu@)ndg3Aix_>06?$Oj zZ*4;Ed}yasjALldv>T9z7pORCU8)7~tdLr;n;vgb(Col52FqPu{h9O|=WnUkNok)% z%3#0NLK~V0P%zuN7pn9_bp88fY|qV955g{1MYm7Py?+UAokj>oa097ppmOtLuV-NKYp(Pfe zJb5MemM3_2Yx3p;>7Y+s;{#Qp2zT8%s1}gVXp zd*2!`4@@qrm6HhB8MzRIJ>LF+0C;AIE9!iRwm{umW}(jgVbss;MgLojj3%bw-Eb zyc)C>`z{YGL)ShG<<}39>%h35PzzkDgK(a&m7v%H7bVFO6zZ{#lq5i=7(uUlrfapL z6pQvW^w{jdWURbjmmE|ORkyYT4V zcYBXqUhp1k`gv|@vRn~i=O|(He;*bz9CqKS(DI0&rh7Wysibn|xcq=*H99j@N zgppNzTuAdgCq9PtLS-C>#eYZ{(LmXu?$PnXCA|bKqAg^H{qjziNjBwhQ(;1J;@tty z3-um`wgW3Qif9nUTp5bCVt#v@lQ&Be%n>CD?bC4S>FpIU{WroCnWurfPf-wtXe^AY z34OfaMl!(2j|0a6JCbVd-EPq3m=?va;s(5B<2QR$?~!zrGrIDDW=HH9>^fzHumO=K zir%$yuUuq7B&q|OMj#&A@+1uaz-$042|&EzJc3}LQ81ZXK7wKk$P?BLk@YJX z#}z(Yxq()!YPFq$P9NuEuE*;S9A8Y2Te&1qNy+g=k4d=R=cVkCcm!J|mjb(hu$_Xw z(|;=e9pUwNVsa7<5pJ;a83>LiZ>^7Z0f%sjxBAC-6lkxMprIv@trMPU z$CF{h+t^{o=gXr+3jJ zRfOCM}JfrxD{nVguAAu!*s&JGJYXWxgkGI~m6_2TN%bom8}jUC#wh_>{fF6u-q z6$(vYvd$0Cf(zOW&Fr9;LjxT%X_5kSSr*gOy)z-;teN!HjGAQMi)PYabw35}=onCt zZXe`d;27!MPHK6oh0G+sz_z%m@D24HhVo0M*PPLw%sNzhkz6zDfFZX>R7lU1^c_nv zUNP#tcc$-fkG15l^L(235ha0=N7mcGS!|evZ(otYpd=pn`+493{Yq;-K#-FCWKL@# zcJ9{h{luS732wDsuz@&p;{jAyY`M)QU>Nr~QGX7i{>mJ5HiGK$Ppob%$>N=8(S~}w zl_ZyYwmH}W;sq_%`EiBq_~88gE7!%3G@?Yr;0J7s+*qa-Ye1g=>GIKt!Evma{9Ny( zre1F{vjp#UltK7y-iYh(cOpDU`52M7?3L#{F~OKTJm9>$ z;7pv9n=UbFwnhm{|Bx!KZbTlgl(!W5`zXKuzIOg21FvIR`$&dvMGS&kqsQ=&{D!m+ z#lxL!=dY(_RUsasj_+`-iTnF)VSHg-v}OxW-+JSG_vXL3j{N+ z>Rr!kfk(bXwlkCdqG(CcL=04uAgl$mmU=*+w^|*4u>LivkMtyz=$<~TYg{ExzlK+) z^~}WD#$ex=4G!9w=;+9lk^xW`o<_2vFJCEqUXGJH^46i}l7A?cB}VsP{M@jB!##0# zj3nRv@^R?3*$MDr%5K^%pAYJ7Kn(dQz4b5E3+x;I*FRol{N2&(R+$9%alBvK#t(ts+XBr;t^8#;tMiA;kU4TBrhEq33?$`7rWnrJp4zo z>0!Es2fkqP+? z`KmhS^JXWSI=E7ftR2~J$y@yffNh$1gm6UaSg+s3{3f!dUP2PH3)j2uKK7c5+p2uD zFH4jiLX3e=(bnS)=hJMaWc;qF=VHiPt%N_QOASs-mxfK%ENCgjIlA0Z0oLlA%!zj4 z?gAhFgM-_^Pg4)~u86ZHc?V9s3a*x0=sQcSlZdcBN!*VgvHK)xq8PLs8c*;h>Sz8t z-=3H@5DY7F4S&SpQ;uclIcf;eTR?Vs1Ury@XgkZbP2^yuMPp-c?qVXb86$@gOXjjIo)=_><5AUJW6;Zz|9HUC!y>$E2 zBmi08qvFnr?N4Mv`Buj6e_&gHt5}>cHSuG#D^fofXAhB7Ap)}nZR)gH^S&ZSBdj;D zW)(tdzQkPoh-hq*ErIw$L^tQ-jStpRgHmheTH%Aei0MS$SszNWZ3%X{*I6Jw+#1vnkNPUw5;mfXCEbJ(VK)-BY{4v z2HVK5nSWLmRp#k?2&or}z-SR24P(d)C8*_6%>(=b(8JjZ1cR6o`0zPDzpMv;nLi98>!+{z+gq&LZ2&k*FA}z@p`@L5_E06dJH7y zN}`tz)rUW6Y_k-*?h}i5 zi!EQDw^{e!RkZk{lMi%Ik}bZomCGYQjn>r&x%aMep_>`@@ZBdok95S~CN^1;LAb!@ zNlRolP;mn;gQX_3>PdLkB$RhDvlHLpzsx>F=hM{NEx}+F*;%S#vcCnk_AXk9yki8o zAc=S-PkXm=*XA1!pqYfpN#9Nh&S&tQG9g<@FsOdB_n$Zuxk(2Sm=Rb{q1^*&^na&{ z`(zB3DM~+kQJIlnazrUbFFO}cGa6>VDCHWeUl_?(-_2lhreGxb9t~QUo}K2N+B6ti zm9Qc*O8`*;D&?Dj+j`kyfouj>OLod~I8(CtBPPt}364>UxAb53IIG7yDq5;U=b7a( z5u=Mlr0#?Ce24$e+C@EH0jyHmZ_CY)EJ0>t!F96~%Vnh{x$}rgVd`#7%0nPdHzD0! zv15Mg8)n$?nH;34XA9JFmU}b+K}3=ZWh3n^#xMx(Jf5mcj1lr$)@4l(|7#`{%OzMC zc*JDl+FbiF27zEg)@^5y8pI6Qh{{0mu@8mrcH>T&)LFM!^GZkcU zh!F@b|1v{E;PC)(5A1=hjR7nj8g<)=yr&99f+NcN};x+MWHfM_}BbO|h&*Ld0Q& zkqpgTi})j3lP)BwDxp6zP8bdmfUvb=NS4$gVo9GN{G+jD6%F=jG5L2P$Y%8N~c2;&IZQur!-vnrRfE0?;JVD=?ZBd7W_1w|Ze z>4KrC14=T8ecY&l8H}*Z^^Y%i3oFar*vWlfkC$)g?45o0hwiH6cFlF)00!+a5c9Sp z4T0X_-Hn0bv@Reu7C zZv=SJ+||;5_@SnP2ZH~-0LJU@c9B6~7~2>$B5MLj8_^5vtDRL1h1XhHz&wn63Kwa3 z;W30L#o?42JeiMxlU%FvpU6lj2W%8Hs+SM0H3QU6@M^)MU&;V?b4O7A*x@sG-ot>K zhVj-earMK-Ab*J3GtT*S$x2wN@RKVGt_S&%F~#M&qSB=(tEs zF;%s-xfl#nAT}rtirzYF00{ydvFAh&jM*9xxs$vx<$!XDzm-Ht51|*Ru z2n`%QzWiP5fG^_MU^Yl`-vV`rwuMEcux)#02M9gaA?YHWawQpwW>l*d#0Y4}?JU9ao$4gh8iht5&) z;ALE)ogQzxn7;zOKkAk_p!6z%y*5SI0bSN5J>DvS{duY4tMc-B;t}-`sVBtfL-=C% zg#}GJ6Lr%!&fj2+k3yB>K|?b`c_a`i$jU9tObv!fy-_bU=P}H|WfGOWGu@H$!XIc? zr@L$riBx1pg#(XmI}p5_r*z0%BpQ;%D7&FF0lUs4-n{Ps`x?4 zh(SQWN#|u`>0?+2vGG2~nRdKR#-W-x{9PSj7{3ET0A4fhYjfvVgf)RUN(z#ucSnu% zCotooD(s;D#|5TQah{L`4Hx9SwP?#o5Xl#hLlFrn+t9Q3@ZA%s6ZvR1rnv^Zbgq(R zU{i0Wxsg!}aIA7lxpTL7CbR1toJ{pm#e)$+X9=h;HseOn9m@MRNdNIv8{)EPmok3& zNKO5D)-d*6j9piPjWWQ8iN1Y3qSq##*Oe6H` z$sVBWEq3lXSn*aVd9^M5Sa+1J+VeB=V*C|Aj;ixb0}t16fRf`q)2r0uKCqJ86lpZ= z>{jueK4Wb)3C*fDC!zm6VrSA3#Eq8KpiR%jZ*_Hmns+7mS}nj=whytsmReD0zG`3h z1S=-Wep7B`G*pcp#da0q7+V>D(O#a%OBH&ffqdSviNb}SF>*#j+_9pG#-Ed5<}c@* zTWY_NGl=wR7eMC-ynaZ#hmgA|4i7xvv2N%Kasu1}n;{!|0a-jT*G?O0PCIK<=E37=uk*zh>4{; zb){1km_@rXH+@Le*Yr{EpK=CPR@8r~?;Y!o>~Z?r;r-u0rwF}B0H+t>gI>f~$Bo7w z0nK1JtrECk2Z;X2pdV>Rda@~q27ss*c7!Np6+(BAm5REU zzYjA_znQCwmejEk^~-r{Gv(4SbjfmGp6rx{O9(8;^={KUYfwl5S+JdnpnNwB9VNP< z*qgvqe&9?N2P9*{ibVy=SSTP;)Q~9QbuMjnB4P;%IC+HQmK&#$rVVKSwvsI8cWfm%5HJs1wd0gOy+}l~keoiHjCR?Jm?T0<;_~ z1nW{NFTvUV0f!zKhKbm7_dTG4g(k@YG#CB6PC>`MW^_WyBtv&sk~(`wwgE!o6yXiG zqAdt4BI{5`aVGj;B15Vi2jfC3qz7GRifPbcs%GZgwSB9aQsE}6b8fN`n)YENNYC8p zCD}YMbwsTxQi>2^ZnYPUFQ}-onlH*|0H_j&dUlvrX3q+Nmh-Oi#B(p0K?%7Q>IE!L zJj9~$KM0wPw>Gw~Dr_VG*i|jzg1()TxMgoF;jx4SWIp3f#K>p8-5=WjTh5QWOmFP% z{mS$`nh~H}$QKNwsWus_5>QHWI>*%n^QKkMPi~4CSp|EeflkEc7f~$ICceLaSQhLy zM-;uvd}nFz&9^Vn_=op5b9*^qa6?GOe7vxhxrk*q2v^T z6%)R~iVq8vU6fC!P{d({LpUoerujzW*DH3w$^Q3T2BgQu*E)(|5SggDwLZ@mj2ho` z9d)sE0paCwqF4m0|TYjDOqN6NojC%1L)n(o61q-AJ>4E|ucS|u?8O5f1aC;<6#rh8x zjm%!H(*4~as;E_>|2KL?n~*OMl1IeVml?i=hz{8%fiT_uvCbun-;<~6 zVqGh@_adhII7qYqx=oPi|5pastVe3gy|SRO(;&wn(cxPq5KG3G;l8{L_HNk28~^Ej z{o-+HhlvDhFj88|8-}AM;9BC0%wZJQbuB%S1s$X+G+xdU**|U{Dn$Y9jh8Ga)!nt6 zb2U8Z(BLx3ha*vO^FUfLk^c_C8I%&(;o)mLp1PTWOL{6~?7$Vs|@d@DGfz^%@0==%cE&|ny)38v`ycB8ZMfbZ*JGR*oy(YVmn3PzAZoJ>ufW zy+`7I@NoQ0p{+V0lE?*w{b-R2Kv9kJm_Z6G@M6d!l#GVSASZADG{^w^49ze&bQDB( zz}qMyDL3*BAe#b;D3J2D0xsl_Rs==8>O#}0zb3)iFiQt*h%P|YIAD~XRB!Y3n7nlk z=4l#11=djnwH5kNTj#90Mb^31;6jj=g>&DLE|*XT(p{1+mCuHl=RoKN0XBo(p9S9J~6iK zN2fF!G^)bxD4{*%5kBUgCj+9ugpk$oQV?{^1F0h^;|l^6q}wNhYU4?!Jkqh0g2H&R zM=M~DU>q0&5!+-Af@ptmk_z~TfVYfs{M`YP$mZv8q)svDG*5uKY7P=VcC~cKeNgR7 z`9#58Gtg0IGf_E=tZ?6swL)FO<9g^=Y|$>3*tNCzO%snKPX& zhZI|ALmFXWE5M!vMua74+RC6yahH85^c8WH9UL(P=!XT$!JLGY1a~zyR}%aNZ)ap> zIs0VWc>^>;U25$P0rPwBL_&iy;`gI~KoT{8&r--EQZS?grZ|kd^jrD^x z%^W5z?8J6Ic&L15NKm_Va607YN%z6Ot^3qa1Tpb1S- zl4S9RL(nqTBT*KF==J-@bu~7;d;q)yLtAQce2?;2iYi>mVz3bC%g~{~A|^>tu7*zN z0d&C9cvhWkqiu5V67u8{vB>8Jcs>bjZY2N3b|6I(5{hU0M`_Iiuo(ec!skOmQRtO$ z`^mt(0mk2ef3Zj6P%B?aBq8UR9>HZ2cSj!jMwiOP4&yCLF-ApS#qWvg#Ij0l8?d>8a{t|gUrNtfSg3ts=5MT zms;yHZD&?o@Y+&6=<+REhfroXBy#`T?I0SMmIAQwh){%2%UQ$}#>y`N)|Cl4_a&*#d>H zKVo&@Qbz#?Aor;!qxsA_0)(Z3>J}7Z8LN#6qZmJqUKF+J!GUmi^paznA6>^PdzLo9($RoO zO%Pw~7+4=s^aRSpU@@S-yb{StV}KT49`7!iJY<8kk?YXWXRYwAexb4DOWAp#`*wgD zoO>*UdVTNESXy)gfLqgn5(t735C#868rlQWHcqNb=xs6v#)kzVcN~#dQ0tOWVBlHr zG&VW=sTdT#nVl!#wjmINOq}QjNwL;<3c1_^$bS^!FCg=(L`_x>P6LkLuNL41BBpq_ zono+u+YfmH_Z^3RLb9rj^hFV1DO5LChPnWoW?Bvrd%aq<(eA%AU zk%|rpQK7lwAVKTH&jnF(tfv19i4LV8$9m25`rpro>kHt~SpPf)$QjAZSYYzN;x~Z{ zA4TH`^`-picHV6XK-dTgq{$DtEM!pb>ISEC%EO>Zvw>PD8wKxeka|r_gG~HWkl5(HvvbWrcw`d#F?nW+h=+^i{HOdUpMo1C4*Rq!9QLb1M4Fl zu1H@$0kmt+t>?$UJo#Qal+8dVWs0^IFq2Q~w63PdAhZGox)nX?QU)xdCw zT4QPNUUU-q%`AvQLtz^aBtA92{%XhKG@3?1lFt!O!t(~f+6pNe?&au03?2csA-Vn z7Wet|tS%wfGcYBcg$=i0hN&?uVZ}aQz32`SSyayJX(L255nHtCEW1jD_62T8M~2gs zLXV4n^Crw+^x7++yrmAdZb(-yTxy>*BO;(u2t&p9Pm>OPPJ)J>HevQnM|-WzXNWmjC;#(8uZ3U2pQK|3{l$=y3s%Vk!%kg7;^ly9~T_pafeK8 z(C9h_)<|TJj0KF*w!8s;z4xG(HgENYrG8+wJ}7`}ybqC^3CS2h>jHRxpomQchnI2J!*T~Nx82P4670&d_f=l8+(C1f3`yD)h zQnYmNxR!yH%|u&<5_H%A2s~6P)LSkYQC7&q>1$NRfxDP$|?XZAppE<|-bEW+w4C{TykOCVG z1Djz$5e(uI!-aY<-p0DQcRp~^-D?beM$A#2p-!qCGSvdUdj!Jx_GMu}M@rDCX3}aP zKntLXji3?g68O^N`seNZljBrMI+lGr;3+$L&AG!5B1~&^!SeNN(lD(w-Fkan^MdF% zrOrzg25>UN%S;@HSW)fK<~^IT#_~WVUcVb?zB57`6ab%N$j#2p%NLZ7QilOU{B6R6KD)d%Tk} zAXC5HIbUG|!+K7ta2k=Uh3+t#>dsdWUcKxxfm$2BMhY0gkSrhd5Lh~JbOn$cN+twj zO3*yXI?V~XNe=3UF;$yaA_&8;kgv112Yi9 zsJfy&DsSZsPZwGgQ^C^t&0O>rdy(t}J;^|6r1lC>#_)bnL_A}+-xYz{Qk}y-2+wh- zfcq$4z1_oIsXp}gQYgYOc)AUV#*tla!4+^xDa z2BYU=@BqrNw}7W+L@a^-EHfz(cCwrVd_2JYY{vnB#gPe5@=qYM4%kL5+doKIlraHE zT<18ZN&yUKSsd98UWt832Vcy2!T=2o7s5ey1Rc9&b0-?^0Cf_1M-7O80#Ky1mxw^c zF%KAj$_S2PFaX>UVDmvHRay*APavG9tyD`Zti^#w04Uc)u*`xMr~2s5$a!!jP+H=Z zp{RNT|FGO%f{Ydjo*L9|Ko@7BpItN5cw*>|rq1;CSzUn%3q;GozauslJvj4hb+EP)(5}a!#kYroNg9!+)Kr7&@ z?V-N#c#j>lY+3HQ@JJb$p}3>R%VbjYV6cf?FiOJ@^qs!6Hrt*wS6xojQ*^XMzW!AU z+I6P2#!(GeH}pUm1WLe8P6T$vNEM7tTcU0*2OxLuhuIE1S!7chF9QxT1lv&)$AVO% zh8}ED<~?b69C=Xu;h_`rsJ3#6-X!rvBx(RA$KYKV%&%Z8 zl{4Xf!S;nT&UtbS*g24cr4cDiQpJyrTu4?|Lr@P0visoJ7eyon^kC6;LG9ad(gwnq zapuV$5l-rbrxOA92s}=Ewm-6=aUT8wv%A|vFiN*VQ=C$;0q|2UT4U1>psxBl zVo^c0@e52FY7wD?9?Q}D!UK(rHYyOi1d#CcvGNQO7M@RGrw+3#Bq6*&MEo9lXb-aO zq23JPPZ^KFw`h{J=!qUwfH(sr(rNcV93YbH>=O36xKRU}&XdrrDKLzTbYMJ6L>4h< ztvSP4XmK3C@FKZpyia$;CboNJ9u!I67VB7 zK2Qh{q>Tk)Yr_*QObx(Lu&hYU2_n%5I7jm9oZX|r@tT0N7Le|I5sR~mW=GX-ACT|w zJzNk8au2PD+$H4-rZ_eXjFW&0q6|8WA)Bh7^gt^pTHvV_p>((n&UcGIqlTWO1d0H4 z60|T`gQYN*N1$A*vgVAC>t)X`^C#12b4Ld8FCGa0yGr3h*_h4n@3QVfma_$rtpih6 zB*;SgLIy~Fkbb5;CssO4IYd7oMWTOYu-N zJZJRzspDsX?jX)x)YSu*0_7`me5!acp2ZAAWlsj7-Gbcqwsg;3 z+=35u5`%R9Tyh2f*k6yQLK_M+D4c*nFaz;j0EU`6v|RS0E(a0hNQMYz+&W|sLM$xg zjJ4p2;G^i#djAW~nB5ev{s1Q4C4LnkOmqOv5^6UQsSFuA9opD&z?Vo_hDa%c#Hsvj z!#}mhrWK6Sb7Gn%)B zt%70XPf_R5n^K#S=Kcump*iE5+*csKX*ZnwefY8H^4p%Yj&-#ucdjc2HWY8RV@~hu z%ts=A5HPLGlkx5b^*3A8*&DkhqC2`<^OAqFkzmnY4ESIqN|E;r(T8TzX?hUYBGybz>qb(%xb4mU;;Sah?j>h1YK$_9zcHO|~|p3_b2;mk+26BGLT-hVy^ zHE|4{8IZyTUjfmUf>KpxdH`AKkVcohCNhnMgT4_DdvINP|_Vl88GebDaL3ic5C7 z{ZB&%Jb`W7^p5RPp}UzF_tFYyKh>p*=jsylOvsILvLkUw*#8u(CLlY~g&h?u&BQUN zN+5Lo>nqH_3_XfZe$9j^ZTsoyM0?P$SO4~-!+`3?Z1D)!g3s8MS-a!a)3e=&=oC_~ z32$|G(c8a{0pHJo5FYnWhxm|wn~E5?Q7D;}j$pUPmWt7jL?s2taz*wh>&jF$d#>4C zy}vfmUbCH&IEO+9d2Xpq@FzB6yFlqe#g&LN2%t?V2V=`mcnVhRi2u{(UeJttthap4 ztJ!>%UXKq@91BsS=i>v&cBR24?e;BO5-gPVm$7sf%QJCm=`c8jIi+c6O(hAnd@P~=I z%ls{&RPl(StVdtyZ}f>N;9->k6T$M2H3wUs2iwV~*TmQGcAUhRqFcY+L3UpEKvI*k4uL*hB`k71f^9_RJ90-w#%$%JT$dJO2|8hp~ z4M+o0kgDg}+Pw zu+7qO&cJvRPFc`Rhc$mJqKBjz**xHMrlM4<)ZQ~#iN0UbOOo>{&R;2s@RR|k6RPx2 z93Nl-2-i(se}EMql|S6y6V>f3HzWuzlt^@?^uwSu@3bO%0OIzS@vt{CgSpgF*G)~x z)q&Ai3zEwt=0~j26PDa!AL$OL5@X;h=Wb71#N}tVlL=qICVG3ACOC#f;hK7}l!~<% z;1iiA_9obd`-W$en0vrnAjKe@*&E|mpjSS3d#2qn$T|=%xD&`yQ>Wv<&|M{Y|6wvT zzKibB|FpJ=u`T!N3ksz9I-mJa<7xWjWhIV5#~w@8hxRc0C)`7LV;Zv0=uHa_fTM*SP)czy*n$+=z z?oIO2bgm-ve+<%%<&munxoZDIv3}-M^0l^u#=M#_RNSb+ey6N6)A_Jd_1|3Lg#Q)f zYQt0Qh+pAX#m1AKcoI$U&qVzX(Z{Gbfx?RwI{5w=+w1%@Inw|46pK3#C+He7beD>= z0@G&^4i}sK9|)uIUNd*VU^7?-$tc!!|m7@G4=&wJ<&^oL5QT{!XeqiE1+tgCs-d_E+#Px zz(MC7S}q=;gLl(uDgSMG5`R~_1)M_D3~H|`egHdq}+oQ^YTG> zyw+Cdl(WKS;YMIIfSJPH*C^ytHctFP-)U!(1d?HI$O5htpUJQrV(k3=iPJ>Y?y+&t z$W&ufb!Gv+*tIDs$#$8Fqkv*9*CjQEb~5R0P_#08t4BKtMp- z*H9p!AR>h%0a1#eM2p)wdR_0j4{Uw*%fU&x__?%^x<{tUh&vRe*|qZq}<|-S8X~p zSv`fvHKC1d51lGrC4j{lmojzfc`^rdgJ-7NfV;?BXhN*bVKeBb2?bh9$=_R4vaJ4W z^$gk5tS#pL#ypZ5*cDmabXsgN)#uK>|NB_KHkn1fal6P5|z|UB6t1H z`#>%-9=>L3?Bp|fdad-jB4{^RfQ|@@MAjXDTY&T*U{a&5lvVg7Q`bSb zGXJ&oH7S2bU&kgE|5{Y0rRYdXvAr*SbIOk%r|1UKave^%e=5TMn3cG20rbLxnc{5E zhHE^7$SL$L7COB||E%R_57vv{$0b4_>tdhDd**kHt|+Tkl+>D|0%dd^Su2K9y5E2i zWy>Q)+t+=Zf?h;GU2+?XgpM1#_kD^BaE*3zeU1#}v`C7>dHKi2VDA+SusL(m6|Xe> za>k98!U(0QTlH3xZK=#4uRUh%q3>$tQ3;aq+}D@tEfD2MT{mm|vm03x(o6lcSWC!L&}_C}eyf#n28iey z1N@-&Nh}j+9CQ4^56sM+Gdyr|mgt=JIL5~UNXpnE}W|~7X7GcLtp$PX`8@s;QTHX+V7C&tP0h2i^XVLTmM6Ek$#18si z`|ACT^rdGSG+npaH0jpo>}hHxOET8C6|ZG_J+@YW%ic>oBrWqul$K~fWe8Dr&X6ax$LK-Y~{FyWPJaS*Je|JPXy%<)G- zRG3+xh?N%(;;HyBp!w9W9#hEcyH6q{spwV&yn30JZrTJ;MBPwDCc7ZDh&o{bHx@*i zh`@A%5V#78S~TxXgbP83nJmCg6vrpUqrtXL5?tlcG!3jub;be#WW>y!0f_S&@Y>veV{I6q3kgtInL@+U_`T(R8=-_XpII1w5^xJd z!;vw-elb9}px*P_1{gPX^+>3v?o>UFMLo)u2}e(0W8Q*c#8T+J0wnqXU`p)Yx5k2; z7Q0@I5)ZM!vFR<)6BD2hM*Cp=yXX}h(A0JR$m*tl8PUqy_h71$`3j;n^clHG(_BK* zb?JKaU6z#|&=28`0RHH0VFuy1@fKwV_W^rK^f$7H0v~NCZ-Lm?^@n zxB&j`n|n@xA?2!Qbp&=tz;S41%7<1CqM>e3c~yh<;BKPpZSb3UgPbqY?a539G#o|Z zFa~UOpzFp&lvcFyDpI|KwhbD>ntb`^y2`o%*6_zZ8~Ac@y_+cZK^d7ZG|m}7T@^LUH!+Cio7(qET>yvS$=*Q3-%O^*p*wu=Zmm(0|+ZEPXHCvHg86jjRvb z!>H~v+qnJ1`&2K5k2I2^Rq_%+X=oL;0Wj80ViXAk&l1eeX^Ad*^2<9IgH0+6*3M-V z>|9pv2zQ3FH+q#1OfG;lY%&2t;UI7UX2o=b3eb9H8%QH?LRDRjAc>tgy9e;Q90bp= zIrbeL1Td-wgw$gY0GKTBQO2;2N+e&fr>p{^rag5hN;`_c77VSFok1sL`i$j{bT3k| zKxU=gNfTtn@wWg3Xa|mxfHC!v5HuP`{V+Z^gedNud>Rf-YU=QbehLMjUI6DzzohK~ z;QpBo5HB>jd@>$1K<-y$T_ngz+`y5UjExgufWAd)ruOpKB}HHBE81^~kl9s99&!Hk z#f{!c;_A;CwOPpIZfDhIZi&eLF6Yz(&$rPMy6pd`B4FSX!w=AjIwD?;^9NN{tYwZs zu9pMXLNR@5v>1`d0^p{vNoWAN*9K2bubNScEY(F3^^Fj{hkvhO00$2iH|B`4K7xLa zRW+KRVCKGGtQ`qsp4t``JFWNj+1+;;;y*46Ub92*zbv=zhe4zdcZF59(3)=u!97A2tTxd`N z%Jjw&aR#^Tls-!UCsECXK?y*Tih^G3V?}Bch`rQ)<`x$)(W^lT_tmB%?BWD61iicK z0Xn?;8JoU9d~s}YnghshC5Ri*ik6()NM#L!TYU`P);X5!uah6xPF@8 zr5Dg9+$tCUtalkOr_AT2UO{E(*LJFO7LCY@K~1sB4;cN^7+paMuZ$gkK+;CTlaa>> zjpXsnInXN+I*kH&LdNAjpxz+{hxJ15!REAQzk{x)3g3hVzF;`aLfR9u7RAr%s2@Rg z4gJv&?gb@(B#4x>@N3Wj+@awyQoO6&kldIB>Ym}vAiKgly61SK26W#6qqvHd2D@$p zv1$hpDSAMmf*oW9O=wCx(2G}uWN?J{Fia{<5N_!2>wN$GB7ryJb)kDG>bwY3WnjtB zH*2yB#{%2TXdtw3@Ybw+i?Sx1r${7^f#sn#@LI1?(~35;Fd1;i(g%X$s$M?K$t_?r z#WhUl1173zIa41o5YQ9C5%7xzsBpG}C{Az_C~N}BWeunkTtVoBAoZk;3j`L_WXSU_ zz;+V2s_p}M4lpJ^DEhNQGtdx$>e@h8*4poOL*~GDPwLl#aSUTBa7rJ@JD~5*AOy<9 z4$=z3@e+o8au{2vGHk><=q?Z)t03%Hx)q?P6uT<=cp$@#0|-|cTfz1PU`Hv4m^2WJ zEnS2RHJa)fON^s98YxidMI{<4?X`K$SG9{mz%pMY>DfMOBRugVHM_+j7m#^35G~k( zikETTAMU3Ts7#CEKPO@_pwCMv{DA+3b5RtEXU9&0+X`luTm zwAg4{p3!s{{GjxAe)#KZ5yW;`?B>SCm#YR}ykO$QL9@wrm?>Akz-p`n(%Nj2YTAKT z%gA5AM03H-a-V)MsCy28_NM?gZ0*N=#lTsHpKnKVH1N-J2ksP9hv1hEZO6CKq^lWd zje5}0UHz;H4sob2Kxxaz-jA@e&HZBVJ?{3$9PLc~8Cxnp79If843$H!XX%>_X?JEu z$oruvsr*Hu`OB**1wdmQbaQ2(OLVV-`@h{+9dI!&+fh*1fm0Zl!tJd{>VOAgBPWJJ zY|S~FG@z3iO|Iq7RpYh4mimCEVCX%b+~tYH1lVzd!pp4ng18zGWym#NhVaM0#J z1a~ZE-DjYn6u0VA^MTz$AA9MWNaR<>5f(0isb?HmfKA$@%T)If;v`TL60AYoF1qA3%Het8bA`zftuNr-KM?E+G!e(DZ`i)at4a?_VJ*t*nH?63J6yX!^}?k$Sc|j9pbM+XMMCT=cxfd zCmfjKW0P6$(BuFlkE{IP@jAK^x=`4m?-v!q(KFrHhTBM0hq?~6AnY9Rxi<)iq(G%y zPHL8ARW8fp$#SPoChkz!Kgz!T?KN#r}-R|r9U}}-xO-iQ!{EFJA@KoLPo?!jFFdTh6!TaRQ`RGEJ z%iWL@L02)PX{!Q4Ri?vzmut_S-RE;ACx<$;L5h2D9}hO$WN$omhkCU!6!i63iJvjw z-{%8tjd4{gqzTD4>mU!fI`z@n_zUQLjyg6hTeFRX5w-E$BA}9h2zpYaiOeKaC&o3F z7UAVSjptt`hp!$*ufR<$P)4M25$-I}>1LCb1wS1!`L(o6?>hCws;5U*+K7VhlNMCI zHdVS~f5gmM8uFpK%J$UAQ=i`IaqjuH z@;0{-xzU;`QixiwU(MpY+l96FnuVES>L;c^kd|~18dRcD=fT&q>pU-BRMv|t7xujL z6;*WwKR$u5p3@Kj275@7wVPlfbJ-&$AIL0w5NMx1llJFRZ?oc_DNNd)%qS~rEj`6f zo%4#BLk+1_eqGTtc?{x6ktG)dU#Dr;GgKr;jmN)#1IGQKhB~^z;EhqmFM9^s+aL*9 z7_VAC2gWq%jKy!~8-(=I9XGj{>zFbwC1ty85)`uYo?e<05;A95^wkbsYJr=8!v`FG z0Rhj$P&&$>{JJ3@l)fe^Ux5@kL{w&aQHEX$rknoVx3@gq(UIodoN1Q}(=BKS7VqHG zT{VZ@f*Pzm|=$deRYdSsCnXrMQiWVT36*4l=XN!g!%B^HF%0sqam;7I7m!? zXATy|T@T9t!oJ#F84=8l#HqzOq62WKw_c;*_`Y$Y=n7trlCfKBTz0LPP<%?WutZGZ zVV`>&>=b_$iu~!+Qw^cOBu9LZ@T9_k?pGy`VH()UsEnO@`Ut%@Ak;%eJ7Qu{aQRukAUc)DlI?T^>9lCM7YaGCXtnqDeRSz zTh`qg(w2EO`w@v|zL#5TSaARh|E-3Mb(+;#Z^e@(fk{~L3Wg?Z=#oga#pA--+nF#@ zhZf>f98ylF>2=<(hSV^pp88-bP|xt#+U8O-YCr}q>u&u4+FwqeDe4(CgY2Pv=lu`j z*QV#--&VW7ajx^_JqO{)Hq=5#-^XoQCf~5)4q2<=C_jrbn0!-h)|ehmcdR$-_?>l+ ztiSqXvQ54AmAT7I_CEQA!a}v(LzmL-;D|vv-}2ORv5-=ugnR8Cj;VlBF$@@(ttFA16pxiR;AFowq<9V$| z`w_y7dbi=qgzi2J9b*|*jL1)!Dr(ARYG>c`Hl^33CL1s&pOd7h$y#ZlW6$>V(Cp|Y z%2nswH)nhgLp1e=NfnG38Y<}Fszt|g+6Q6FXNLT178CbV;nxRid1M1`!{RYOubT}8 zJyTU(H*!$FF3;44EO;gieQ-0DK9Yv~%nY!Y4wEAABX$J^?ecs9z%+NEO(P>6i+4PK zL;US(jZ&n0)7u87@esROrpQ58Yq{>}gwUJ_Lr=McH;&Fny&X+-xV!1aGH0|zK5u8T zi+4;@!BVkuZG~G%jF}EiPcC89`B_5fq>h{vd5n=bXPL~Lb9yGWNJz=}ov^vG&pil4 zLdTUs%qa05T2&;EnWw}~Je0KqNygyjH~<{v{eGYQYvoMmC2Y@|d2HiQib^DO=6vY@ z7)CF4fA??J9yk(Q0jgjPi+jt?fD?8z|nj7{Xm92+9sk+hdi&%AF z7OJuznQQk*O}ei-tCT#Vm~g^KhifF)?UfK(N#CO5x{tnGwmCj&RFz&}|9FW5W4SEt z3_X8sa?{{&fR|jiKu0b>&y`9S92D@wghLA4{$&EUweX#=L}X#@fp^$t9R;FMkx!uF zAdbB%F8^-vI;DYgP5?ggB+K@dv7i1z1gdK- zHNS9@;W9jJ0kN7!W9eGZ_gxcR=5xLDniw>5_Xc2f5q#ipxb>1(KKs1&EwwjjE*adL zM4pS`n3E-qsQgX})yeJ!Wl);zsWTQw9+7<5Z%h_3aNW(Aj6K#PBoyiJEjYX+!l?rU zcK2M=Ke+g`w!+4Phpg#ZjL}gI$RB|HWn`UK+c_Fksx6}t{m^FT{rXb;=O<8?5;pl+ zv6HEIE>;E9NFAe-n5omA3tQYms~-LUHuIkXFf#7-;l)qE;)PJI7w4gd8_N?{khs}% z#}0@r_kngM;_w*ochN;}=)8ilSZ!wn{l>bV}I-=#8w8BFK`{J~pD zs4Tp&b}BI7p3x|Ha0jxzveaIJm^kGHaf+B4rf<1U%&nfhWK|L7!*A`~b=1E%5_Bgd6v*r4K zK~}=$1`ECf`(HbWAsh{+LHMo;DJv~p-YgvQ5C#0Y;vz&h#EQR^V!Q212~V?K!)FXC zFlduL5rw|iprsTrcvqzbzG6W%I zWjr6!VLWdo*dCV={J8(@b8pyA(f!L1uqI18alb5ibsU?AP!*4@s#Aa@zlqEksM+ZR z6+IVVoVzG7a}rkHOnenI%S3{kSU{K)zy~RK#t@#7g(QK#mHSICQ26#--JJG1#bPoU zj81&Qh7sDBg<}wW&|pI@CqC;1o~MJYtGL6BKa|y!1Er?aQ)~tVa->}qZMjjVj8=0i zf5i<9e(si7oc4j_NDDXmmqreZ;hW!;>B-q$CPk!ew1nl0JyH92uy@CWcfgP@;+L*g zZ^p=j(nGYr!{W!--kLbit?_`y+ivK7tAS;93p(OXK?hqk zia=T#^j9M?j5rhu%F1CS;1b{Fbf+dxnez1X5yGAWS|Y14qeY`H ztZ?zApbu04xuFwcap!`&YE;{|kGNfDS4XF|j{GbW6IY{@k-c-E!Sk}x!@-+=&iQ*+ zH|Tf1OKM-gbl{cXM9av}K~MQ%CQmhfNPI^A?DAo4x}(>R7d1{D$=|TLVO6VBC%k~u z`QkQlv>8;WD#wP8QwvkgKbM?eU8($8f5&a@%Nl$y;rOgW9KrhXLBRz!rM&!K!}5np z`G4MfN6c+Te`w)h^^mxlT1^=Ty_epLs$|CVp2c|z88u+zRIlbJZCK=iGKFb$@M|Es52k}Iq>1N1aQ;+-RQ3*fXlM9q3{GKh zaxpa*NRJi?!*a9pUCU^*iEcbesq?MTEfVw3zT~ebVlDh3u!oof+vu0;|MMIm9-Mm$ zHY!6q5kKAukz#0ywjF89#kT7#h=#pr=_Wb-tX%JK=-0t#WI$CSbX^vlES}blbyvE< zrqBy%CJVi3P$rH(UWi7bZe&;__{iykgci8!7KyKO;m}5(d+n7lNrk$qmW-1hNff0B2 zW=x$TQ9S-OaZ=FB1+Il^wBzfr+q}dPQ(CvZ1%yR>w0@$2GB^&-c6gRP0$o75m0hzy zz*Hf_h1+5joaKbU5KQwnz{B82zRI;_(PKb;jpKntWRV&^*lwV3PU^_nY^(XH-Ba@c z6Lx6m&Q!xb&T;gGz>WaP@yK#pJi`OFkB*T~Weos|M5DVAHr$HJQ}93yTkQS826b7@ zeloP6O-0tgD0}r>5LS5o;*zi%r1f?Hi@eT@c8MGIe0Sz`k?IK_y*b~{`*QhGIfpenooCeZ6tfo-k6@&Whmp(4sNBZOgK=!RDLYImIdG{BJ8ZUP@13PZl51P z8Aulv3}z3mk@vZ`vREt+CLg zUY&;We<0_v8*GeA^GA{1#Y`OeW~KLoFn)f-nW}Jn#oXT~HGpj!&j|M0g0+$)&@tb& zqC6kFUB}bB3c+2iaO#$g1;Y4{Xz?nLLc^0UWus0s5yx%zs1}l@UPfT&I8+K*MwBy#2ruMGX#v9fx)pRbW3U-8*Z%*;!*Lmi**&Utmdkdq(T;Q!+LQ6PL=NtafKQsOebkIzA^`d*gY?@Kk8H+9*c3+%Fb>((wWj7Z zoc!AX`-;^&w;cl0M#?{$4-gX%93A!47>Swon=qoyrun2!v|JL4iLUYcxPdz!r$Fgv z8tTLrb!NFX9MHObL#nX<)@S*G&q2F-<$^~y7r&QIe|KnYyS+jH z8vhgOzvlD;VA-rEeE@U1Yv4CvbTOOgQn?^j@Edk`W2>OmyRGsT1v`=O!)jrDYX@X0 zaAc$wJ>9o^GXeHPkX-H)yC2t%2NvA>6upli6K$Mr3Rn@5zQa1M#6G=LsC5=(`#@yt zbUD%sPtc+AnmX1Vofq`!Sn{r!gufu-$OQs+XKHq3xO^o}MeyvDN1xbn=-E@*e(L&A zu_`5LKQ=uz}X)2naaXGyPueZnY3yNkG{d-n&KiX^6iQ7NK7ABb!rZ$KNAHr;S= zNNv2&J-k!o+X*=WjN^e{Z8qZ*nT}?U;7OhUv$qka4=-=-1&DnhM<^4(R(tU1eGTC% z91_N}2~(K6yN$7Amv4^6iH={l_=FJj?&+a<#VJ%r^oz|PeTUvR5P?)vX=^=NC$F=y zKM*&P5#B;SXv;$*(=3b=sOIlK`qwpuyp6D@zTQ;s10g3468h;d=nQ<-2AvG@r4!&J zoM6cXhSDWTkc^tM&5c!1f5EO}Lm)EfjuNA`Sys^>-i=2TZ@sSuPAs$Q04MVkR!80; z8;(HyuDCN?YxZo%G`p#HhAN09slm%xg1M#)d{KIqzGOaMq}lWG-AsUra~|Y(We0Ga z4iv}$Q2*)gkL%Jh=KRl0;VCgND(`fJfyT?y$IA6vYwAp4wl8-Kofc`}8lZmvtEx8d zVqxt_er#Q)Sc{s^Jw*MXbTH`#*Bc$;cuUl4%uM~!3;sU{>SE1&s%E5E48|y@2YO(i z!j^x13C77&EV^_q0An+a${n%P-;h7X$VejN8Ot$X`9Ro7z&ScS*lvWhVGOKIlnl&F z`c#^AY~x({u`)uj1{@W}{NsMd4#e>!1HVn!lZFKe)V2YyL8TLe4NS0qSYWN>-!zU> z9nYDojf+IRE)0RIQzBw%uHXW(WRFx!7+6jun!g zf_rG1Lo3(lxJ@wXP=tsooQOn>0%@~ow5o;DHs1}pEIBt^d~Fa%Y#PN<5|3DA?&`#n z4J*w^s*7TKN&c|#15rWYWDLwkor!TTS zm7V-^{^Pw=*ZMQP-LEWTLpo2mdUOafx-we^Ql=*hdt6L<9=ZfL{W@A*TQsKe$& zRL=}=jxZd%(^McMX6}9jF@FSOh~a>}N(F&5+yVS$GXPGTH9#bOYyL4J@vs_uBBoAD zFSj`DHG0W8yLp3`lsRBb*qlj}amf9WSlBm>Sq(fPdjf13y@%&vnHE|rPM|jqq6J3^ zH1;C&Z*&o1zj5$^aZYHxpscWIDF^ryJvywt^=h!QqNDnBzOt#DG_GLi4tqNqGJux| z`K5Z_JG5nW1^Ra~49MLYybl^Yt*8T<14sBR`q3)#7|My0b!t<9_t=Z%{nKe`7hfMas9l*p55a z-7Lsee52|=Q8|>`^p;onD1`yOBHmSlV^UIrbpLVw7oScCwX$Q^%cm=^o)Z@+pcNN! zxHe414X_5x67>cJmX#3N2!T&E^wHu={3cONrS-laq^|I@+be7SiTAzhYbdNmg12)Q zw!*qXLUIZ&gMbmS8L;Mj+4dQ@46rxp0Bu)VXstiMi87)380l1LW#AWabI4^V)io;W&r(o{?`<5sIssEH z&+bS}pKYpCtQrTc1dm-FgE->z z+JF8@Og|Bu`P-R@+j$NvnPM~G6R(2Fh$RiVx`E`BvB>gWgs=|mwKYK)kp&+y6{ZMy zC-%|Gm%jT6Dhnm$gTQ@1u&WI3hBE1Oy8mQK0hoflf%*6Xr!&6=V}!&+MCmFmh`-BI z+JS;>NZ<8N@iSrY1F8FD7`7>50<*XJ_Qb3q7Xm;|x-YOJy~r*;nUQJt(tI$fC>T>j zFRma*RbZ&FC)|&Csv!G1VaG!hn_ux#E%!Y%H`<}0d(jwP14@kcPKg_&dpD-cgeihi zYxqp@M1o=!1jk*r`3o1P76hK_iw=GRRi^Up!2__ItOWLxDfwfW+BuL!ly&it*{;BZ zx(KlKSq`FTQl5tZ6gpqLumQ8Vmm~8H6Nj{bD`K>!**^uA&H4V+AC{jkh@~F&0yo=9 zjn96+C4`2}pm67(Ll^lQv>hAh$nho7vKq+RNPEpeQ!Wa^DAZytR1%C=m=w9L+Msn3 zx@`$aHFYO$Ke%1^b)&&om=jhq)0%Ly{eIoz5^2`<*w5GfbNbaGid}9@hYQ+LFl47F z?%9gAU6!;b(;P_lJd3ACH9EQa#Rdt>IhZgOyN)y3Tdbi_7&3A8c+P?Hy#Gmy=Bd_U zUYM?2^QdW!ltt&TWK+6t<%{TJb*>XQHsD`8;#FCT4@$mt2TWr$H1_KjR(NJryK=r_ z4P?DU#<329{j)1A!tF30@dL3R{&J%iBsT*lMbK0pB-ZvLRLFrzdw^wId`Fpj3^)fx zlnYHfY0-u}U?}IEQfQfhh#~-VB`Qod)|-Cah}~hsa**bMdN&EIC@r}FV6Hw^43j%U zDaIf^z1BDSxpAQ^xki4mxR@PEZ&4X*X~)A<4oc^mnF=C)K-{)2XD4F|HFzNL#$tMR zp^uX>jy59O2@C6?H5O%xjLH?$$ixt4%j9mfc)1;*nl?8C2?9%=31TYZzSA?R?kj z50L&K6cb5N&hGg8F0A9{46s3|!1n}#lgsGQ>jQ4k_Q^ov_w#mzaY4;n6Ma#85 zl|12PJM1d5yd$<1Sx)u>sw3?X%`XO@@`?Q{^tESRR|gpWc4C)g``Y zFF*Hs5I`-FYXP4)M4a&eE&^S=Mm^{eM$8q(_2}>e*2A`fE$MJXvCWE;+L*0H2CKb$ z)GLnp_occ5*{U2L$84YjdKW65-=hzPh9nj)9*nQFwl2w>`kg5HvZO%+d&-H~H8;?| zh6X+2J8j!8qF&w1LA!oBhx_!eW7m6Tg0{h<3*nFcOvFkhf0R8)Ec3a?h=PgydDd+W z{Cz(3MgE3Pav))>9Z?EmG#dCVF9+PJ-1p6g0jOT6F6Up0&xm@^V?%_s;3)SADyqu} z0|ZMhW+~ukt(|xd)7Z`OeW;y6R|QOW9f5&}QgtB=gTm;Q0N4w*-ncY3`xUi3R*FkX z|CD0ry)PO+2;Dt!K|^SPL(!#oU4XmHf<$-vaT(?u2O0x*OsYYgF5d-|V3!16)IAn_ka|EdbrM}m_VAeAI^Qv+ie6;Dt;XH0;}Cb~a4 zvKJNTj^p3`Z#4k`mHIiu5}q&t7yH~>iqN>bB-AlWPowA*IY<)=NN4>a*5KDh^$p4; zOlZ0kRGpA*h0??g$gHU_pp%A*EZb0KIMoQ&L-Kg2bGh#v+T!vnpbQ;;!b4{d8wn9T zw5ap98l%~L@0Jg`-5^HJ3Qn&Z^dy$e&uzA!Bn9Q~HYBePuEGzq$MGa7PGqH+5 z-nR9up(2jNiv{u<<%u}byt_ZaPP*6@cu%SE+-R|4YzqP40#<|@BtzF}yC%RIhi3=A zPJZ2pc%tI8b@dA38cJTnH9*n#-(3TgkJhGuQ1L2|<#Yva>TJdMBX?d8nu5r5Ce{-E zSJ$@k^MDEMfn+Ve2u1mmkkVWBHKEa(R79@StK6bqV2%%9ze9M>=|^QD!cblYaF7nPq&>KyQh}h)xu|JC#B_?su;wUg z{XVTCqG%!kDd(c*JzHsz;Ix?(0gsN(Y`th@Q=g#AV-|u>*H~sm;T8;MhSVykaI_V+)^&pA zZy4HZShhpb)s6anh$ltc-uJIyvS*RABf!&7L{tC26d9M7N@Obg~LW1$wfNp+k!4>mKg zz+-Z#{-FH@n|a?-;MG@$e-nGpfwfQ1-y3eOW-Hp7IcDs;x%1=S1eya-W|{VD(L=8$ zhalxaL#S~9KR{p^3%H{_stKT=yL;xXx}bd2D0VCq8DIVYDr}cT@z7is-Cf{~K4AnK zTQJ2;uL2QiI2iFAItcfG;vekDBaRjTHMg6N+{NrTFt8(bIM^Zs+~7+l@-^q%eRpf1 zKGQ)lbUy|Vz7CKyTT7nFB@Er-)UWDBqa7fhUjAK1`AYcvd!YVIC+_^n{(z$XSY&+f zs+#7suRo;5WTOo;a=5O5`4dwW$#LYr@V0P|hT^}t-CD#9va{2GLiyntJ6Qk^kyy|& z5C?hUDUj*L)$WAYk%x&cPDwnNiLmR&vi{MoZaHkbkl7(B5EU6gyqlnB09L~godq)y zrD?Q=2a;hRchMp)_R*2+my%}3*R)t)d!X+GOlY3-4U=q*zxE72?LIXuVtrV4uD2fV zWH`Oxe*1c*Qf|)KrR%aDx35?_aCJD_1>P~{^5He!9X4c%r+B6^E!b)2t#)1SzH?so z&g;0BO%lAeCDFo>vod3XTV0a@d#H>qoBLCuLt!@yom(}A<}ux;6&4$nC@YzX)|wYj zh0x5~3^auHgPauT_6+Xg_YWJf_(s5;C+be;z-Bf1mtr4DQ+6Nbf-AKY8MuRvLugNL z2PO@Fu2a75#o>jADX12bvFPm-`%x(JEH;JAgayN_Q`z^G6jSnq#U|vg1-tcbZTpyW z`_ZWqP#<^_j>Y^}?G{9bFA#vcpdt~9TnEXike?`QI;iWiY=>Q8YU+pisV}6oA3y7m zB$24sYN74#9Hh-X*#C!-z!yPVK(eNbnh;gmHJw}IWb@bjMGL{s`IC?mjeK@-q)o>j{JN&B!J%(P(>_rDmvldp0niU{C+27H9>r-#am?TYQefGCJF%~1XuI- z&IcBu)!UIMRF8wxHv&m4gd)%y2Th+_JEpQRS`UkSJ=wvkf%rHDShrR`!Hfgm_v=WN zM9yEK9`&CDxzH`h^uFE#{3m|zfBtpD|Gi%?TW?B8J!(RA+DiiRe*u4sWS{-~f!Hah z;K8cbK!$CS4A)h1bSnr1lw1>f1Gbovn&ntBWVYUz6+J)XL>T8jWpKgp)%4aw(b;3Y zd*CRTJ0Q%;UcXl8H!?_$vJKmJYiAK7bsV&iForM!N@3))ake^gaD4MdRu+9I+Vo`MW&?nyaBLz?s1u-QbfD+E0!R=e#VmGr5)7j_tz(&>!cBN*hCwgO;z@x2vi8`VEEp% z_`R^14Vb6`afqMdboECenb;quS-p8ADZR0~ltJyq4u`4c;hZ7E3N3QcEzaLT5rTx! zOi=HpiuM*Ju)WI;em^3U5DE#6EaaFbmgWp)v=YPO8IM$m0!#ri{Ma*Z^LiI8@!)3O z6K6KV(`%J@5kHWr?*2e!U}Ac?`kw*9tuBZ~LQ|m|6yrV6Z2=9xmAt|t>4C@4Xw> zKx_Qi+5#6WNl{NN&USKZG&f;t{LpuPPJYM{(NeUM`zqT}O42KZa&^ZMA7LX}0H_&` zqp_PyM*;r-l{y!ABtxpE#}9ttVTRz1@G5A){-*g+BLg{U&?Fkr!$duW0YBShmIvp*{-Clo&Ns{j=aRNZG`qy1oEzQ0X(8@L{tB zkiRUz&80IW0_F5B@ESh#eK#-?^J!z=QBdDPzc3V6bO;7p;K4K5DhE_NEynIbOnz}o zLCre{Hqys?=guC)pw2Z=FK%DIyL{Zmnx_Y4Uc#@!^L5-x+f7irJi5|i);GofF3{OT zr@s~U9PfiLjIr#aMMdnH+JlQWB{<&U93it0x|+~i9T+*m+ltZ*by%R!ZX%x+~DIqKd5I z?0+xR)tsIc;+xB!X_r&J2qLem2&j>C+3NlZ&-3+*7F*VhtB&9|V!9u#Q}@ zLV}~ph0k9%9azzUa@9*l%u_=%E$E8M#)4;T?+-im^IhoIbmbJ&n6cZ#7epBLNH;$z zbv6sOn?JUih>|5=ZoltH(2;vf_tjv@ENi?*FGwi8=d3gKmSiuJyMrZ97L|<(0oO7f ziME%{SUZy%!GWbE3)<;*bqkjc>5*?rzWhvl6!Ax($nVb!ef&1DvZ4npEUAU(BKcy{ zv^{hqDx-4od46?Axs;BaAdIu1F!)SidU`acH6gSeGOEV+_w34HTK;gc)iulWz`sAR z_H*L0_PabE z+~EBzaY62X8dmg%wB6zSMOtk4i8Dotg2TsCeZyTf15^Z`FgKmF1sn_*ayP1ZNqmUD0B zDyb%wDdK*z>R+#RY+%jkHRj}O5G6iXrf`t%yMyKBz!0o^yocdoN{5@}k+^@*H>|ao zi-5g~$2J&$zTv&Hy)%@vTu)I#Me;fEAeFR8&kX)Z2)z+9tBz|%IAqrY zcHR@sBa<|9BW@0pE$wuL*k%LCDQs^C#^gOw-WJ_4Rw5DWiR-_vx@08ekepp1_^dSN z-J6-3h-ve8^0_|%ZBDm1je3pRv7dGmuZ*nt7T4v8b{e7DZSdBEa(2U{;zOBx_fBe( zMIJLPwg!z4S?Z`g4c+$Ok`_-!O^r1XG+;*eJ(v2C7}`KsbeMC%VELgf z24g*xLAq$y{72WFpAho!(my{>H(vi6(g(ZeLLO3*ACB`#YCeCf1naxnj&4W@y+j_- z$=u0OC#&dg^9l4Vr!%#7(Erqti+ z5gTF2Z=`2$uO6^}AL6pMoz8hr8SG#A^StTY4xj%bw0eu&;<_>>b2h9dY~BL*9D;<} z{o(eIb$4SI&hUcj{AqM;X^3m(2c3y8h?mfjt08B4LAW@e)KIqOx7@-eQL+fxb&p(k zQ$lFfex>;Ukn;YAY4SrhMdoy@INf(A>$0w#G>c7^46%Jn8cggxmU=Cu?JgX7FUF>f z-u?R>@gS{$ikhVRCMC_3GuguB=UV(iPMpx8onuVKWUPA@x=oQ4B=6bky~T!j_36b+ zMwY^vw;?Cm32hE2evNdZ!a1$rx%Jp0lp`-M;$cLOOYGHu6d{uM)w`*_ z{V$?)e{Sn0{M?ez-@j@`BZsuYIL&$8!) zqx@+{QQUgKqB<4HrmUaIh1Ir!75w16J02Tb~gb~NWA>e+JsQe zkQln{ji3QxdciZu6aH0ZNHve)j3f>$lZ6wz;U~~}!?!{HRYy)kmb;JMysS}7mZtBL zNz>TXb~Ls*9HgJ{llRwG&2xNLm|?b_t2aG&S)&Pwc8cL~B>Lo?+qV3~f!5X)1k<@Y z=bPHv{po)d!${lLR_H>jX5#VrkNzg7j<*RjRM7{sxab{66%UPFrwqQB`d4GGhhBFl zn-cLs*C>*mU14qr(=AZNFSZlY=|IR9b+5d!WGi>+5eTyf+h0vRs$)jJUGIWNSq> zF$IJU#T(IwI*v|Tl2tY)3^jc`9+1lHD7@Mvc^7svDY=B02941;2gbFv;$en~vd!|W zXnMgW{_+)+SWXp$S@|*|n(bcsbu#Rhr6}!gzkFaPTZ>#RdB5sG$hu}8gi33AK7EUR zraqX;y^)N!)N_R-;=qRad@FF#*EsdCWocRn^{@Y}hc=SIB3o@n~SRYAVvbkGXmzZoH+24t< zM|33)FYk|<|;?3Eu zMbPDOhPOHWwAWXZ21cZ0ryC%;|NfBxcKhGI3H@*QtM&eTV%`vU*|)R&O;ky)s9qa5 zxJp1>@Q-_U|Kb1t_20ws|K4c)g=EXupTHIBr>cLbW}g0tTWI2zZ=r+u-?b|c_xz8a z+7-~v9;k1u6Lr_Nh9pkP)nEx4DK1o(qr^*;rc$pEudbEL(|TSQn(0kHpn9~OLN(uZ zkf%&v7r}W#+AeNEvCvVIW|=uKgv+Jpw};gWsUL|?IOGXsM#&H7-RLRaQYNIR{Nx}g zU?2e>Dy%Pk9rssqyBgiuDgsx9%3)hoWe)xl`}bH3%+>kG4Tdt-Kt&yfs<{Vbv_ zQVMMxL$ONiw~?6N=dRP0&k^sHVWvS*R=8>~t>5(Tbh7`pgRN@hj@SdD!@Bfwy6^9- z&*YJ+4Z^dnvNZm)h4UjOpD9E9Ww&bIzz@?T4bJV>WEqy}#ixE`I@2evi6q5fj+j&Z zTo{v|NCpST04;tO@a4;2^HuJKlX~m$s{_gDtt;Dd9M1dK{G4-A^T{-o4Bk@9m5ZR& zOM$g`>~&d5HKg?A8};XJQvTabdbh{EFFKh~m}vi}|85+b*zg0+tup|PWqx-jHu7PH ze?-QT`7L69)t#NhyF)B;WS`Z*cXj?Y>`C6H5ghZc@$o;`Hd01)UCsA4if&jwU+b5J zejArUXM?kf%WCXJ>PM26)kx`&&(mB%E}8h#s|>gQ8J zX790Q-v8$GNOhNDisSstS62R~mp6R!?J}$gs#>NaN0n(-)D-5D$D-Gl#k78!ovXV< zY;{65W&eDOWgCx~*lQbQvaGfzjLfdsAX^i|On$B-w>`v>en522WlgjakpWmWe4TE5Kq<|6maFW!fgrUNZlZF*tA--FJw^VnAafbE;wQXfN&}=^l1~RVCn^Ett z`1-Bw@hL0YeEimHUK>?r4Uz1_3>7vf%v#c~(H-A?n)wVR^~LMVfS2QoLr!QZtRNi|y+K3ZLu+a6Z z--ex;W^gv0$tKn4x>`u)-f$RuEq`2>9zdd5LpQYX4I`aqX_oUczP{Ap@%fwG@$F`t zt5)Z+I8FHni=j6@pPX?KN$kokTw7VFll+WMR9nCzC(x4K9vi0+8b@i%mQ|gov z;Kr9IgJiP)TI*?58JgS6+JCFuY zDC>|j_tEdt9qG31q~$UY8jQ&b$xJP!GPkt5oTUETgkg2^Toh-9B-TK2k*v%m<|gq+ zU{b>1$~Ij&*&V+^vR>%=tBq3}$GotVLiKBZd_mlF>Hh?cU(;P+Cc`~TzerD2*&RaB z;p)*JP#L|~Pbm-|yFan@+r@iBJkkW~Zimrv7uhwRPx{ljdR=;bC;jER$H^jAvzT%0*?}%->ke384luG#3U_q+Sv~JTSxSV4m&Q#hi48 zlD{DGw}hAF;%S=O&${w5NvhIZ8@jfv>5kpeO(eC#&~5o)O91@R8*5L6+S-S%Jz3ov z`PzbBAj=A1Zkw+fZ4%ACUGIg&7fVLSf**#Q&l%81Nx(kjGTFRi1&4K_VmW8XT5UX! zOJJR#$`7=R9FUm^$ypk#Gl znew^FTk5X^WPGq{0#N;yH&{Q@i7^R{>)MwcP9Tu4N1m&lsJGrbDUU3x-7@3l(rN%zjc)2mCU@N7BnJ&J zLe{A_%$vWvKlDtW-(Zv$lFzzS8F?48NrK2e7L@^cu9QPYO(rSMG1|u7=*AG!9pOp$StVlJipw@?^n){>(+RAQGJe-Yae8URL z-U-?sBkmXL>PbH7ns`M%K$gq16p7DpV*kg6b#gmwSjRUeoY?**u~Q*oS8YWtnXQxQ zKRRA-W*HLG@?z((=d_TA8-2@~$LHkiT1mlY9#djC7d{+1N;N;BllvQMZgY_CSR2W5 zjptM1!&AR)PkE*$q-V0tziSE)*{w=Xe;m-TvDb8Kd1pw>&Wa3~`Ui_2=eymS%HI*D zn95XevMw4QKX`$+d;UOVC0DaoUqhLBve_?fCXW|1gsr!bx>^5eGMzk^z;3BXQXQUp znm9HIT*RU?#ePQIG0|SCbLTE%ehWRY|2nzT-pVf-QMGLpo{Uy4@HC?z6a5e&YZ}8z zBSlE7$+K!47?t~1+vgW#1FO8g#ijLVQAR2EPOEA#5erLRo6ZNtc&f)fh{qn+jG=$Z zwBzt>6J;=}OX^7P#)Mt6tPZ_KOR4*<1&L#N^7{Etk_xP^Ax;f_JKqM{JuB@XJT3a| z&Z{2vKn_N5bOD!2V_NL|S5vcIcd5L7dz=3$IlD>9;6?eHZw=(^EGP!yo!&d<>-$50 z7`cAEp%JB3zqA$CeVXmb-nSLDkbi*9cB|W?SGJkuUUH((x~;Ogxe0HK#%h0 zui>%Y?OA1BziDvM*YKF_ZB==g2$10TVS9IC-6vN+y08O7Yd7(YN+J-r{5Jh3C`0M; z=?@ z<%-F!?f~)Bf$cK<><;*)E&tFz;0~tJ8@^t5&&u}8+iK4YSJ~Wr^>3_WX%BHXR^J0v z6vuh8RPb{+a+Lu`XrFJW)5Vt0C?`uHKA#o3Q(_2&x zwmnL!qSC?ohPI#K@ow>xP(zD5oP2Vka-q8qT|DHC?pWWhOc6_nteRdbeywMFi7&Tm zOgwSHN6wBuxn0B4RWI(EG}tedxZjtR!+ZgV~Yu@seT11j#^m>_bQT=AqlM8Zkw-J6DDp zX6x4gT+14cAkhFbObzmEmEoSJFA#5$Fx64ZVSA5#QY3(?z&{T~{V;7HbKw8{vjihg@~&%4?Gq4~~7L4DQ{qdMsV9yNWW@*)~_P;uSGGB|m!9-TC4{ z*1E&dV6p>58sevKMP&Ibzwi(2`Noogi(d}Tbl#h|PvSw+=X7T@Js~uL#69^ILv{=R zM(Wq+cjM!iddwU>6AUZ9BP-~+9`<&&Zy8|ikVpxI491ca)qdFT9KE-JA{Ko1UC&<= z<;-^hy!B;7@?#a_4i{2K&So$ri<3E1`wOp(xaf>sPK*!{Pj*3*2Sw^*?~SbIRjlD< zZjB@tJy+wslWekxgv0!1y{Kt&$w=X~dRbXh4ZcB?+=KJ(e|5CR$Hv+^@10yljy0v4 z@3?wTke*cFBbN~Nb}ml+)p=qFu3vPftW0OdwhWl-_=L1+Hy`D{v3B=!ni-AqO=o+T z{_LiCi}NmVV0}nGF%wpwXp(&@|{)co$;ra9_DPmQtHqA#gC)2lFJIc zbo~zPZTv_QTWWuwLUn7Ub8=ty6L4KgNuD~yvJM(YG?@Up$6Lhf`$7%bx`6UA;0YPP zY;C&v;ixR-s`DeQ-^92QT>C%nJC|1z;}9t7?sI`x zwyZ`>maCut{TktfP-e*NHkQb;#%YpTJUolz)yCAq9jq(Mj8mk!`{nHJ8oxS5_f=u3 zENg6fD0^f+v-;d*O#S%a(|>GDoxaa1yXC8!+Wc!@o+K`0bsI<$l&Vin`ZLIL7F54y zcb{MX^MAzdMBJm<`vtc-Trzt=el(U7V^{$Yf0oIPO$obHSOGF>Pm%;j%sD@mx_4*mx0>ruG6&S0$+xvs-+{j}c!bb1;W-C8y7b z9NT_$dWJH1<7Hp|ek1NZ(O$`oxBaTV8vwNJIasA=Te~?0bgx>e0>zusQ>^7DFOd}W z!9~j?%&Cb@sq5!-ZGF#9-U-B!(%jL*e=+JcOIjY71nd}+9wMd=sNuGmz(32UZ zG9pX1ibV8c`qdpVSv6%%+28UI>=!r-tGa?|Ni_}n} zAQ)+)h8{qPbb^EuAe6h4zXAJdHW5 zf@?5*g+>nH$}69GX(1@6ROZkL{nXZl#$%gTWA__JvhT+jCCAYA!a8SW$ne(8!q%O4 zoei|`l*@-3$75P8wK)z*(e$Fl&sI{7Lt31Q?aKjy)Msxa-Tu>l`puV_mT+<}Yj;MZ zWdk=d{lE%LBY~Pb;-?ecdP+}EvZ71&L#<=eD@xHAxzvW2g|hpcR?@c~{8-1vSLz94RkNgfN0|5Ml*5|}eCZSY$R>e{B*j=yN5xCo1{`jEL=_o zol7zL;DB4aimXdm5JdyS`mTgi!nHM=Zs_cPW&1#c`u}SCZgZsHRoTV?_{qC-^Eqbq z4|HpdcKSbzTpsh-<9?((sN8|m<*`RNk-INEaw5V?QK^S(BqgFoFY5=JIA{0Dq%LZb zwUP4U*LfqEletZH#KwK?@!LhkJ%DS@&4I`H`;*3`=daykQ9w zZM5~;|CEb009R$SmK`PY?}e*d7HK5 z(pRXY_zz$XNB0nBuNiamLh?Cl$)Byic3Uy+s;3@x?d0lr1Zpj_ba)dzyDRJK{HG#t zm=OEb-@F==0_s^1APyNC0_MX=k>5LR7x$A_e;z;ZCL~rzYE%-qv7Hw}>=WK{?ho@^ z>mk1Q=JWO_i zbtY1jgHJl^@o}tu*s-;oESYUQaYxUuSiLNIeq1B>=kFk!gc8-iz%6p?&b5dd*KPu0 z(MLNHc%%(7En;ceg{`=*UEHOP5dy2Ne@!)kJ><@)SODRo>w~BcB|aa3;M*)?9y$J7 zCFQUCvW>Z~CDDQNsIdEXYm(4(n(KRUzW@J-6|rHMYsE$%BEY_YaS2z(A*MLU%AuUI zb-RQ)6a=0K@zu)ulu5<)0Yjt)L}}Il>`<90_;Kuw(FZ)TC_y%J$!;^SyT|PXi8ZN+ z)5~DTEh$LwL9zhybO$B#TBQ~u$<*ut8+m#n*v!HnwH{B-z>==5CIRde;sKB-p(EwE z0%2js+v!Wp2j><$L0Zw=EU>HU1ld+ciuDM~&4b8$t!2Zq(rUmA@-$rnl&ch!=^VIo zSQkl!bM(Blk$13@c*g;95$vQ~Xp1680pd-YC0707BuA%69)CS~6if&p*8@qWUOk9? z_dFO0mLqS1n=-(x^;;DM(U2jJBIQS;5^V}h5uA<`*f>#Ec<={D?(Evv8r{JrK@0U! z;r-FtI~ltq0sx;Ty0BGoqvd-;1jJ~Ct+s8JwsABv?B?tr&<{=Q87$!x!M1dqH?d#R zPTyj=Ouaw7oHT6le#KgP-4{zay=Jl!MmfT_eRmy~zL4Vhm*oI{6nnM|@Nv(V2rvX0 z?I#hGu8E2OnqSUTP#tGp2a9R`iAqd|%E0^2Gb%1dGO5sth+Qye@UE$>X(k&+(98vy zXs;XDzT|5g!KSL?JpG(5`;EBPWuHc8*E5y&B(Hc!XIoDFRy{?jyQaq}X!k$xh|r*k zHsngdu|3|O?+#)jT2_-1mTN7ZX1lbtcL&+L9+5`7iX|1-mu2?Hxt=v?_o^Wxy=Vh| z>0s*MY(`;m@YvxxR`cCK!P!V|h?Vpg;LyYN{gVOJ3WToDXd5cfK`};=hF<>JzVjY+ zY_goK-m3#qu3HuftqUacTJE~+L!dh)(vvFlKi_He{dT93t@(N-4g-39mmW&E$)>$< zL%lf(M;g4+IQj60I7k%B0=z&m5nwPIU|Bsc^XlF8xL}X5GaL&Sb}^sZ+oTt*6c9_o z*)xdIhjd)IbkxyW)IqXv>eIbQVl=H8rk@7{qbz7tG9Wn6Aibj;^YT+ymBc(q!N>{u z3v(3;S{oBTYkXfaV3IPQ8tsp!QNZ{T#7_#$@C$w_%-Ss$<+?t&pf&J||2wcf8hEAH zubBu}cJldfVe4&Nxe|HZFqWYgSl<}+Vnu9u9VajIzUCYk-^pGT64DhV$6vc~FIpE$ zp(uSXu&2{!?AOYU2W@V;j7f;SV`!+@H?D1LSsR=y#{tb=?=_%nKoh!*N}~^c@T^|* z4U0jExFp&#n@FHZo?shbvn+12_N4#BO4jJNrT9Btyc z`(`Z-o4xnfZd(egP-5O8dq%SV7!Vs3IJE16?|XmF2?RVmxARuD*eu}-+u&V?ljF7B z-UWU;VK{$#hp}V_n4dSgaJ_1WcdO+Zzj`4~TNfcZH5$?bl%He@x^Q|BtG=yZUPuKYcaqZ_ui~92h`*8o!tS`c}?$ z4r{K0HM^>|odDeWw%}bGP8IZM48m`%Ni0=spT4E`mm}nI8`)2V}K)PVW$>PtTp8_ z^>N>FYEQ1xNr45tT0alYU{bT)e+vBQ`jSK5X1H1Zm;>3DhYrUQ>&9bb2atp8AJqs#c97q znC(e&eITGxb>jgomff%E*zullj$yN?wBYX+8l=Ba1pcFxG`UW25|&}{$< z0V=Z+ZL}OuW5GoYhl(%A{M^{ubm-x1;c#JSwbC?z&VduS>(O-*=VtlSYh$FvW)+xc z7A_wo%fgxo$)B(7F-*E1y2aEskhOwAB+cJ*M(K~wYtr52V-2Jmc>9@!l_$w*a8Cm5 zEmZ%h;5XD42Mc!=Q=%iQb)g85Q8!g_Ff^Xs8`ruK2e=h>8Z)wQv0`LN0C0;37=gn# zv)WkZ>f{iZJ`!>%j)nnrvGLXOw6)fNZVu$UcSiOjzGIbSnX~2uke&aEKshZ7JNr)x z(P{8;1r@~HFVlr?-Na%hCqBLdAv~qOg+XWU{PBL@@tgN_Zp(ZWv%4*``N2Ig=g)_o zZ;KuIw!x&fO{{%k)8Tuy8~KhO*mchJ!umVsg;IVwePI1hn>PLO{%6LlD7wo!{nbRe zb6aN+s(H5(VSu1I7-*<9QZ(xhL~iXR{}Ug5?LGLrtJs&4SD<>*ZO61-Kds{Ofrq!Ul++UaRkg9|{dIM}?XpL~w1bwdr{w2Y9 zmoYb5;ao*}11_*HW8FH}_OH8mzt4NTSJMzhpF%Nj3F#sLyXfwEes{+yCAt?y2_0p$A3MDlyk7JNvk_J*ou4~ z2Gq+I^vp68HA)w3O1Vc+(ACICILiW1%T9OvlkG`&mKas)5hz&rw4@>>Q-u zK05J*zTAGQiE~-r;HDBqU5p`vP6)h&!JiDD$0yP(ykmExtUyBhBfRQ?h`Pv9mPt6K1~Xa>|MtSkMgL- z6Eb8~#Vk%6!`{tZMwsFOh6q-q7avb^AIQs1CG55)^^ot)nmQpXvw25 zxWeQ2JH7G`VspY)Zo~7`K`$#(m)?k!ybTneFWV5!^?*1fjLGxS8#><^kN591`j^$< z$?FHza%nRx6tq6Sy5N?5IVrM$El#6}Cn(EfrwN=A!fuw4A#I6LF|s3dDdU|f zr=&b0`?+Y}1W3~G#&V4qS2V(Id;C908Zj|Uyfhieq34`@$-C#nQgd@9Xd7quEIkN=GPsrn{1YrcAehHn6@f)6UC%&%lbhyVF z4J5VTss({QQfLeE=zD$ngA<(W{Zgpmxi@8`w{n4Ks$bgfh)=QfvUa9S6eUXPSR zWCvWZgH~pVXgsYQ!sxT}kp_=c#mIP5iba>11gC50jvJW!UJ{xbhQj7w6AcOla|!%8 z3XS5_ke(0951!S%0p-=T-jODt5D5Hu5L zV@GXem@gnyGHqV*$nfv|^D6zXp}~f0E1c&Du$4bazB2o}0GwPNhvN1v$>0k$mq0+l zjFS6}y?Egb-9*+WD8|jHVdz^X=RWnW${Au_U9dd4St7s~X};mnFb^ju)3$&0S{AZ=-a{#Bab@hzwS0kliEQGYB|b_d)VFB9cJ62anFl7)l5kT9xQ_@%3EVI*`1YjM=NZxSBzdJ-9ks=56?Qscx6~>z08{#^Z)Q z%%QP!Eo4Ip$)_ut3sp!spA`6ay(|zp3DqNH7>=}d9GfDtHtc=LF-c*-aB=NOcl)OPE=#cJmrPw^+<3{+MLWax z;vue#@azPO<3g1IUnAJ!OnqXd{ho^HC<KC=NKKM`mAC&Z-+#-j_a)@2ct9|6$ZUA3 z5~}({9TXW`{@1Nx6)-6zJmW8yzt|otc;3qovC8>8lMLG!qvdoNHS|iirqsV#d13_c ze!M53-im$d1Okh_Nb^uya+w18cQ{hts|yO((_pTHBMAg;UyQqU(!ZWYqUW(A31hQH z=jQ}9Wioz{T)2!BOU`FQ zy|{}X7wr`jSFR%6fzLzi5ydiAB00K)$ofWKZh@L(_pChZf6R3xIk%JUj@kO~x^@CY zLzO&F4XLIHp?yb=`dvWRiO=89Xfzz7>$dKm?S=#myjn{_3LsR{UViSnaBkgAuK*`A zjVL!npGvD9SDcN7wDn*2wou)z(sK+LV;PMo6SUIkw|_M>j7r{2&!Q32IdhUkj15l5zZ7HcEcDQE~$EmoWypr${?@?5re_{JSpV*9;SSBkv|BLI$o_` z22|XyxMDEq3MI0Tq%!LGss(EJ4W0CqrU}#4E33?q6v?tnU#RH~cBne>08^w+Qq?P3 z69mK3)R3k(bguK@$Vb;>EkNN0ujR(*hVGXa)xGUVOKt^+IZ5=eiVQ-N9^-Yy>G9&8 zyGthl%^P+rHE09Jv+1J&oG(OVm8r&XxI1~0AW#{f&X^5I5J6F~fn3M7J%SzhjkjM! zQ{~8e5s_mvU!vJ~0Z6G!s9yP2Dhfb-^hp9SNPUFka<@0m%9QbJ9E=36o2%EN&k8Pc zzP05lV5CHxjuyso@@HxK1Zaq}y5ZxFo@ua;ot`>bl%P1glV@5d;gLFrE6yT<(UG2k3n3B-)VDKsWMN(0z24lZqt0{b!Ka zbeSLR3+NKDor^$mt~|1D)@SrVS08n$=rTT+dj0_06M-mO{})hUpWRFGG7ZOKfO{+{ z8PFQRS+onh;vu>~k-bV3`DWcKj*z*K{NKb}m5du>oF2hG;$#{;+ts)s z8R>utsxl5*r&(;-o1c4DM=#Nthw zMr%{vbs${j+(1SbMrWpQbm|vgjN6!PdS`JLZEkoOq@a}eFLFemr{VMeLOe+Oi?BU3l9IW%+@-zDn2k|ZEFlsJIR;+Sd%WE&(fjbU68){}<919Al$Ljm ztx^||Q9#Rg!yBQCN9cw(JQm}O#|0Y*@|>o{-X4};FwN0Xn_3;`E!?bm`$e|&-%TY} z#nSc}C#+O!)taKk1Ny!Uv^75GMo6)^>h#XG8}^Yd>7ClH`8(O=g`G4cB}JF}5ti=! z9LZ{h(hXjta5So71~>CM;1Kw3Ho?_Cvbr^ngF%G-+*vimxBCUyX`>L*j_kUMrWE@! zZF80F$^%)`sYWX$ME6+ZN1Uq43z+E_rknZn-W%T0l|I=0V3&ky5YE9s*Q;p@SK9MH z;-dRJ#?}(Oa){h);JRE*D6<7Y^oKmWp;zl!))XA-Vxz&ydh*r7wuhRt_pvaWqfZK&04E zpOHgYAVayM^!;sK2~e{h<3+|~^Dw&U318 za`DXtPJh_7Ec+5di29LuI`$&Q*87(k&evnt*}1@K3U%T<<1zGEI$sn=qYGz`Xzp{v zoMYdXoal`0`$L-3q3zYPa%DWqxkST`fu#@$GO(7{;imW3l;Rzb zOEEMY$1&(=isx2+XBq1udL|O;)y$tqK>;0s4w(c*!^3%M)X985`w~*}p}wZOzDx?- zqg=@u5t7?vr^s#(>}lm+0DBSa!j*IlD?uh+HRm|@q~roHd2q5#1tLU zWx1|4vl!*#JSB=@{#+o-X}X=W?$1QkCRt`H4I1ljw;<<3PuVfI`M`KtAZSk z{j|&N0P@K#w$%uIRYLXh@9A_kie@=sf60gAF+R)ym$3mAoQ5pXv7OfuS>EWGAqX2y`!P9y!zJQq9|&dg7uT&yo{*ep?6K~})1FY5LZ~6*McX;kN*+IZTH!XqQO5>W)} z`dg0B+r+^#0Stzz4LA(!>%uBdlQ>fbkKG1ph%Zw7$enY$>%Y<{+~R)a#cUmLD6in3nbdy+l-U_K zQsm@kxQTjpMRx$rb^bW@X9G_K7biyP#d2lbuVcdr3#m}E+C3?oPHGfhpX+i5wE+iv zt;OuW_x}N5uFD6Q6ZhvW9}Oi{F+xjnab^cO-vq5)N_te0OYE&2661V58~;~opL^r4 z(j^6((7xtKmt^TV;3Hp3rXloY#%Y1SHPmkdFGhKUsj#_NRI_kN8a-19x$80B(wE1I zz!~O$y~Z~4(OthJnRQg6$RTyb_-w+Ucz_=U>-#?=QrvswMFGV2X&W4Rki3*RVowdB zM1T{xk*kgV27eXGV|QSEw}r0cJPTR@R8Wce7znTHbq2A5O0|)2_NnC6lC>ZXmd+d@ z4&)6Xj`c&HRW=DrY3`gfA12+cP>X00&T%D)d3)K^6Qf3bWQs^P_K)aDi@&; zxf}w&#QZ4Kt1@r!sRU^hz$I3YkEM&NUe#i86aNz>Q%Aa(lBE-Kvjymxa;Q0Z zW`};}$Q)F6!>j#z0T&dt+qS+t?moRTjSzZ(Ty7uEL)hb9vDtUQh|<-(5K0DVjiAL}ey{P+l` z26jSaEbD}!AW!s3d9tnK{J{P6WD7L*3)MFH6b!=sS&2HpkxUdG_Kl7jsiGm ztq!p%|LU6wnL5dU3rJgo-STSR_~sEg`e0tdj=QY~|AtZVGyrt}pS>}*la25$rFG)X zSE1azlRe6m%KpEhU2$;)H3{;ebY(-)cFr({QLhC48MB57voWluqbKFa$Arc~>dNz2 zDz~4DO8yNsD}6#(C?%8)N-Rv|5(Xs$-hMHb1950$ks9ZQ-A{$mJMn9XG7&Hpq~{}{ ziEIMKlwydcsF+ZehYira1%!njXaZ*RrX^P%Aj`S0LY;Z%nF-F=%Lmb%vc`T@*(_6i zN3pgTDlH<&8ZhP|TYayGQ2LecI7l;zhVo;6@45(au047hy$?rwVw})h6lTQv#_wmg zuIEANH~#3|i!9nIltJofWcn4<#{ zlkUUx@Kqcu4`)IFk=#j@7AzKh5=9nDOAfpUSQbSTj)y%aW9l)eRmPHmdk_c!%@D=_ zEFiTKS3Qyl}MilRTozuXnh8e{dlZY6hJmKK~GM*Yyg;U>#o>qp3&97>R&D zgs9)>c?z*j#%6HpOH2q;cNw9}Nd`>Jajg`wL%81xxnzajB{?6gWu{(nPV3>DEFa%) z!0U*jhRpkI=jeT2!lu6fJbT!n>$fTuX#Neo(x+)Pwge#}=LsYmW+JqL(3WBPQ`%$S z1>0!aBY0UGQ{~XKnjw^0yD}MQ3=Fp5%pfF4lzJn^NH<_mz_a3|3IN1w(q+7%FOP_E z*%j^MYd$TARO;a#b#COB$H~NTp3D93{Mu!lkGp^RPlUkfi2t}qYclfR=pwDg%j_rr z=c%jx{~tm8k0A1F{I^U^J4mFp2M|VHLrfT?N>yO?9EU5k=)H*T;;$_ zoJ9c0+b*QrAzIc9P0>X(h(x)r9Bu}|u2qD)w}*KI+uiw^NvI}_7~;y+GDX4Ko)knw zoE(7mZC%Z4@hH+_Pq0UXbQuI6X@t%gS~D)V_lq%b4(t&@XnygFH-M!a&>>UZ0-OYX zn6RfFC*f%~30&RgW@tVqO(=~;>0EB%iEFD3 zILdal2?Q%Bp!UlE9(ahOblqplKFpt~OCw;rg8BBdyoRT|Ctx#(LD`e+|H-@x3A}ZR7Fq=07;eR-V{hb=(zCATyUl z(YQibdNyN9h#OO9AB^YVZSFQ1 zJOkg{jBl)#xbrM1F;SDE>5l79XBjqg+!>xTUsp%ux1UP9521a}B3=4`4=9lyN5|G> zo2{ZKYZvAHR8oLgNo3rgodLKEO$49lEQ-CbgJXJ0!D}r%z~)2U_W5GMs;5#D68m*W z8%nREeS?vHWz{hQ+#~im;`~;%$v)Jpa+W@uMi)NX+gkfIWf#@)s8=97Gzholh=yJ;e*XSCmi5^Q>@ zg6i+fLZ!$BTb(#*?6CZa5jwNQ8{mldz2LK_Oxk42e%jf5%#%G>c2Vue>fSNg2;7!7Ea8`pb;mq+zPoy;A-ruT=U-IYuGROgO|KlH9twbw9$q)0l1&()_tc1J z=O_-Q`Eua6w;wU0W0m%q1n0od8>mZvp8LX=ceqD@7d!{*5fF}Gg6!f(GARD-e_ed! z>qAiwCjcRA%O^)zLa-a~Hs|!4JU^KPN%Mc@h>~5;ntZd7x);P;1IA=VBS7npe_m?t z4Lrx~8_~7Cc?fhoPIE4FP(KnCk~Gix)$Z_G5o{Hix|uO6ymy~Dn+yA)CT$d#i1{JT zmD)?ec7*X&9k>O=J09?AMa|KLZ}J7>omccRwo3n{(oKP#ob+G2<7vD=g8?O0wczk7 zvR1<#_pqA)y9LDRGf0fyjnLLW=~fd;v1I8=O`4p<{KF1YuKE@9uRhuXJo;Jhd4&LB z3UJa3GJSIhIArnbmw{b?D=0m~jXikRj3L|PQ05LS<^sN=8@eKo;8yYaPr@vkQmt5a zXH*KL17OBtKpQuOz+b;wBYRMzlT}Y>Gsaz^N6B@WBew_(=}?R$U?g_wPnW8Zv2?n0 zajFid15fz>&4hv&25gdTh?p6i^gYi`(*z+7X~{$lGRBXoK4^1*b4SCyRZ)Ie401y9 z!PF3a1cZ-OdW;4LW0g7@!(MP+063^OjtJhR7r@CUDI42e{*q2U^*avVTo2(N$&1=p zasHufY}ekqJ{+N+Ya?wnM%yOPz=p&+UN{Iql`+tSi0B-*bFAO2HgjD3pG>l`|C6|f zK?dl3M(C9cf=%I&C69U0U)eYI5V*z=%B&E;R*?gYjCN<9Sc$%^d5wgTH!wY>C8l2* zDVHOU5?P(U@BAxeMl?b1i=pKUZ|ItM^*SK9S3qj>#vFp%Gg^+-?uDE5<+oX*_7eaW zY6nalDe`Se-A_EbDj|cSK9xcjsieiH`P7fGY%|Zxr9!7_8ljR>ZICQc)&be z1Oh!aL+A~W74k5flfY^JnK1GZ64YhPMR;kl3PhX@wcgB@O`dO0B8=q2k@)uMW%_c0 z(%o)pazb%lCdzE6?NS6;Y#%wq!7&r~82URquyfc=f zp{OBxTXU)%56=LBFe`JCPT$))Y{fotCj&M}^dI>E0j+pQT}tgR+a!-d`|2S%E6#?nm)^@Tdvly{chpLS6%2|igL+Qv*=cM&nyJaytC+=HWyf@A*9+v+gJsY_9cvO9Rf_GJ+w z8;6`riyN-ZG=l77J9U@rYd|#EnL_|n{UtEmhPIs=EskD=v(4i3w(#;%a&OTA@u1(( z6`EvBWI__{D|M;NxAy3U?qbHC00#`pN1&fGuagXp+eFhNEtdOid?_;oHB~Z}%!r|7 z;xtfXbw#zg1sqI2Ne^{J0Ae{c^>VM>J;I2laJF4=RYcFO-1Ce|2%Fa6##pL|sG zmyl7lue0f38`Kij5I))`Os%>^02*O6SDJ*C2KZ}D*eB7(C~wCdn#qibkzrjPxeAs2 zakMc)nK8!pB+HAJryVAY1SzUT`bTAXAXm^K8f0DEB1rh!C)BSC`#F=)B>`*|Fj!zo z5Yi2i3t^BRf)N3vybAEGO_K7AO(^;bYRdC-kf5H|c~i|EbK#2GCYbR7a;MXCU9JAi zvqSq5Bi@ed=H6FvJ%*c{^i4)7kYyAC8&8%H+{ULOvh!}KlXjX=;^1Ys?lDMZg5I3_ ziCHB%Pq|+iHAZjK)4<{)-qM*O?h98iy?*A)&%?7Zo2}?daFb={Yb~aM*L5V^ml-s8X%CO9IhuNqj8oYBHM#8mpQ7Yz$DXcq zP(_o@T+ed=sX(?$q~N+;*(#y%rALUVGER3XE-=^)*60jFRjO`&2+N1bQkHkSzJUo1 z(>1RoEf+TpO^xPFO4QAD01P@z<|Uy{BA}xr0LJt>J*u40Vdx8o96M1=oX9_o2ZV{c zo&~tXO49?|?OqZ_z&2vuS`&_tc9#>%+>t6#6?O7` z>QV=KVc7)fjT>V1Q2&p`Oh2C3-wBqMzTRYC01)h1YCg|M zw`!+=xhxe}Cv_wAzW5eQHPLb2|7-l2S|(6Lec%_(qxsd%&`T?diS&gC1OG~JtcS>Q zB@v}uJ#Vj_Nf1I7O|{HI@HRiLr>LcD-~+6a!7|pX4)jmzfMoxa#$Q{UYt^YyiLZ2~ zpM!hwE%(LA8*i27C7>z2lBMoixzWWKX0f|RcN!nP{}?uw7GBF*2&Zd$yPykV#@YM< z^)H_uBqUv-h(`6JoV%s#ZJ)0MN9VZfd+9$jTUx9IOVdaO(>H{oY)cJ#dz)@vZ7@SX zfE5pE>$$FgTrrLw+BR0dA@=@fiT$>PmL(x$7yDT{j8X`dzunCcp@$lxPpYS6T0vxC zwC_WDWpLV#bqzh^lKZiKg&wSSjK0S5`zs|U;WE|(LZH(#>>2D0bW%5USK~`lp4g1Z zkxw99-%vB4Egmqlr#kYym(H^&tm_wdQ%WY0C6I7b$d7OpI2xdx!=z6-&lW`DXoiH5 z46>zD)F#XMXLvq_D*RJ>EQ2^EI_O zzO6AJW<@$BEJ(c63cXKZUgcu@y^v81uiXZfB>%-!r3I>F3hw^1O7p7gsRq=g=!j*W zSG1bjgspbGgppYbP2R&GNv+lEuFv?{VtH~p8Nv+FtsJN8`qCd2%bi^L61P)8-b(V( zggW_MrZ0i;VTd&P=}jvN04Zie3$H}x!Xt>yFAc&1)Ix)MVOi^JWAwgfw1k31o4E(* zvP#($G*3+Tc%SZiU??pShXRq8{ueR1JKXTCd&|XB9OPC)lpU+{(3BQ9RE&RP7a-_H zfW=W>K3W3&R86uF5-iVuw|4^UfLNSq)86kq;+FtbCDKy*r5&o1jnTbGOYeusW-tE` zg*#Tljz4QA)9|=*#gyh(QGl{yQbo=$Hefs>EDYRO93-7Kp)3(buwaV@1O+q3g_FjP z1)M%F4p_*U3Y*{H+o^^l^eU_0$nsaxB~_2sSH<jaZ+?AAu)6x%i>2?~=klD*Ch~;oz$ksDru#9eMAkAjq}Y=+1Yw$nyvJsY`_)sL z>#DK{{p*Mq&`YP$At%VaPOtf<+pc`iJWzg!9Cc;8Gu8xCl}5}J%tO@mH7bjUD>stW zN9oO1eY`&Wik-OfnN9Er+cz==^wq0NX(5C)SLxjscU?Mei(45akSCO+Q8@wa%JvS( z;CGzwt9Bu>grvd7y@+I#sOYnn2fDJwKW%BDxsRS{9m3Ss^yf;4P)vcxjiUN zWpcIRX8kvAegku%*U?SdKFoBp(Qc}320;>_s9JxL;$zpH_*iiDMB7*4ke&PSv{6ON zErX9mN?y?o%_#HzxQljjbJU2Oa>aQye_sSorwgbkoWkJov_(j6ukE?{0O1h+OYu`R zP*qY5`q%bH$w}XZ)Fse}p!ob}DA)YEdjsi1WSswE+>OpbN8u0~pd-S0Y;448>dE~& zm0W_lAG6B9?JWB~ma;&AaFFw@FKBEZ-K&m7$?2ww87|ZtuJlhz)MkSpsVy z(K8)T-6It$D2602lWlTIc&X*GlHl%M4B|~>5q@r(C|1uCI=U2@omJ7fP|VhKVw*gwPy7(C|V@73}$ODE?M2>Xooof<;t8@-t{ z7CRYo_4UVAr%O*;2AiGqmt{;yN%~#v6=Qxcu^+DamZi#lMwOn%r(c=YB>HF#cbO&t zZ?lQPn+(m*xqevRZieXU#*dg5F zm$#d5k538pvr;`+6C!#gAx4-L12Emk26GIZ#zjvb0NA_xU#YH9@$Y zDmqNZTa?|nJfttV-|FLCeIXD7-J1NshfQjU8P;K>pl2Qe0ylb}G1?Hs>lVuw=bzA* z)0NW7>uN5+jIXNETjdRLybXJQSC{{h z{hDEyuK>lKlrVVZM?FAH;S#3H^sO30-BIB?&xS&t@{KJms~6$eJY9tRGdT0V+bUFsTbnE80W z&djek3<$opCK#mj2*GdJv^V{%rUmKUqKcF4g8S_r*Y;9ncdJN~bJ3K2&ysTqAO|~h zRPln@{z+2E)Ku-xM)M!xd$#|fu-U*9Q+nfzVTjwe(xC3Da~c6;gc zoQ<%fm!<{U{Uu>V!RF{X^Df%k+r?Rg(q)4^&DcxNurU@NA994`IX%=0>8-yRvqHGv z^{EJZo)JE($9#Fzw$?8j^<&+Zj+G?;U~`1u0P~XI4zT8Dy@z@$n-V1rG?u$hec34Q zj*b035mqOuT1;35i#a67U>}3B_n)S6cdvN5EA^^P&Pl_X$73GwI!$1JH-Nc@pbWem z(bi9BiD12n#>!jYfrZHXb+#WEAFlAoLpbS;Ha%3^j=Lc?8k2K7yYf&xC(Lsj8NH`) zv}A#-4Fls1lOc{iUak0s>nOSUYxXZw+bD4^)4%UaCt_vE;|gk8bAxbB(uk3;jM{u( zgw0ia1|bGbx&3TsH;)@FMJS31vRa8ujFT2t(mYT<)aOxUo){33+aIZ@Cp1;z4N+-T zkQq`8%^UU?yfiy*^NvotKRHzyAwwz$E01?rRK9wbYmhvnUa9dd_oxysSc#m#)&#eh zb!HyS+x)v|@6TfE$e5uhG%n`cFzdM4isZMrzC2~0z z(v~c>*s8H@(N=MDb?*0|XKBEdr&3*fH->Fcbqen7Sk$@F=IEnTUSCj(Tc|oQIoGaF z7vd?h#@Hs)`Yo2NhCE$-!jtHub<8AMg^<~fxQxm2iAKig$lif`QS%q{%0G#{-PGQM zmgm<{@hv-`nB^+`rF#spUOeVv&j1cR(}n(i=g5hVrEpF&!(~vtbx2(RH-!}^^AD7x z{0_4F^*MmeBDi1lwM9MV%Cz{m?g&$6@c1HOLo9ysh$Hsd z_aC3AxJ6_1k{)`g4Z_B>5NdR#3m4It+?l#w#k9`B#`0@n!o&1Y1xqQ~Es@>d^q!qb zwl!eHf@LLzT$m?e_eyK&_ATd4pKuJorO#&7O+7xBj~GbW7&D0 z*e59x``wR}f1zUAsC6<_Wkp~QTM{}Xd5(T`6pC`M%sXPYOqZXWn;0z5#hN=-<&F9< zca^aO%UB@Er^o1y$Z;z)YF`4&nxko=nIq+pVLLt0{$8!5_7XnAMlzaqAFUK4U5%#X zgT?jr9gi_hqc7zAikHA*Z#$LU;ZH-c4;}Cd{a!pfhs_k!)R$dq$3Np17fkRvfN*7N zb2UdB=*jzy2D|ypU(%QT(IE~9{{6Kbv$?unXAxb6vRBRSzD(`bxPj}cKd$&lqWIK5 z%-z8Q!pp8JuQ#)%gT8k33ms}>9D+4bEt*&N7xIy|99{A(Lb|;YW>rh^qea*8JRW(b zYMb`>r3gvxw>>@>65<-Y^fsrJDr&%p0D%nR4v-%9Vze|}>sn?s%|Lj=x0sz`I_P~8 z*H|m<#0d}h!;#7UUPZ;QEvo$D!l$16arrdwx!)^8%+6iJm~CiN z%Gz{F_!r(Cr#!b^_~q=`a~HRtB_BTj%kFPs4Gr^47b$+!z z;M5c}%Tk;|NeVmoJ|NP~jtYi|EB1cszaV~n=xoiv_FO#Al>v8`E!qeKe}crm;iXKc z*O#Ca&62W0q6W%izKQwpxsw}mr-KYKWVhu%9hiUD6}HKYcTZiK^>kxH@Fo6nas7j0 zZam6qbHre8r~Ov$XN|CDYfeA7Q@P#-A1BH5%xUA5j3zR#4D4Bo*WKf{EngvTmj})GDXfIpDqcNC@wWe$%a z82M7Xe4Vvc`Nm*4WiA)N( zo@&?V5jSslR%BCfyc6F-y4bfC(zfrLvp@g3t)5q#FWjuwpzn}Gu}fK2pDc{LsJwp< zeY5fKk^EjHPNlHJ-QAA*;ZM0TlSEKo2;L*HEnn6{y75j0#&O{4!inClo3(SBTw~*k zXIwNh++=oi^DE1o+rTVcmuwcFFZS)Xz7j7LsU!Y9Mz&{-R$iB5#*w(e8PA-go8I-- zy~G!uXKM^dr%0JMqd!zroavOMuA9b+Q;$!*lcXFJ8{iq_RhL)ZwiHEbA(25F`1`ZZ zdse@&!QlM17MT-+NP6VJdz> z>?x<}2;?g*w!B^=@*5w0LeV=@v&mOD&$l$_hLh%>w%%~{A9}xL-G*-&MV+ll3F|f9 z{&rLF%BL+?ZxN3tid`1BGwkDe@S?|=Pu2vXE?IqY{bk$eMF@|2=7gw!pIsvTPD&-Y zOPThT^81H<(|SS)D-634cJ;!de)cB?EuJ>s=K2OJ*0R9$+ITYz4|3f2Y|R46>ZS_s zXkp88F6kI4CRi~Bg5x{HF7JPLwWc*e)V;ppoo}rKeEWigl51U!$}QXYI6=y;KOy+D zpV|+)7fWhezM)g{mr+>kvfKl(PyesAn81_a$M4u&01rsZ%^H~3e^4WJxTiXBdA}6= z$wXm_x6g&tCU#k9SCZKd|RlB87O!;0?GW+zTO5`!zsUcEU&(yhn)z0SG&3n@43 zWJ9=dFTd&69*OHj!=LX>OnB zB)G0>qbyG)64xdudm0|ey=Ttb&hM}I!^iH`i1tINBX5I+=d_%bD^|eGUn=hTYk2H< zSK9kWNq`Hhp_~xzt#SYPtIj>&MRae6jBG&yd1{PFP-vCArb z=61Jh|5PqhvJrIW?RgwGXwYhoys+Q4&6a;Q&0=PvnN+Vh#n>NFA^yYK?la>8U;32+ zO=_eJ9A6>!?cV;a#e8`R??!$%+?c$+!C{O^THlixS2ycnbA9MFR8p1j{ML;sjddr= zx|OBOMoyQGymtv(QuK}~>wmIQMyzN05VYqW1-p>ywUIX@5LTZxMk-F=h$etY|B*Q{lfq{ps2 zjMH+St*4F=>Rb(fm|)A&qdx5`1K4Se-(V#0sF?D4+4K{=yzf{Yy*F2QmL(M@5^7_m z*M;*;@IT9q2vW&IJN0zm=tf?2WQuPpPCsK-l-WC_85bAMwAZ};(qy@4PumK=f{a9o zE)sY^OnIZtMvbb)4i99Ym;t^zD?md5Mk~%RS7Z4mZ@Z_## zedD2u1y+0m3K`b-h=FD-&o-nV9x0S)#pMp$zeJ9EY|GzvZbSc|f@k43$FjoLEU6z04U66rhn~LZ zd2lZ}Ec51!u+^V~+xt%Ry=_=zomhI7{xa-`mR;_M@%CuJkEWaP>pZ>XTTVJEZPtMBM;a|JO6`K>XDqhS+V{Mmw6g{^5_`RV#rP&)klMgXmve0()cw=sH#P>x^>OJ@n8TIGh1z`R!N&E`>$_{#V=})faJ_wMc89SpYhiz~I*H>I<5VP~T22{A=1>KyC3WQKN4)Ar1%XV%_5 zSH{KR+Ya0&m*4xqf2prDZhlI(Hb~jS)3KbYFcnTcCk5Z$wT<@@pKIN#U6&1cLf0=U zD^3umEriqqKhj7;3O z^bIt0zl_NTYJIjw<3U?hw3JO%sNtmL-23CTmRsj`{CMh>6(r@h-aY8uae#7e-{!)j z&F9WD5EHImdZ6uuB;&xl2Ny&M$+}OR1f+rTLX8GVpE*2dvAD9oyIPF zRy|_CmAGMNVReE2DmP9;Keka7RvTh zvS8IlLDx5Wz(2$B$-ebcD4*@9{QStk z^bM%wZ*0RitzpuUjIz&c$};Z=Ezx$+`9wNf;}Di^l<0cCZ^!`Y%2b#dyLTe~`GPv> z*|y2phDBZX=g}|z2Vq|V4&@s5KMN)mnuxM?#)L>>22;eThD<`1P}a!Q*yGr;&D1G_ zBqKBur74L*vTsvaN`r_fVj`ntP4?~oysC4~_g&w0{jX~-%y{2td!Ofie)sSG-Or>y z>|F{DC+l@JIYZFTUPQOdEsP{d?&y3jrBRr(;TV&NJ}2MA7v#g2f{lBsL0OLaD^m2v z8cwokz_>(}^O`vuzNOmTeGOTi^zPRUFs(TH{70;YL2X#Qbwx#ZW-$X_n|@qRAfIo} z6AXbsut<~J=XCxX+}&Vk9zLmhaM;z_=Yjnl&}a*N)of3-&b#VE*2O6^XOBWi5_*yE z%2~DyuZu2gOuf7}0JWVYKiv3Tedp%XnPI=ms;zdTyqv=Nx+pm@F6J}mfs`<)m1WN71fuA4 zFPcxv^3H~ZlRhu5vuG6TT~xkze0{D$aPP;v>N~PKcOzsG)=IPb0+qL8Cs%TwEc@=Q z#tKz9!GaJT7GbhWr-@5@aO0zY-KN`aA*A-}_#F#tUNR7IO#%+o7xnpr!-e!N;jWne z$|Vd}lB*~ho)=5MNQ;N%nCOH)x$=(fp{UUXAr}d&e%_X2hAASbW zaEAB%1L8V1t{j#O)34LrD5MTBH)TOjpfVb>cRwwTW{l~_a&y=Q%(BuVOCkrEj*?zi zDSN|sDsy>su#|z1@qXm#BaOc4#+!aC1Hc1P>t4v@@VjU`V~cR$K@roCm6^Iv4-us| zRPMy36ziB0`6djU6;t!V&z#{Ms=8vsSoi~n!HJqUB=BWqYEoc-KWYAKAUyxRz~M%kFG-H@U5gvro|zTe+9m zi}L-~IJ(*KpNtvg$E=q&q2hyamh2PEGS<5XEb&i8e}LIW??Mw|$wke#L%#FSTxG5g z8_7PxKFQ{>zpIX3%p4x_X3i(l_|!=I#nIpPXbCRAX3oFcUB8H!NcIcbnSX%X+iE~( zv}>aaG$&MIS_0x)f@|Qtx0pjEt&xgcB`ziIkXVvvdNQ--TX-#_J#=vBnFlpVDoUwZ zWL0~j=#_WG6}kzq;QH757ya+9Rfgq&WtD_s{S{mx)i*>AS&nx>-+Hgm*;LyyOi1z!;K-Q|NO9UxKSzwW6=6ub%JT z*S$-nng(?`Og%S_D@oI!Ifu!Lida!C8X`=p{^K`(dp+bbJXSj@K&zHg=a)ihB zXU4!hC~%J~zx_U|`5^WKEz&7<2d4j?*cP2rOW&9s9!$YX6aihDUQkyvhKwK;SWNqg z?BAZzjq#q$cxk0S8=i<3;S27+rF82g)$PXa*ZbK^~7WYiX$q&R8ZVfgi zuRN3}Fn;kIKn8u_T5>hnD`K6Bishuq^)X>_d1rWD7h}xa-2fJt{*$OHFo&41P^bal z$!*<@LjfpRhSt(KTm#%|2Yq7t1b2I}UwL zH(&0xXr_K*@|n{)q7Hj_Jl+jh&S7jr(Tnr|n`BK|4X zaiizSqm^%VafPrJt3)Eq1{v=*vNv1hbp~HCte7<)6fEz%(V%XYPnKnS>01t1@NP>* zJDaC#irOO8^GW2DqKulGRwZ=8_002&MAGPuEx=Lz z@Rjw9cJTC36Y9v>{U!ZMNF}(WS2;h|K=x?`$G2m9wR%x zi+Y144QD6U#vV}klp1_zTi)Qfhf@r;hW3&ph0;v1ilPUj4ZeF0=&n3sd*G%rlLK1> zO!;LUWXrb&Z!~!Fb^~ro(ULP|&h2~skx%$FXZ34q-XB7@=r=@`lKM|dh($UDA+q+& z@De%^-;%w??%1lYj1ErOz(Y^-j*D^%6n&-lWbme+X1Vcv7AI6lMSGq(NaoUmg#po{ zn14Q`RP+6^V@%7X4H{EfNMZBB>yVSHh%V60*UJ~EljvHcRnTh4Jb8#kSQbO)SoG8u zYPzcI3ShLif0>nXZs1hrHJmzP;bc&ImsSGzxgB!HMWY1XfN=74lOy3s#E~QCwvU&D*~$?ex$tE82wdK?0p|$LRj0 z{^jAl%#g2qUM27dLCziK=O1yLo|3o_p1D_chZ+Ow`~HW@bEA(7dB#Q{yyC1 z_VoCj$)J$^zPi2#$-R3X%;6UyQ^H`S$I>;Gk}bnDEp61i&pryA@!~cyLxLbb=vg$q ziFO8lGaq<>zym(bllvBXj3FS8(K>aZ^PtMn~UZfZZcR?0c&NuP+uR7UxFM@fuo2D0Uj?Y2`IQm~4oZc;*U_ha>N z;03Nn7s%$z89WIMxcAPz^*LX}k%H83CA;h&IO3i;fK4u36dekSLbOmq+@G*!V|SWz z!?Q99ej+PCbP2OcyDH>grw^P>Tb+|JxKKx8hIDf?6Af=dtBqLOBqkUxSgDPRPtROF z#Wo-GMo5)ZtUopH7-C-*dYEilT%Lk&!}M#Usz^uf$IWJBE_W*F8C%SR93VS(@$BW` zy*6WjMUB5{{ibb``-z=7A3xU*&lY^e5(NNm9f+ZO?eyk;kg~1N?OD)X*fb%-rE*5T z#RR7A=e5gFA?){JM&eQRuxOKIp^ue%qQamKG=4ZTV7Gv|vq zVSnUrn>fHtO;&*GZXrm{`4iK&p+gO8zaxc@GguFgt8{l3w^kQ5_3gXy?P}wUyUdS7 z!&ZT$(b(>@tA)wSD*JBadgdQRci%B;&fA47)L##G5C=6j6 zH)e!l`o*|^b37I2!Q68^8BIoT!@Zu?)RZSOMS}Kp9!eS=-1kK>E_2vKdNkM1*ZB3y zb75Y2#gnSxzaOz$JIW6xvr^r7F5C)s5cq0&E|UERKBvrhKeP$_M$7H;ZqFA0P!Z-H zXRok#v+YwQ!fa5z8!Pu>9`lPI!&dYW=IA>}g*|OrA8dte+*{V;R~==~-d(=faf@T$ z_RKz3rQ08B#0B|p!hg2SVO)+otHt=swA8gk56eRoDhlHwJYgo56qGLDNjw)c6Z3ZK zZrt0>Grw9OdCD!IJCT+s?-K5;AG3jNmW|)QofH$4mW!chz#5Q!jhw{<&|KCD1ss^c zmyMVbvo10Il6kjF?`%j_d8g^ktGQI5?M!k|r&%z{#n2VV47lt^f|U~@K-v+-mO*PK@E9_Z>WH`7NPsF&mal^%4DStEVJwN3(MOJ@&*<+`2Q3f|oQIhW`)_2s?+Kul)gz*tH0RyY5Op@G;E|8ia zJKMxObp5FD%%SZ~3_XtKPb&f(TSv%IqXfJPv37=SqhuPPZB6jN@>B)H`{TF_tjXtb zcINlPZBHUj2Ep1k7JCqN$uU}Hj{!Vgk-4(^Is2v&%w=x}wQej(c&X zsyRf>SJ^j=?5I1jT{DLXEdASK)|lQ4JgEgastiE6MFI+>L)$UdsA_@A%5x85KS|~l zrdM9WkLZ~u^f)@a9~xrsWc&CA$dL+PwBi%Hk-?khcGY=&8h@=^#K2~Yq2VKj=hWx7 zu55=TlGkCv8HO2ofn8at*d0ycQHN`*EuX%>T`r1l2-veCV5yy8nA#W1(xcNG z%&pw}B)XoSyHSwQnT!|$E8@&)-V3C#B?6*rzn&-0cLiUJ%mGJJ^P$z{2vWfUO`R{j zP3=RU+qJz>@fisbYU-@0LHfMpBo1FOW(e%WXu;DBriv!W+)K=mfJZbiHUGxAsKms+ zT7-Sm6voX+H)6OOW7bndgmsNbZJw>K<`>;FPh|~_nOL-Yii)X72Ync#3NHpv(XrWH z=t)cN`?!zqvS@wg*dk!neWXr%wgs=X?L^6w@WW(BTRSWRZ@(hcb+sURRK&dJC`B_G3Q;iq`gL?<0D`W`K{Q`@9!US20#Tv=MQI!)dEolA| zOR*)^erMP0DLz@N&JM--pE5Z`YTNEyzvz6SVjme8bd#1Ah)=mn-wWbb%~UL9oo+Rtl6Fp1OS&eo4x9v3&x6O? zvDxGjo8tXLN~F{Pj0-M?HM2}@l8mxTRpoEy7l&n?x!)%Tj1~DB2M_vyU;mKbeWC2T z(STv(hW@iBE4x6T=o&LJhVBG6Ls`QE5zRT8N~DK=ZQRU79Urw)oAF9vpDJxQ`MmR3R4q#Zt7OJ;_IH>s1_{&eFFq9+e?No+}UfdhHv z$yg~c`Bb&mTqEmgZ7$Xs;0mpY2Wyou>izDaj$bI&;ih^cuBvrB`aa9=E9N_R8&F>S7gK=~=ufOgCw=5+ zh8%JzFuI#N=+7P8__*{Wnb(Yj{>=|DsxgB*Pu3|*5? z@Ez<&no?WcmliR&Az?o~imgGdA-kCEN)w_c?R*T^-Pj}2gRtLVpUf<2-;#yjb&}y1 z^olbzeC4p@am{eyjWOdVB80EA{(xxnB07EGeyi7EXI!dW?l?TcB;m{au_#wJa`ib$ zbt8+>#?Cj$osJ@XNz4pD;*%uP=v|xU&=c607V0>^-uQZb204*#3l?awOx>C1Z)vk` zyyF4&J4hBaPqFF;62#QkDL9_3_aJ#nVpps2IR>?&)Dl>QrTwaBrzV@iR%eDd$Q?|) z>^R@cU$>YdIM#*-rg}O`CGKoHgw9p#%eJ?g&o<8dRX>3&WF-I=1X+W62OC2aPZ=k$ z%*D|S@8~%1u*TGL(?uf-wW72i-kmFWrw#Ck!$EnMIvIkDMEr0?tt1d5JstB@j5AzMO%) zw=xlaHIKxOlmC`?lL~I7_4xlXF%v4{zzm(|wW_QxGL*czxflm^1F*No+zOWJ3Gr4G_CekeNmbcr9X+y?IVl9IbXcE(s7Mi3VH@Q!?VSPQrz5Q!! z@~aUB8ROIqEm_LtXu8l&<&u^&o_-4!0K`(*Ex0MO#481RCyoMs!u)8}-Qkx2fV2LXxUh!9!LzMfJ!W+( zPoX3d6&yr%>}!TGL$>&C$={BV-5@PA;<(K}97KJ?L&b|gxvXt1;E6J@MLBPY(~j7p zo6>68)=bKU3f2iVoZ15&0TSc#aiXXF`zlS`D#+>sgSH)0eE>FF_=OeTO-(|5gTv z%R@TKpvMtbN6w9&-6ToP7C!5&U=d?(q=r95P4OjX2YOPUozi&71JMmn`Qax^ zp@(Z=#$?~vGnqOfXQ5WnfPc;SunBF4$l!CtlL}{%orh}|HKwjVBPxJ@?=t|g_~fTO zOE;LEosu`OLPo^g^_ABIz4=-=QXU)4)+(ehg&V(FMwrYN) zZ9++9TMKfmk+UP9L7r44j?RH+S=wK}c#hF+d=n-I>)ni2YvCB9Hl<^QKtVzTQQP=v zCzMnmZ1)xVA&sf2a1m2561ceIlzS_|2i+?Aw6RVHr|dt7DtIV0?XkRtOTh14z06uU z2R6DjbnWMK+sHdlp;(PS0%?!ZMR>0BJY4Y9F!9hy4LIjwm50%m?{i5?tCc5I#9z9YK@HO&Xv2Q|sj~ZY+L`EFlPGjoFilGv;Vm`lYoCyFppy}v0n_{1lDSPdsd-Cv!JACoJ zZXanz^6rI=Gmjvg@GuE_a5Q=sqKip>zK`8Wi)`ZDwEOUQU8U&Uo~F)sNmL}&ObF{t zlFX+AK2j}TdZ6z>4LV;xKN3*e({>2IeBK0r$TznxQzz;0M^8_r7;kZ(abs2;BkW)3&nks*kAE# zKgMaGE9Bd2q7YG=uSI%XD-X$gvm_m?Jh3oYJw@gTvF+shOV~q{YVk3^z=9?K zae=K!*JfLkEuVcN)8=T~%001YDYMkuuiEH@^#1!z-Jvph_*(1R^ZQ2=^jeO~M9%BA z0Gr5~DQ%-)PKPE&fofv|pJ_9v&TD2-vgvcvVfal8s~^`{2@+_3+N%5hjcKo+Y`GGY zX|&EEot)INU%r2U8S?(NOEOFLJ%GU6adu7v$$K@5V=s;N;Y%0LEgLCWCXVi)5OoW| zzjt#pvdZu1;A*y_^I(qlvggms4J2Z-y(HjJgJ=~IYugj3w zgOKJA)4~<{EnQ@z<30*rPTwHSHv(2~BPSOy)Acj*hA`KU20pB6*I#cB7`*CBuXpc=a-9%%mKK-yF$)XBD2xI%Favz_#V{iUF zM=VD$F6F_>S*|79U&(qS1|y8nv(?k@J#ziTS2?yJ*rX@h0b83@12JcSlD5S_~=RMB$U=SmA}`O1H?kb9P|cSa6~0x8-g^x7;`K&M=-zJFU65sz8qI zA>S{AE>Jdj9y(nHdyLwBN6G3(N#kUFuoPVG+f?4qJ?DcnP(Y@3NvA4mrabKiK|I4N zWz~C1QVx(Tnu=9`P2PiRVLm)W?v+Gm@auu6XHU#cWzNn(V|B4ZrCU4bO-)B^&*c>%G#|D zL(Coh7UPaCP@O10>LZGdMSOJ8q!f5-GD$P zMcII_Lk3bcIf@a#?++M{vLpl01j)j#@&?p8(_F{*)x{ShI-ic%J+lS>04NC`MdpP7 zzNTq===Jym3DOm3$mtGV*OT_B{ER*w`>`cD<*!Uxqz~ZwdE~7aU97FOU?R z4#)|p)cb3(bp|Wp$>t`}Rxcap77j}C=HS4RqW}bHz>88JauT?z6yAY`Gii4v0*erPAZaLpWCnM()$ce+DP^tI9*F-Sd(;vyZOx|7~^DezjGiDfG zQk;Q`11}SvVA5#ehqIAd`G?$A+k|-w{1Yu=L#mylw=?h$y`R_mXUl2jc=nyN69d=d zsL&EDf?Z7~>)&tHo}4}b6@u@17fX*rb!g*!QhD~^6G?}h@D@ zm~s=;1LHu>N}@RWl$FHIxPCaz%M|9F&wo-ChFXStL$LxT&M-#eGB$hv z$6c+RB&Wnr;FimFuy1CCa&NzUvuFjNQoGM-c}xWicpzWXc%AWwvo%lS3jm35k6!xt zezxj$3@MfI+XWJ>5EPBUQZyhw2|0X|IbTm{2D~2rWlNL-^@yZ(wK&jLf|^x5Ebo^b z3@hPy07m*JY@%^`oF-0q+gDDsQZ9U*uqo^N)e2Y_g8`J>a3q7hI_6H?y z7RwMx0dm|8)WXJa@OjazU&{zW>d=KGNlb_Tj?ND8OZX`-8FXxxyXD7d`q0~mf~$|R zyfGw;?#(xll@FH6WajqeZ^xA_sc}GV@I8>9V{xPg30t5Q6`Wi&!G$a$tw@W2w0N4 z4KWwxDVU4gg?RjmqoP1rwcwuRl0@+*jwHe)QyDF~sSiLeIf3cGSDn7V==fJuz$( zA+tc|)r8;@f3P{(@nhlbdw+p%}bELDx?P>eN1N+BM zI>SLAHtr$_kYOpMYtFm-!*v!(%)NQ_^I&k=?|jE$#WLhWleogxafx_hV`sTOa#ao2 zGCXCUC!mMQjnBKpV4*jm7ZFbUyglbK&m*$Pyk57Ai&R&YmSxvc($$ZAx&g4%NN0xi_JC#SjHmu$c4qz9exY1Hq0_ETN5iY zpDe!RR2Ihj@83dr($mE0xeEl{79|T-&t#T7l_>P5mG8o32tYPGHYxoLo`DL?@-y%3 zJV*x<1kF*3@@hY#vukPf=+ir zcJI+jSeE4ufA11i>g|&p_lks7Zwz~=TP!xmH^JmoK5`rJ0s_)}xQ@MCQoEG{b~15sQBb#L=5TbV1_HQtta3183M$6(SA{){0V2 ziO->_DnKeYbESa%#S@1LR-NE?KJNVg+4{g3cF5x-kY`|Lh_xr#y<)G%%(CWB6h6j; zgSCc)g8fA=IT!DHgIHE-^f05{sRiPPy`EfV;GJ9G!bm+n-G{p3AZb8?SX*)0jew4{PV?2QP>6{tTn^739VvKyTaCgTgm+LT@pMRb>K^r zWev>l&A8M*9w}7t4I_rBVPyAr0Lp2Hub{8ko*H$7y}UAZGIM?#q&Sr4LO@ZXL;)fM z;;9?9*@gQb&`CVayT~q4SuSRp=7Sm~P0fSP5yOzBTjn(COybg|z$RPB*aAdWFNw81 z^=%+JL6Ve3pL4irVs?cdwQpN0rp#ZpUZEU2u`FDlzyhL#9NN&~S{>>tpLHfPZN-8c zLnr9s;wht2AkhQ(tjJvrT@OctkWp^DPJzi#BSyQt*#pmv4#UMlnvC*dO5mPOH6?Gl zkn=|nC`kJNLc*Fqlhg919fw(e#DoYv&(m`UC~J zPTbU($vl`-KRI2ImZjcM#LjlOx`Py+$OPUdjs~VsTdq>E@1NDeP{Isbbp7X0Q$U02Q7b2;OETFPru*KJ>D=nGa-ajLRp9xf?3eF$Li{ z^`FkAuKev%mjUucs^OOu0bCG+NGnN$+7Ik%z+c;$v_hES#i`02r(9!(y3t7u`iRie zWW^-z4hmOe>O9u~JxS(@ioF_*V@=t3TL z!(-gX)b2Cc)ti0)dY^m#nHDt<4zS>Jnt%$)!smEj--r2)KM@8Nnj=$6%0)GodCIyS zH&@|fcWs;e0i}+g*bd>8YY@EJ4($pR1+xP0Jf(Nb6}mZrwj5HxY2W%%Mt`7?U8#p_ z`4$Ptb9;>`GWQ<(9BiVGJv?aHFpy*0r#SYA#04Nm7aBr)M`2=d%2cV89@C6{v9U< z1~wb0R71E)Y#I~@ukVd>FmYei@zwIx@HHgs5#BgMwWw@3>&Pm-2jWUlhM4li&Y1BR zuIZT}iL>9?@tFQZc9h1{Cz`-cs7gk=zEdVs>W29qQ z4n%$QRdEu+NI&08?=#Ol|>KU3#=b9Rd5u(>%Oh`Vx8Mt7C~`d)_ImbH^f=` z%9T%E>)de84)(lQoq01tmKG_t?n@b`vP5nGz>N+F6@dH#Posj`E;w6MDhdSJ0?G}G zW+Hd#Br_{E?tz4}(5DQCr&;$?M z9l7wx{1^n6>*<`d@+9n6IZVGfJ4Y$mKJt$`iMP?pMSUV+s8ZoM=es84W*MV=M!PGN zf9LV>m)P(AgDydt>Xm@EHVlDBZ#x@y)_>SW$O7B)kLQ20?uem7;TiCEWY3P7D6n_Q zwQzPM&BP=0)=M9pbVxl?bCarlhF1nq^Fif4{(7;!%!hVvq5C9;5iLo;#0cF=o~nJb z5_jd}_d<{gm3pqyXgA3#hCT{H)#HNrWFe17rk%DC%hKF$?61tS2S+V{w^sk~Gy`v~ zD5yGm1u*s?WQnSVRbJqEI1PkO?hrfPo##H9!W4mzU!_~p2B?a_+d(XC$6Q4TH*qc@ z=Z*vXcdtJ5WQCX1zU2|0L1ke6TGi<--s#5Rf#M*9jgO{x(Sgqw$vqeMV$gLO5do`# znL5CLHij8;L0wsiu`d`_+M*`dreO5BO%o(%&3bFE$W6ie6JOI@UcKZj z84x`;NW&|mczYXf&k3*e(+LEe+4yTUkOsASbV!HRCl4kO`RdJysas&3m_dL{lunm} z>$Dwpj&e)4I@lJwFV3@XYD|>}HZ*b$ zQ$>iiCDc4bw^hBJ++5&%Pd9Grs^f|*m}ECdN5P^%Y+s8efDSW(SP}U48*NWjXrC#-@|9n> z#v<|giccg1fqTitq`rbx9FTiRqjY0=XPS$s1Mpu+9a_m`LCEmB$6;rOEUd0~@4-|v znX~Ou$ylNEr5Zij5oc<~lG#4(6enIUpaxpB4$%L*#aS17Ss| zEbziFLEFkJ{-(jsAy|t_q@EOd^|1MYF%Bn;RlNz=8T>l*IpR%|*?9U;fChe#T-U~~ zZMIe4dkkc*$di_V?#v5d{~Cpt96r4*=sx~x#7I|O*}ui7WtNhG_pk+B0Y|~}V6w+$ zy{-IxJdr)fFwwd5WJkg?TOH(()`AmDk2BJVZ!LzEqF;oO!n0sai?VmfrYJCNbB!y0g1>QFb?31xA2va^$e16D+ zYsMCjbNzXDI=$;$W)^koZ10y~!bFbnWykfpupa)N8xiI|H;1)`G`T>2Knh6GaaMDV zihfvrxU9+*Y^kIWqoPbmTX!-(nYej1OfBG=1hM3nB#x`V^@b!8QR#{9e=e;Vq(UMxt$>O?Feb&g?6N)*a1 z_s%SGdd~Yoxs;&URdn0NuH&5Z8oLZGEcVF813Ka7-K;+#Ett?TqUU<)bt5QGYgxzp z4=W_b){4J-A0;@}`XmE-%)e{<2EEaYrpqWXKF-3dvvmhAg@W0$4TE_HPZ#lo=L+Tu zaNv3gOq-5vH$l!BliT~~oQ>{O=#$^wZ5x4N$pGY7^Ud(hpd4Y`wGvvz(RqBr$l{FK zuON$0Sk@EJE$pdM$B7JE0@b=dy5JSQyb1LVUW}YUq#sE59HBa4$W@>McINP@wO&FM zP+meF?jbBl{F?#N*ate|;KP93n0E-E+rjlr-a6J|&vP}cxL02q0J2*ZRP*+*uU*j%&0jog-`O zx3F=SIl4l@>Jyvt|CopbIxP^BhenKCLGRj$dGdYgPPyyadyQWf1^E7a6As+Tq!+Wu z41^=X^VJj5`0JN0%pxBf;n8<5_UxcwPxI7hcVB-rq00ZvSBDA!o(!b*fd2T{Ef=iS zq&zBtG~;kyfP@_oP1Nl*-7-6#5)bzjMd$p`0-J=O(=It=uq83q_ROB21%RKD(!ZP0 z8`{_ad(7{c$}BPQ&viOpj12bErjgo|8aXwH&XfujgibrKXKS4SKLuWbbqW;&G;TK$ zcE_yFm~s1n;^FJn6y^q6jkWOpf}3+#%HJQ&-}hD)EB$jH{@B_w1T*p0ndEr5E?-y) z%C-0Sd&j$|0Z`e=vM2j%{_o2{3Kieu*PNPJXU?KZx5~6LQ15{p<$ZPQ#ZSndw1on# zzZxg0^t)50Mb9UeMT>_y%1NWB^Z5JNIL0h&O3AtbR$5(e`}=wZ{?DmlVE{?M^hF1q zaSLsdjhp|{IMWB+Ayh@baVVi@#W7}h6o@43kDY-~|IgRIqu2Zh#8hq?)Gl$te9JFF zj*WZLA#2rS{AQ5sL2rp^i02wsla#fR-1&_}nsO=RAzLq&rKg|Z3k06NwHM2>d z!kziTdr+mwQb~{(nDUos4QL`6V(p-o4ma-*6TATfdk>=eeO)l>c(EKTqP5PJfj82> zKYyO!&`~=B9{trXem^s(7C_zxQkY-(u2HY|v@bCX3X1pk@NRSiIbjl>yW&IJ&m@$|I0tY?*_!A{Gt0vu!;1ADLLpEs z<+EjtGuG@gIx;{4fJ_tSWQBYhe(+d6k@YNf`1zt$xK#8g3fVGJXYuW4qn=5}9G5Q1 zldeeY*BOYl0XSs75kX zR4Ew~p={vCv%|Q^bKh_(&p){ewE4c9e6a@ivJ9vDLA)|+dBX|D`LUOjAEcPrm05%~ zqNbVCeO~hC;8&IC=ab5oJ-B#Dyo?LdN3 z1V|Zb|F9kNF7v_F6}a<@?-L8aOsXhK5-_qR=FwHd#_TNIl*qtSCuH#M2@U6Ql8g5o zIEAAUK>77^?f^Py%)DbS(mJn4@emD$wQkH16Dfbt6N*6W_rjvJxd1#9UHIJ2eCyYi zHL%_Mz1Cxj6GF~^Oa#YlAgY*S>(9&wi%$FiG~7513Tc2>sugjBFHOJMauqd_&Wu0$ zW?YbM@MqDJg(2LOm*~^T^}dJ6#nyxjrN^37e_ED}u>KBQUfS*DXY5sL;cx;@9|+A= zkRGRb!CO8@)2pb7Dp8O517CAIvbN6paz&F4^)+z>6MsM>uk&l?gHCTKRC=iL$QXB` zYO+p8*(ArQ{;uCHrR1$ES)8Tt$h$wsmeGDyaC6V_r<<;dO)3&g>f++e*_D*yk&HK_Ax@=qX_4QTd56QGWLAP!9<--I&oR2ueJoEU zWhh)ZpFdwbe_!3^s>r*g6F*`(BggNpT>`FJ4hkXnb{trgD;d%Ee<%#(R}&|>@7dPu za`r>^-TPnm>0_)p9D@PfpxqO98dntMT^zXn%#d${(eC3WMv<^mcS+Z!ZMHQ%y_vC) z>Bl39Fjj&7x6BS6P-!CRO3^S&M>@{sO zCFTl+A-d#l=*0QLwK$v_(@hO~*}GMvQVB8aR~Q*8F#}Oa}v1J2vhHi1Dpyf!gSHB6PpdQ{;3T00h9f4U@LcA~9}lop5n@Cv1q! z+Y6Sl5aIp^vZ>RQ8b@t_sqyv7p`%XoNZ}hHPKUwr)+NO0i98+2+t~BAE1Et?TfI9M zVIQFB3!ga5<@u$7MYyo|iT!w#FM$~uOP8TW3JCMd>YIX8hQikwB8O{9>f>%ZnWO)t!@ zalF~a9-u|3Nu&4JRjMsDkKI;56ts|XWPf%1yQiRbJ`g+bSes{hY(=ty8eIRC>VGwI<)fU!|LDwcEB_&*3yq`BO)gTUPI1 z{2WNl`fGCw5n`VmlbNeY%x+jHELPd1m@m-d>)Y}tgE8oWQ)O$pR%(#S9<0}2a+>Nu{va9>nCVRj@HoAZeRyui6#%?CE^+}DmtAFrHmp7mniQLxF z;&CE5T^yak*Xy)*Ntc_Oe18ZTpEFXkiBKS?4#tQQnEx9VFZ#JHzJyqVmGheUN8DBw z*`gX#qs;kv&eB10wP-M+?vfWYM0a|sCAtDGd=7+ZOx<)_G`tr?wV9p>`uXT2l97&` z2NsbhXVlKVk5676)Y-bo75-q_U}iVdDVxw zy{VJG4Yx6~j4ybvFWTTBuL9HmoZgk)T#C(ZCO`0i-wZkJ&x&4OChhjqD-_x_Ree*>-gNg8NDin zR*R>lw^TF zKs)V;(&pZdFkLu6#bGzXr#c1)BBpt zi)DbPAHSWkcK=0R`FufeAj%o^xvjpZ$O?ZFbNNP)VbZpD+s3uHeTrNC;dOiKF0aPW z1E^-#wHcOItF(M!1_$Te#k4b51%oZ5&iR;`PcGNf=fvxpz5rYlniJQ^TE0b#N0{a5 z2B?Vku+y1}Dg64q7P8>f3O{0{@SK=$1mHKDb3XTv-i)g`o$dayB?mbrcz#n>+}X$j$;gt zXN4r7+`!OOSu1#FIPLv`2D{ttB-bDdY_$*?>QXFOga zaxjR14jv_#sokHOEsM?EJ~Zss^E&=*V9y)`bwX_c!44Y2TKO___4}7+TN&-falkmB z6g+It=a;_)NP%+BE!6a(oC)$ry~2D8Qr2eWD9=YMdIp*y zb(Ms*@c@eZ_{g=t06&|}sYC_;G2tUddOt9)Cyz@2>4$Jf}#slvFq2C2z1HfrDYi|TV zCL_NzpQnf?UoH%IvVsIrf*wxdo%n66iRyo<#+o>tK1p1=g=Gp3AffH2KB5Lt4cMCO zGG<6KVblhBb>|}ciC|`&+E5T2!XnFbJ4QJgEtl&t29DTyT(;)vuJzIOH^TsyqA)>{ z@PC{opimq?>sGnY^9OUjO!g8WJ%0~a+e;|44&Je}{*!0_s4?Q-JbSAT#nwJ@K52Dq ze~l@dD*D>xKksLmLxdJonim};?L90pyWVa(Z+|^L19cVtJ3W1Csf?{~*VZnfu9yPS z1az9tk54xLB@oa4f*fsP7#F<>8|T6LKe(n`G47F=+8?Tb+Jkbr;ij-&N4>}``5>uE z^Ofh%BtZS$0{d~?GROXniRVB4l$7~3NI)dr zC1Lw#;qwIpwhBmyGOjpIeM^(L?j>Q4&Fw>aGMUMiMFq^Y`#gj>OVz{1CgLmb%yK>kXRcw<8I=OddXR&R?!w44^8c4 z;NqFeWmO}qCfx6SveeP?4d8gK-S@pMz6Jl=O26N&Eb;>Ek7*0XPSG8l1&HiBY~kGdu)nEhe7Hti^)2lc#Smm zPd$b7UyIDd3&e$+Kwj-Vx5!f{|Bnvu9g8kTFz|`F_U|KZ|Cg8Y{ilX4XRSARE4F@r zHf#zc^v;j#lDuk4j8h*KKlJR|f9fB8728DkO)`N|kpvl6+$OxwuJR}KzH2iEY7E}_ zSE+!nHwF|h`RxmNmp;?W0zBkRcsI=dwX0xSAL*x401d9B*T2_y((o!d@rsQN4q1C6 z?nb&^U8M29mHy=mf@|e}6LuhEote-j%RaI?biM16%P<^j8qI`Hp>#NVL!%>QLhir#x(7=YU!E<^wVzfR^#g;+4GR2wH@rVlwH zKVNa>FFDyj5DIlV7Nkzau$pc&EBCsUfSjG`Fw`~X-XO_v5U5tpOM+FL2KvM`{JVBN ztM&9R@cE&Wlvy5h-8j|DJ9GX+$pa9G{ape6=V_C`Oo=rHpSQq?SrItER zez~AO+m$K=GIxF#@w+U^_5Q!e!QY>(UHr>V{P#0F_MZX#_hTU_o$G&>dFZDa?tgsT zcI^KuQjFKJmd*}1=iR_!zkLHK!`^oNZ137np<6FGzr=PF78uIgolf}|G0%WZv*90O z4OZmY6Tb}Gg2C(Rpu7K0jGsaRs42s7@37ORnv4&3QLg`K8lLeRQik3%x!V%vEaR-> ztj66YMjGpc`S5uUpMW%Szh80mmw$Eqg0Xj29^2%m#lHo@_!he?xSOkP$o(+^%jRfxJ z>;Y$xk8b7q&wK^t30(nU6{uWE40GOwyWkgO;2b6S;=gA1_OD)2=6e1YXASP!^Xnl> z>Z#Zi4|R(F6B+tAV1qR(eckDhv!}eC{ipVSmNnkK7s)|p_SF2Bd9F*N`Jjr@U`PTq4#m+^sZB>4mN!6kj4Ct{GP-@Kd=j= zf~=f>E>AW2HJzbA)=qzZ_q;r&XC~`UY}8f6MRvq?{kQ5ZzpK9d&$&6*TMXvsLbzMG+DQY(;N;3! zS~qQw8b|wo?Ol0TQ`fc+LqTO~REh$E)l;!@1r!h?Q>_CYMJPhRIsj!XC{qH2DFN!M zsHkXCfiP+vIgE-DAwZ~9G>p9#5F{Z{A}B(bN&?%5nAK2!aauoamT66bH z@wsJx`=x$|(n7G8(fPq%7de@ABt@odY_~0LbuZl3uCX-Y^Fi-R)Bsd6wIoxH#6k_i zkx4XJt5Q147pcpCr*VF1YxG{~Ik7PvIEaLty!gnj?3Ay)xlZJ&>?Ov57KWDIk#vL5 z_g8k$8h&N|G<}hYTiw!7X=&k= zj;mErVM|Op3b@xR*yU3_obmc{g!an>(WAif<(E~%*R`w|5-I8s%=l7Y$KK`>HsaBx zjsg8jl#TS+=IV%_2R1aU4q=2msQB1AuYGpWPk4-?&TJ^Uat1igCzwmN0!_k z`2T7d{?$_c7mdyTGm^Ie5W5EY>f1IAX~65pp|#NaXH~e$mJK9*boW$&bzXPLOd=X> zUt(<_Pm#VTMn5(JR=_`R6v*8kwD~WYTzs9Af;uBMM+6pOLqrK}*3fhg+F*>%%A1%HMYqJ5@Z@s?}rc%ElpI zn@`b3N`~Ovb5m-$D|$@TdqRp534r!)*Kg}o2~|lq)nY52&Y>P^2%>KpEnO{nspq)u zkD9j<;dyH8!KR(|D$)9P+b+A#Ch7w;@GKusx#_qSl)b2)0n~=)@)N)pief}l0`O{z zIqIkFcV~Y{?)#F=GCC9*c2TIyeQ|C|812h<-&>?Gt3Bn#{lYO19P_UP{yjo;gm+r~ zG|oR>bM$P`#RwDti%IGOQHUJfDW%ac$6S`?zNg|0h5VfTat1R5KU#SAv-o+#n{T+A z(`zCulNl(Q5y_5xcj*!xI{~D-*j=J{0!~3VyT-oy(5Cj}~|{M2Wuk4A$t7Sm^I@e1KCm15Ytun|vpT-n5?*bu%9*9Gp$ z`vUA(D+g@69k}7%v_@C3KR*!IpKr95zLgs5u{U8=SEdBXQF2uew|2eF-~c1 zY1V59ic|Kb^pq;~swSA48-BkQZvwD7IMbG^myZ-{-u(84gw;6K)HJXO$A;SECKrm@ zD$|Bh*Nggz+GTNXN1c;A{Q95ln6XF4n3+qqx8gy(W196j|HKPh`ZYjkj;HG%)7$pF z!Jw#Xhg&@aUg)k}=BDqjx2YxtM@>8X^~c|RhgaGMV!tm@E8i;*=c&y;#Jzh6Vs2U< zUse^A>c28KXIMJXdp2(wQ(`HA4JsN9^XxMKEeq$BlD@27Z%zmflz+9kMUokayP}s# zd#U32!U<>nRlr2rxl873s%C?JeqLuE}j|-j@r}GKh9xN38m)KH2u- zfDe~&ZI7vG*w>kEdy6!OzQsgZhc_q>cNXi(;yHeX{78>(6yHo?LF}p}Dcl<#UtA$3rUq zevG=KQ%hHT>xfkf*AIQ>x8?`?RJ0YZx&69f_xcLu`xgy8NfJ#@@t7?kVI&35$8hkB zlnKnxSXV8b^HL<58{0L2mtcA(MAB5rNduoK5KySDqn8_7X*AAn>_moB&CqDaZsJr` z*boWbnNQ`M64x)``@-^mq7DB#wY379k}FQtHv6gq{3j197h9 z*km_bXf#bJxZz>cU6op!=7{TR|Lq!EoPTIY>_;}fd)AZ6135PXvD4Y}3F<-HF`nJ{ z8a?nK0QdZQZFH}yTSo*ux1O?oGI+?I5&9V|+>?ZbZkI$#_RL7e$e$sLt{}Cd%cj%B4wlOoR;-~y&9Zb@A3c{vPW%u>X?u}#( z02~{4vVGfN{V@EXEurdL)|2A5I?%MAyJ4tvKP!*`Qh8Su+~_L|o~k~A6@7sT3VzoM z<(~`~DWv42^UnX`kWI-UgZzG09vxQ5;FBMZ4-1byO`A{K4mwg+!jk6s)@xEzo!m3= z>M`O3kKg!Z^d?;5G;Rvlrt|Wkw7`Mull_oRYhjx9&W%iG%?5+#yw4^Q58)ihBC<_7 zk6C~TJ1`!9iq(UGTTjL?oXHeQf}h#Ivj-FS**=iPxbhNRG>gm}A$!5N1agfIRWJ;b zd|pQ##}XgYP4k8w03-9)QG1X|5cJ$;=RHQ0LAHBGFHDLzn=ODCU2M*YfZZ?lv$mLb>8Q)2eSH3N}@eNPm)>d-`K}c+L9kJ)SUD)kxg0Ka4LXZq7)`46M z_h#{;;9xT`7t+CYxUj`|V_VsXd)tN_8v!dciF(?wU9}~MQ%q(3T3heWCJy3W3qDb8 zE=aky(}byZXAmSLtZ(|UN2e$@UybO<31HktdLP`phiru}=grJ!fwaTg1FRl)Mx?MU zQkd>IXP9$^_XCusekb1(JCZx8zSz&C$@L4PUVLWeIc7NikLz<&>ZfSZcDj}kNj~3% z9e+b4=UAsH(M5UuxzmJvGEW;eS?4%C9h)QLx~vmq#zuMjR>pn9IOQY?HE5?bmkBc0 zw#CI&-9xgz8^(7JAd$jJxP+=37ly65hX`QYc>9zRY*(W)z@hM-QEY516L?RiQ%$IG z_D$uB%%L)^7oM;=OQxV;<~JnEAv}J~>E8H#smKl^45^{qz@S~!S{D6?Xpqj^YMxV0 zzY`Y0F{RW^kHMOmx{Q1D6h><0JHCj*GP8Ub6fSu9-XI|MGZ}fj(R|+z5bUYEzB8}! zNHBxVnn_fh6c&fGpOOC-Wj=MJLTk_iw9s!?7@TG!B2;vmz_<~&nvmC)!_}7j*LAyz zBR`i%lMGZ#4;#zq8gHDZ+vZS?-#kqxpE!mUmHI_sYbp@W9l)1rxA+j&QvHCIaQYHt zRKjac)>EBaZeFxb5F3E4@h)Jhy%spXt*oiBWsAQjtKB)4todl_h*#`v(;)@K@ zkipx=whV*>F+X?R{HMCg=L3j*f8zgJ9-L{JAwjarWdKQVVat%b1eGO!l$p> z-9$hNK}zAEYT;m4!Ata+%KSs)TsLt8;K=jecZ^6Zj zQpq4CTnIKQ2%CEhTS_IFSi5yJ6%M{MuiQ<#J#cczJ$u@x_w4T@z1w08O0#Z+E%Kg3 z#S%>I)ljH4xyUYC=7`Z+m0WA)OEN3hFAd73sE0{N#|eoMWt{V11wD5WZkjIrv8L9X zsooAP`NU282x#B0{-fV<2 ziGJkz@|btA_r-P;X7Nyc*e|sZ6Af!NwZ0ZullAGNBSlV5IQEv#+w?@MRLEW0j#QAQrx+>wUcqxe_3;l8Bvq$&`ar?CO};ZUb>L$-M8VtfsTxf>QZj<-NoUsT?q=Vyiu6uM%s zF0sCTd}WHlCUy zZPT=nUmHefl`(MCR4VULr*0u&C~g$o_?<4=_@P5tpjQ-ScWv>P(oQ}js4L#{0QuMQUf#nm!!};h?*#mtvZ=OoDD|UELt58Ha{hlu& zmCVTWXV<+Q#RO@KZN6GxU_2j#>7Kv5{RJnaDg~7nXyA;CCpVFE*lb#HnDt^kO3xum z7$=mKr2o4g&NCzX>Z=V>aVER!4lI+7h3qn0F+Xs!;>915mI#CIZq92LS!Lbk|J=GT j7XKNh#WnG#B_Yu|*>!ehVo0Nl^cV0xr@bX#d;jncVVa5n literal 0 HcmV?d00001 diff --git a/experiments/multitask/figures/baumgartner_catalyst_base_yields.png b/experiments/multitask/figures/baumgartner_catalyst_base_yields.png new file mode 100644 index 0000000000000000000000000000000000000000..0e835ffb6967df5faa66d09c5ced6de73046cb1d GIT binary patch literal 110747 zcmeFZcUaTe_CAW^QO}H`Uk_~*l%qyaX#)sI*Kq(N0wMy2YM}`N(pxCXC?kkyq98R0 z0#YNPNlSF3g)Y5EsY;84PJrCCqjS#p{GR*Iy}#$S-*fSq0)}LN_TFo)cfIRf>%m2R z9p0bz|HQ+?!;3xl+a(^Joo{$}whjD!JN$%V@ZJIbqwJ}5#nZ^u&eP|byDg92HP73( zTs?2yy#7ybTX&C}t}gP@^3o?I|LNfAdD}xpM#lMHFOYV1x0m^^%Z+95CO_Ujhx6d! zkv@X{+2Wg~>CLl+hX?!HnajQj(}On*@(G zJ29j8Y>gH*yP1Lp72=0?UV?0iddezU})P@9cm3w(!UQ z{9wNS|AYV6-)fa2?;l#b__gw{6B4I(RYu#GNThME+sR02Y}YG3TJ&fsMUvr~hELYJ z$cJuTNScY4lf$Qne%NH`z>U z9|syH)m&WI!KkAOS;*Dng&}1tPCH}!#vN{ltu|!|=M*%n^g5(Qnn?(uUrqLVDBZx? zfaUb@D7c}YtT;R`S~>1~Hmpk@ef!tfKmOAY_Wpm;5Lz>f_~3y;it{8JIyyRDN;Y)q zZ{vwRp=J2;Y}oGO;VDH%XxAn$3hf9Pe<5w9$$iS?^SEd~&c^cmPylnRa(SpB2UlRG zdX(o%me+KT>|mLf?(*zld#-tj=X6hgkr5nWNEE-98;=9dvdj~U{;o1$S+abZvVSO> zd!!*Mc8$-UC=K}@DX?#GnYqmK@yLzYfl|NaL7(~Aa;6xz%!ip|Y-(woid<764|*@Z z0=uUAmsq0Q&9;}GvjfW6xy5E>-ZOoDH;eWiFjGa#c91}CYib>6yjPURtT%vJ8DnbY zSIx9Re`hy2%+tDN*OHV7FHn%TYjl{o+_#H+sE;{n;>9vCreZ|!8;ij;-Y+I;})tNJBKdoYf07OGL6iS zLuiC2&5YQ3dP*YvFsv$`c{j#~5m@p}&QX;c8ooX;wXCzgc29tRZcFkr&&iJC5;?Db zt$xl8G7e_wOceRGWUcio)|MA^o^XGx(N<4sgoij$6Kx%|YEr+Q=bW6iZ1B=_@9_r8 zGYXt^NLmCs6RA#Gn0-^+;uG=%C*+1d9?4Blx1;7y>b%{;BbB}8BIh)=c;7Ywyie)6$wBA3A%2TH9pX^ZJ^=M1ptUP3OZh@RVTKzv@-2W3 z`9BkwUwpsiJcW-AoxRU>65rrOTw>g*LQ$9hBO&jv_iD9zD55MErM`5fCQ6iK8;ujo z&Y_$yW(2W!{rn49T6PIVa=ydJU~F}Q)bjg}d~#ls9q68-S1I;f4ZTI7i+$^9ANm zCB%ykAp0O^;M(-_*$?M^w~hmaV9<{`I}Q=jT@ciBmRpj|afSir{W9TCveyBzQE_o0J#{ zb0f7fo>nbM>IGob6FoPgn&7!EGdHH3x^i%(qXb>|FKIF3z4j!_kKm;!W6|d0PmT2H z85)b3+ewB-M#L9q!^ZFKl&)(x(5!r`d_cvsPO<+Mkr~WkuaY>cB>$Q6*EAX&Q$J%< z(Vi6OZRI!iY_$u;fN~}^pjnf%e(UwS?Yu#nUX`ok@vHCl1U+VOHkV@+oVxI2pQ$b> z#`?I@d?hnb24aT!bWp@vsjDNO*oC^NpoLTmpFuCb`6eZyQyIE3(!Cxn>K@~<_IB-h zO3u-0=x*~U%`RQUA~QCF75LBG)_Ike5S)o~?S zDg3^i%tY>ti8XAEf$iGDmqm>m18>}V{iky0(_{i~zPPt;WA%>nDNM8(?cOxR zMC9c6FIZ`ugw4j!dXO4qYefp)!eSZ|Rh4{({OpT+u18q7RSQI_h+_}>e!O!F;z#Ll zxP;)9Is?L&_Kb!0>@k2fdAr#@0SA?#deSUluEWm4xI1Yx;(LX)$)J{J|7z$}us zEVGGJ=sE}1ARoB4@K9JOZ+PQmQNK&M)Q$t57wwu8l&udsXrHe}0}&TLb$3(tSC{;<)k%4|e? z0KcHB99z{!40`2xD3h#t*<;hpjy0C6c-nl;6Ired-CQb>58v^3N{Lc zq+xZtGCLEtKp?sk=i6?`XUa!T7u(G{!i`@c+undbaN4;FPQw16|K}GM;!YkvqVuQ` zRwm~*Ts457Z^AhjbvkyVyTMrw=5(7KZ<+X=PyadjF%2wdB0b)vUX@uvgawa1(K$#5 zgG8QgA}z+M9-!~M80VMaSo@?{czL_N>ey1hYYTX~`Stmh3G{NXofx=9;xShKH%-7u z`%0rU)*K#bZmwu0$=Ww3h`84s61canpQtkSlBi$rM6Qhfkg8+9^7Yd`RqtEck^7&) zeaO1L0qbQwBjeM~Fr6UKtPV1RVlewo-M;ElIu_kWdIA>2K)aF$wzDwRP4?DUHN?I@O8>E_{IaM5&(7_3pOx8H2m;SKXsTor`?lsqWUz8PVm z00S;0fH=zCQ2f_-u%U2F>HuM_m%zuax+H%YstkCfvGy6gMd)_ktOJ}ya&V$}lJE5w z6BfRo?t$CUaU22L8ZGX3X+S)Cl zHdjVgJ2Et$=_hWo-&UdDe!F!~BcFlV6R&Q|5^p?g6z^v1#8`}VbI6vhj+#B6;r3Tg zA-J6PW;k2~o>X9@lbL_Ca-G#6!1RE#Y&hUE@I-=KA!qJfWUS)(N>VScxX)2}BEf^T zOyj6GNR?R3taQ^h7b{@Xq@tCOGsg30KFEF`^C)g5CG)}A_BJlX@cO@y(`-I9@=&W8 z2Oei09=P&)PLb>1vEu@bQ)}R$NjqgKZc~4l{1eY2l5P>;acVWkzhsc|A^{uptbYyD z%vrf=b7pOEDkk2gEb}m9zC|iPxSjG|67Fg7D=|ob5+6bILa|~^LEIj{SV*W3d z<=#yw1_Bbl_QC^2`vK2(J%M|h@Cq5fxoV-QKz%rMkC8|vyN_@0L?pm{m@vklW|h!3 zq!bhs7Bw=CZ@^NT;qE$)Fg9j=dciCN%V$SKIle(_?WC@nk=m#hg>H*>NoB6%<)n#G zM?0!It2AGV?bg-ik|=L~g;=b-80XV^W`}WAl;)gIdMmGd44tange}!)Py?Mt(9UD$xtMP} zgZr2h$j5~pP2(crt6LO%ZHTwP_7>yHAqz4c`0Y~3>w*27OC>bpDzpgyh0h;`{gB^7 z5AR&Tq_Wdt8N7X|F4z3~3UBVjW2Rt9rh7%f)CGb?BiaC^O#|){xPj7~%K2>RR+)N; zuU32a2rK3cIc019V)hgcxZuVh7>D~p_;z`wwz=98oG#hW z_vR3zeUCBYZw1NmHV7Vsub?;<+WabLVfy_ZO$)LYWVFpS!mbuf4=~`#`E?r02yV4x$}<0ys2WlpM7^$ zr@hX2x|MlNnXo6yN<0higHtxGiah>O@!sU0>>tGw9;Y1Jzfjbo!M;2_ha#mYwX$?vQ5e@{1P0E2hH1U*GNUgL^+&RD4J?$}3oq*tP1H zvsuoti+A3??!zIH)?Z$a+O{#sJ#W3UdU$%~1Jg^~^9Je$mV0$ew54~iHaR!otgh25 z^99N9!+-*AK2sCZi|ZH-kp4XW45Cx_W+`w8D42&XTyMV$Sox#h(E^n?C_u9pyWEj32cpZn)pVK#rnhUrbn#NspMB%;w zx_HerA+_;u5(dbtwGL^3!smo^N|%|FaTTy+j?o@n;84PSN9&&OnpvyU{Au_6*1lu_ zaGLHdKxs%vO@m~?1rvw`+h;yl6?QPx(MPs=BY&U$U~A+zACP=6=k=dI3Cw}lvSb#) zx*H)mn^N$BEGX*_4l9P%!A?jogh+O|YI(rJpdg`Ornq1FgL3D5_OkhN@V*&mwrzwR z^gjl)PFAE613wR>PU+B8KQVf(oXcMKNh`RaKgs#u%%kuzWGvE%w{TvEL@_NrJ>ANQ z4A{e;R4|bgU{VFVj#v7H*h|bsy)M5{IHx>%g0jbC zkvD6UUJ77KqDEtLE~=Y7ot;;fHRM6AVAY4eQDLUh^U7!A03vnPfF~ZrN2PF?#%LF` z?_Q8$BU%&oC3zd~LA5taEhwh|>ZYR)kXy0#C z_8`-w3Z+5v;C;l@Zvb2{;B0OmN_bVc|MKNn%06PaN^8gkSOMTd2I3b|{}pF0Q--SHWxAwgDBvixjDwYf~Q6`L!l$1aCJuw!{RlE?g;GptvJi==qXk(Pb2O99~Ql+s*lYA-5fX z7%Q-?`N-zw@f=>=dVywWU~16fDum-KiFWNlrKU|-InE9QZ6`D!6+ zi;ra`j38C`C*Tnv834pG2;!nReJ{xaZo=3NQT7$*^>;f&ZOD~N^?QQ8hE~A+6Yv0% zYfL0yI$wG6Rq6?ifm5H8Ln*+Ebh0aROUL7|guO?!ZBW+dTry~4_?o2PWa0w3<1V;% z!-3Kz1MZ7dy$p48xE&sl)0sZB^#76u;aShU*EVJhNRT8~JzVrYb$`!1cx?Q*Jc$lo zED3H|b*cqoO_LLmuSb8vY7oPYHW>eOVRlf}KEX|!I-khw;6Cg=HQ(C^mUWt#OQHMo zT=s?>@R@zew3TWZ_nD&ZaX_o&WgOU|3%aWVx8L&?-7rv_`%Q!0+ma3m8qT9h0nsrR zNE+&3xc*?QZ5U>LAB3rxcvq@2$`a)LSfiNvgIWPK`|L*_$~T`w^h*7S?3d;xE{GqN zhXe|8#TRGnfozryUU@GHoMriFr>V7`95Xr|;FmaB0Jyu{g~?6{#4dninlRS{>}=sq zKgz4(QTO=J7f6?+Y3rGxR+1j6iOl|as`bTLz-**3MBD)I>reJTZwOab8vbzs zA6C(rq+Y&MglJw!1RdAo9g@N4AAKLTr{z$X2;tNFFw+V}v^@!@+@4HDq}1(q%E_-& z1{~|X2|(PIwz1SO5~XRSY6TB~5_Fl7c=kztcb)>iApKalRx>i-0)S;eu}Rb6 zBF6$BRDMs68!&)9KpPMlcS^D}1L?dkz)htRtwzp&e4e` zpc2r|Xh$7P{E<)02GT$rEUTStO+%-I3*J~1GIwx30gz5qZD z1P=|IYvm&4-F9JQYPy~^0CnPY4*FqSX&c@{0M-|#d*vZUIwHE!4rcfIP5K3W3`(}-2A)!dxR0o&DG(1=z9;gCH)$XCc z@4XtzE9cOfi~vAU`%3|ZTIK{Co0za`h1=kZ$OZ~N{e$qIm#*K;dr)GNXx6lkCuHe2 z%Y?3%U|5@mFU6XNPj)lMmn?*q4UVEam;35iIC#fXp*!}tJek+1*kV^cQ|$C)UN8-1 zTvg&4A9Cy$n2g{jNK>)_#uB71}{mLOzz>2u+*!!;D|MYRA^-u_-? zLLY&?&iyCFuKl0I%KxdN`|tYS%l(Brwr<~b4i}x9$i;m;CshFtDct;vfDf@-8dwu9 ztWy?N<5)x_pcOZzo&8p#;;s??_2572`G5b-nCJGhF|{!?Qo-Soj@mF_z*_ zkj9FM`)SZaZE;jaxZmPAiWi}XuuxYKaX($mPo4f1iqMX^1KbDi+xh)DPnTchuinJ! zW957g8Knzo$)2QtvBl}%dRL)A9OV#pVJ}HuAL7FXC64;o;+k*9PJjFLnD5RCa1glK2nQEVloVlIjQ(EBFsFTB z6@^xwLY?nr;t<8`W8u58c?Rwdow^>xhgg;kA=8+g`*gH9&xpAx@hrEKOlH8YmX!k_}RXh4ZXf47n?| zU4hOEpWk!AFOj(FN~9^!KT;&w(YB?wxM=fdwxx~)UgA2{adr|b?VSF7tEB$gs`$(N zT1<@QtNoi+xM=I+4XnsLI{*yA|BPe$#rK)p!>>_0clj;qvBt7K>DE&Q$dV1>Sraj~ zs}}GJ=UDHvV!WN2&BwXV-go5N`--}~zt5{{$X{d)xk2CIi9P$|US1C}n&ss&)<4%) zsgDmP%nK@(N;bG*A7$;=*wl<<>D^>t4op??5%3uYr<(Oy7M(qulg1$R;dwg@(7Q13 zU%Q%tcJ)!tehnzdx*JZ_Q`U6|J0^E|8Mt5N%P6rj#+%}z z;v~0y+su8K)J%M1FR@DAO$dV%)BhmT5T3;?F$w`JBzU+DzKRIbEK3_Lwo>ovWJe|hEc0<;nFcwiZQDxN{EcU3Xxw-%bkXuk^q4TVrfc6M!RGx@ zgUl|X@mv@0m2y4f_0NPflnqN6=!t}kkA5Sm#cmIJb&ml&w*Ke@NvUxVK&j%}+KWn1 zVCvxfI#67o#G_lun>B1N{ARNkvo&i;n2Pza(=CAT1zWZuKJ?;P_)I+o?_d}ao^nN; zZa=lFk~F$U?Hxko=={8gwKME{Wd+ z1|ds%vw8|x);$^gAw=#&sz7|eCoYCXfP8&eh;|OxWb;F3c^rJA$>H`-d4s9T3)R!5 zzac9MAKr;Qc){I~@QmPjftAU@OEuC631-n_nsIU@4BP}}Fw5bOJ9>#I`_)wfF-lzg zx1&0G5da&6<1)orNMClVeSM1x>8SD&w3uyu6pNxWDk`7?Nc{A4rcuT?Xkl7j8KxqD zj*$FRPJuqkMkNax<@CJu%~5p&-exN>f)|iVKqGL?<~^@cBXC*qj}E9x&us$Z+63Sy z8cGnh>nn4sz^zf*&P&+l7IoF5W1I^NoLoGvi?{OV^ISZboA|?9!Ydc;VA|e*MvKNI z-Dyp|W!j1G;b=?@rq@SSck|ikI%ZkXOPVv++2~XZj~HV2LTrfAcS%nq`RKQRcI5{S zFt9AZqTMy1-S9!02AiQ=1yR9yqF+hh$(PSH|0;gYg$Z?2A$j`G8sijjXVI=u=35~Do5B_rXG^$===)ecWLjEciyIj{#)K@tU z`IN4sqvN=FcexJ}4;79UM0_J?^3D%-MiGFC-6rtZ6F{KiJ|^T@mP1ChdI7;rRBGbY z*c!4OS9~IgBQ!J|co9sx&O$KjShx$e`2uUqf0p(>n3^OLK3qqU6tx;aM(LmnbqjA- z1-FoGQ?1{!uR{Bs{`^y6#Za!;C35PuA{8>46F+ex=YZ+A0Vc0mz|^#Q>za!cY>mboIHorX!xzqODBF~+Rd&QvAa^8?%U_NY*Xws2Kr&2yl z6m0`?LT9(e%E!h8WqE8H(Caznvt>Z1Im=yr8?vog^V9EqlSRwGyL(ja)ft7Ncq}vY z2~=+j0 z`#Uuk`Z4j*wtiS#w9Hdm*(PPiB#rp2viK~eO3-CDG^`4m$B8ayJ-jX-s zzT)9&qpv#-H<6{ft7P7MyjxRwJVd+o@<20eeXt?_5yHdstT2qGzPky*`sk_-;YTgQ zb;_}DjohaUGc7}l1e@yw9fHM^(F)G!$~-3c0_y^S4lgM^7G7z7!~os1hd?5}D6UJu zkk|tglt#H{G1Xm_m10=L;%Jk6KHk}32mTE4w zolEDNRfPlXoRC(63c0@>7zYj#tod@rhBUfxK&L!LnFHJ`I%16imwGd<50b%Ism(Xa zM+|ZxuYa||{tO$AbPni;h$Yp2BoYfr>;%vV$alFT0tkPVHSeL{M2u2z^K|_=q%14` zL%Col$xOy-QJx;3^G==q0IQhA#~_aOP$Y%$&nyV;NkpQBrM+)2Wr%;G_X3i0`ZTBeOw# zm4;~%)S87GesA@^vp?Q}F$~mz{@RlKBMwZXX(gWi3lZs663q}pFD;f)6#%POJ6>ulqiq29329Y+Eq}eOsmAW?hUyY|NLbRpO1c9 z$(?|O?C@F{Lv0RNWo=`2dAApY*_}alE9*gzU(ODwN2FXyJ?@U4bNr>)P(|Nay>$ue z)p|mOR)~N5$D!Q2k(0 z26`+!K}Vjv8mR4oj)JG@8ZZ#6P;12rlYv9&1)@*rR7s{w4ifrsIWCb?x1YdmV^$#f zK+znc6T$vVCi0wdpebWzXl@*bgstt@2_S>qs5+_Av-gwan@^=K1++o!f55##idzGV zM`Y(y*I+hHZ$?IA`NF}Vt3B7dx3vBOkpBY9vGX=(yNi)JXSK%u^0ju17b#9fmi~Ux z5^UB9tKGHl1Yx@8WG3Lo)AJYkT=&7{*+fbuBq4!!kvz^jJJaqX&n%uV3rc($jEi=P zu`SgiSYb7Y^?P{A#7Y4w3B)VY8i*nn#gmAmrjX6F6-YMl0$RO-ixw99l4KK#VO(Hc zJ>fbEpAw?z1jLBI91>uJ>v(l}!NFz#t6VgP%E3?{qrJ07CYo#duJnJX?ZszhkZl83 z8?2ilu9f!qO_6Cqii4i*eJe;h0E!90Q_F}|0Y=+cSk$xiOm7f-W-77$fq2rDx#iVm z+JG6e2w>Bq40)BzXI{uFSYUl4*H|D*s)6#NXhzo9ZP9riPOdfm)q|3UOBeZQz=2Fw z3L=iaL|)5qp}C?qrfad1B1yXhXjF9fQ(K%-^jH(N*g&qhd7zVs&)zrB{*@rpwa@(RyAY_p+e{NzV2> z;%q>I1x41*fZ6eQSF61=xa7PVWGRQ~fV|91`Wv?q!BgZlv3QxFxrm(!CBL9*9h6pa z!kU{7BL~Sl-(FY833RiG-6_XR^yHG8Tc*2kGEKVQ&Um;aZ!kK>yrLYE_NtgMzZMBDP@tRwz1bG0 zVa!mkrz8w?_@T>VR1UhVd7!a6YM{V+Q*p?5L@N(rHi_ZMewWEq4W&-}D^~_pU=G+x zVZ4>o6gWswU={eckeLB_(p05U_Sy@Oj&^VQO@EGQ`x+6jp6Xev(tHsorL6a;cwv40Og*s1|Ids%o;>t zyS@OX;>W}-7Y+7^#arNfTk&4Yfvuj`AYEX$&ld>;X+Vx2~79N_b|CXG1N`@Xo z#QTo*H)HiLxX<1d6Vm!1LwC)-kL+yt?szxObVGBr96-vgy}Ef=ci6(7lw$`^G_bO& z6XrFs`g!}QAQaytShO1+!Ym@rm))(VFc&Ar;7gVUr`PcByi?2Yp`P4F&9jz-ThDEL zjWE%x@l2+3N+8_(WW7>Wy@bT@1Swbph&c1qC4UgeAT}1&Wb~fwU+jP*2(QgRg&rX0 zKiN`Z#4luTc#xh=a$Z^ROajU90PrDkG(qLP=85o>U_t>To=33ZDW4yY8eyd`w9%Re zln4ooU6~uF=(4NKY8fqpL_|u@QMv&l4`)YHj&)((EePav)|WDQLc)h#h@Cl21ZU2P z%M!Ed2K6ZA<;^XUgzd{qwxL-oz1#DG6*Ja}bV00% zft)J+cZ>n1RGz*FF~lK74V`i?RFK7xet|d(hhlnSyyP_`R+stbckDTsKn)ZgO5W_4 zGK%{}f=BRE1u!bTCCxpi1eAA5VAI8L64O}M;RQQ zQM4^Q5EOXqKu4-qCLU4zuVQlA1wg?RNhdjS65g^?_W&^`(Jv-@;g!GhB|>EbW!+SM z+$)%1NtAqbrqY%04qM!KH@=^t&(gHT4YgUIg})_Sf`z|&uyy7MY<{Z2xcczI*#hE2 z*N+EBvWC;wx?gwc+qy6T1z#i75^tGCEoL7rg@no@{+KB2xr4hcZXD8qte=GyZ(XUU z-1^!ruDMF@Q%9F+0Klr$hPOr=%8$ZVpcHo#Etm{EA%Mci7?Lh)^l-Yqfx8=lw}B$k z^@HDrJY5X?$bf}ckAA4uQt-}LZbUWn~RlwN<-SoZKf+xMKsH(w%p z3-bLhSKAW$<(cVAnAj(yCD`4%6y#i3jR9)6EX4ssE{fG3M>mK8)W2h$DdCP@ECN8f zVQeN%6JT;?q$$+fr=bcG**Eq0?C#7zphQxJ$^38{(F|I6R4f7gd+t+S9$v%fF+E$H z%M+W61R0F7Ed4l^n&elKxePR&lPym1^Ia$oL}Zb#@m^truhNuha1U)P&)qP>QWHjB zVi>xtP7FzpVh1qgnXR8UE}FQXfOfL*q{3WU7*vc8fHh``Dx`Gd2Zj;3q1gHuzR1>UXGoT-8AIlolR> zblTalnr9{&^RX>2p$J$shfwK5QAX>Iq7PS4)wMcO0ScmKsQPQt`1g?eCmP%@k_|N-&GB;Nl6p!7kbR7&wtnz<6WdNY;w2+7L=6cgYY(RrQ`CLC47lNFfy!ynds) z2Qq_!&l`w>fMRZ{Vv@YQejZd~wV68a6aB_x1w?Dskz5RvxKHk@{lc74svWbpPb6fJ z@D<9JxYV_Sfa9<(34jum@TXR1eQ5EJ+$iaU^9UeuN{9JkuDqq-DW?z7xW=T&qSt{` z^XRcrEh%u#*A4l_kM1+GUx@%#$~4+`F%mG>Y2lL}U#gm^-qYI8Wf*_Zy@RrSu3%;a zYGIJg7UNRXAtm^T?tRf52-;&^1ET+dYzL9~t0u*ALP;u7= zba&@KiXzd4)TrFV1q4w@JqJKBKn~=h(+hO&O$H%Z2B~@-|G6)S| z%jTZQqkgE=$a1|!9xBKeENoH5x@1kPO%W}g+f;L^8pL|V=z+RPX43lZH@0@~y5O$M zmjEaA_R@90b(WWqWDpv8;$ZJF*d$Qes?AmL^%_6vymSDMIg52pFr(|57c)C1H=CJzsQTvoTj z6-2=l(6O03G!Aw+Jr5=AplGC-RQF$a^)nejC*&;hPyj<}&s3c#tE-1-{j95Dssn*77)E`;(zqFS0xVcOXKGgM#5 zj(00m#A2Vk)J^=<-at{y-4c+HILh|AFD=o)dVaJiR~9&;WAt{>8UxJ@PsKim)UI=B zmcri^>#LeqczEj3GJ(Y461BDM8pO1GtFFGEQ+`9s{u^1OVDn$gC!=^Bn-$`SlasU{$&*EuH~ zn@1cB#o~P4kS$tZ)Uy>^wW68J1Z=f=@S}2 zm<*@S>n0cyD3TN4)~^%FI8s;A@AONW3$$?Xe6W2Xf~~Nkg(=gGe36|1>^VP-5#rZvWMCA6cO4e?!W)~1Bl-f6`1zPDphf1w`;_Rl+Q7vCC2ZC zV9{=8=BIKbvZ?nwj+C?;`9-j=0XN0G-n{Ba*qVJm_;OUiU#ox}OnV3m8P|;b0!080 z)N&(W!)D&!NjathmAGKS4&ts?^2?Dx?-;p|?X9*3S<|A$hpj2clf2*B+d-uL#RIQ10w<63Cr_JrBC9scx@Og$YBIZ1Msnb~&i`@<0_q_bL zw;e%hYSaX?YDOSK1x}3q5>rXcsSGKK5?4;&=Yc}^_piQRl-`s;S5X&6`JZ$zV;Qf; zikdkoxnK|WOH2UN#mIKe&Mt(OqotI|v|-Is=frJFC5$+m322Q~un+p{UBJ8dr@gC8 zgebN_k=#SCuw#h}$$I%Ceh|>$Yr%6;wz!~+(PMkDOXn%C?yt$wk6<@5BpWtPmi&7$ zZ*|O3VsR7_Zau8aiSX-*7*X9e8Eg#3h@ciTY7GvL@kd~USltX6y9sxShUq_wlc!Tq zRdrsoG}5}wVP>UA?h0#?RrEBLc~!-(w3bzT#Xiwu0E9Wy1p$puI;8ovG;b}sP=U9 zA2_WFAR7=kK=l;V=+FepZxX~wH6d$!ehTV| zJd2L7XeqR@n5&{QCjU~vT}CxF zwDnL0Gf`CpN$qx~JX8SGpcN0b$w0@_V_;%)3fs=3<}y^QLG91S+nbSaW``*L7czCt z5jt6cw?fKwHS=5fT7W~^3gZ3*c@=A+-C*LLkX79%orvBRn9w7E?4>5qp(H|=K>@ub zLDk1a`;qU-5v#zXBa9$<%Q8t~QP;kwxy6IB4WRow+^rwL98{BC|5U+ZeXh{-(Dq-L zO!QLfITn8_-#8*D7`VYiRDYJCt-B-55ER60Ta(Z9-pojB142wp(-k;=zm-p6^YEdz zZ7;E0!BB}S;}%HCanQ~cx6Tb=$+p0OJ?zSQpb1KmH};k!+&Z8ROO7702;ZAz;< zsu)m&TnGBO5i$ONMM^uMG~@i$}<)7&HLb<5Nx0~36*u-f%}lWJqW_KCqVNa0fA-J;bl=c z4I;n&9%ysh1x5EeWOV?LrL$#I+~y8wyt)8<_Mkl^u+46@2VzpAG|Gk;9MtRx1ba>- z8MS*u)Ss4ab^IgV%r?wO2J_OL^xK?`8`!8Uxx z0|L>$T?;!9jg*R@qR;G3+KB{(K-Y?)UKIo(?~T6!8P+H?gw??-6&cGYui_of`fFb>b*9E9Q}i&=!!%UiaD3329XQM9uur zPDnwk2XdP;__@FeP6CO;!bF37LClx0wW$ttng>!b7C@48a#C9yZFce^xW*{B^B|h+ zMmX;7HA=tmE!9Vwya)?!@iAwTcPj^^I^BWh9L*i|AbA$H4z%PHfd4ABjbLze|l5JB@Dd;n$vYrh9%~~{v z;xFiBHK3F^ijO*VK-t{}72DRKC-#CI(>p;X@QW_WQzyM7^a)673QgkBzZX@d2Bt%S z@N3GC69uvFI)k%e4b?!JUN-DbDuU0JzOX70y|7Rgst&ge1YP+Q>MB zRDzMOfV&q1uTcU&>9MxV)MO+;_JgiOBXoe`%9-Y_mCwMXsi68`C<|USkCd6vJ#%Qs z!KE~jplOb6Q70#0yx;XvLzDqKXmc~h+^JTYJ=Vg~B&lK;tE|0#%t4>_z-oc{G1sK$ z27$AWb6Qh%W-5X;We;ZrE>G=S{L=$Fu5Pken-M6}yKk>B3$*^Jg{5IAXsD!ns3(BT@#3}goMLMyw(rWGTYvoQdt zwYs@XBY`6m$08jol^DEJfn6y`=AsY-*E zz~SPf2x!KdiTEzM`2{>N6f^9pa}efHQ!{EK^nj*;F%Z{~eK$h3?yf@}qFS?os5XvB z$VgOlg^MQvvT=)#>w84I*Py!!Bc5>kSAt(j7oOeE$n(ixdtVzq3j+*R+ew>GK|s>1 zWDf?q%4Tq^+}L%%A-gvzbaw>(*Trs-w#P%MuE=Uad_KGz+Wsaaep*E}y=JJHZ);|N zwA;PsT3D0M4TB<(D@-(4Z@TYR`J6lrI-a8HIoNUqkR{(j)&;$S*A8(itSyrUmj{EX z-KJJW)K&_g(`w6lX>e5Ie9OA(lxrcj(!=5@)SM3mZ%kP`jiAvE!BBx@Jutvur8uP#7THL&~5v{lkkJf4i?-XpGEHH^*M;8 zJ``y1Yg#TsZ;j3zHEx9e3fPuR(v_(^3BAmLD&Es?S_2y>jR37ognefEyq?@!FXJ}* z@IQBjz=#wSi$Mm^so4TGTpDP12JssBiqB!QfN=at`NyDh<`OgpNGy7D0Lq@YcCn?+nl$&bO1of>)<@-g4nw1e%yt#N152K8;R|kg!@1A=ERl z`NFD_JsP1Cn09^IdRcM0hNM;c@$SwO!?3LZcVKDAkD*J#t1X>;?rxgOo{g|92VZ7fg(UpoL4SseM*0gI z0A4u6SnDcjqXl!;fhsm19YA1EU=EtxtG6c>L6zO^nXyS`q$qH+{<$!02U$wxICy$l z)I9902Kfo#(H*??1$hAP)Dg!nu|xw9Oo4tK1^*T;1n8l&vh~+h)Yv94Id?~gu*Wp zTr=H&N@~4pZCmDMYbsT#^Nia}$!)IS$o(c%fmPLvW= z&YL46`~K{bcR=c=WQ&vj>I8kk+%_fP%aQ#TIU!vm{)?`4eP%{dS!>{wpj0^s{J?;M zUw8=F!9a>v8}ngNTPza**}eoWcu^yDP4*QiC32Vh$`H5{fh~!JG-{?t2K)#@TD*M| zXf6!;Rs{4ps85OlB`$kV6o5o|KF|`tYta-MBL$wni=7}Fvv}aVBGUbKFpa&)QkFZ_)+L9L+6FJ~~%7-Uj$colOivjI$9)ED)IqU zC=qjqISd6re~>H+NqJ?HS>b#Bw*NX*jd7rG5JDETyxJgr2pq0-!_pf`!qW%`8VEK4$=y1U_#69Q~W!k!- z2@udsql$V^W>8Hg0sMH$Pyp)NLiseBXrL{`BA)ylK*caJq#I7UJ8z|x>_n4I!rvS! z;Zv~LgqdOc3ta@AHc=3gG|lN5(?t@xK}g+>LL8#Qrh-NTx-TgP-X^gM%QEgf1Ze8Cl5UxszZ3 z4M^1N;NAZe+_*AQTB5EwNWMEYq8HCXanblyyZ+Hl$txc?;>H=qz$pLfNhUS(;JACU1rgT)nSO8ab=#A0%rr>qB1{6l_ zv2i5F5g;!ErID!ORS#@F0RzL78o}}Or6?SAD{BlH7~tNPqzD|0(y1Px&HO@#uCpkQ}= z9|*MaDi(TEwNRtwH%imb=rB=*B{cgw#C1U8P20rdS9f}GIXbg|@*L4pr?Iqa-w2;}}<(YmTDtBA~09;F923+UWKZU5R z)1?X}05hZ*D>X`vBOo*$2Yk^2($mh5mC$8>IUv=5kOL(<82JPommOsMyc!-iU&9C+ zd(es%&4HcAz=$SJ=JFaKRkGDQ>J~@itI0fCv|UVmKR2AV*c@ zSr9O2v7oo0B z5G^gPLt)g5+8>8DC?t&toqN9K$&eBdzoi6%zW`ywRRBZEaH3`p)Yf2HfIW2;<;5r) zlSQ$947`_9YbmOvqJ+*QaN#p>eB7B_aM$td{kUio)Fv)5EV}-2M=2zeLZ#ekT_CxFkqW3~-5v_JuOh{PhJ>G~BY#x6 z{0i!jC{0L!K5t$XVe}jhV4se|&d`BbsF^6JiK;~*_x8zNulm*XT&(O3?IHL)wYATw zsIyrPns39q*^5&pb$6GLw*@A9Oo_ItN3a1KMTCw!Y8nA;Y73gu1U}6;2N_!uD0~MX zj-&Trfsc^@Q3j+loByD;*Qf%flL#+Cor9>C9HrY1tr}378cdE+_UCsIpL z;k$`!>kUUV1*WeQB|xaRWgJq@^8^?+_fP2S%w5Kzo)=KzW>WJkISVV%<-3GNy8e^NH-R6<=ox{U_Ug4EN-9K4si!kUK^luQF8|j_cAY^ zMMINd*yHjOsc~^SaNkdWwv$C|Ndz0PTr^z}4ZuRZ9p|At2XW`zUT#a&J(>V}%AF4r zh-Slh093aj1ukVueTD|`BZ%ihZSpw~hre`_t0$^Mg2Sw= zQ%5Z~&;aG~z{52HjoXAnI|`A*3GsS;C{w>DI7wT~bsYoxsUC)5^r6e`S-Ix@g+j$+}wu`Xtn^_iT)B-MVM$Yjhd05%cdP#Nwzb+kl_65 z`#mkFb^=$Q*AEm1LdwB_>$$TgTA(){9W$EHSwoFfBnNXgQNbJOVz_pt2H?YM}>@HE4?B=At;0Og%JaHzEv zJ?{9O9S6B00hAQa587NdHRMOMV*$!=fx*Y4=|0+tJKCIK8fC zO5~89om|hvSR;^xz%B~&AkAmN4N!w&Sgx#f)bpex z8h8@;S9;Y0J~Y(M6EaB{IoAlGFCMfMudS3+@;x0NFH;SP{Bf&tjW!J$UE*6a4%YS|2sUNA05DG407 z^Z$J<$p074{r+ntDA>|PEyGd+Wr7L2C0cp}f z1;GI+3JlT}hF(VM2m{P-?*}~RyzBR_Z+(A!e|=^xqcZh*?t9;RU;DbQ4Jy3^b~x$E zmi-q^PHxl;i={;NmRr5GyhN9eu_@dQWRv^XW{B%$)BGP7=^H?;+z;xQFm~UbB4`*y z>QDHS~}(b9w_v643!g+7j@||H|~2LWNL)1`%6px`y#aRXZH zN%<)tv-KbRg;-?*+JCKI{)7TAeu};IfEM>N(GAV^i1&LYeEq24{GELJRL`yqBVac-zmSG=+Gc)?) z>9TZr$C#nnVR`i=3Fou)G`H^Du=(T&XM*Np)9`Qo^~q&f>9}CKrP=9rk8AsFi^@{E zyP_^CJvzOA>Crt)kAC+1R%KTk@Yh)ohW}F^W&gHswk5yiQgD2ZMVa_q|4;qRalGV} zGj{j(tcY%!I6Zz7uKMaRIbS)NLgD>gt0h}9;4U4AYXbRPu<%60g|jYfykiH`lNpkJ z(3Cn|lmJ=UUT43Ke9gdhf85@FIkMqDD>GooYKkk8QTg`uNXx%M9$yy+np; zwp9n&P*~)#S=oZE@3SBYE#psPI~@-UX&#(p<&NzTgj*cj05SyOT4m z;yexM8rhD>E3XF^y%jck%M#l&(U+WiC82aO=;;dL7v`L@xrM!SVAR#VxV%y%dkkKa z3Dr)sj`51ag$nAVD}27`cFK)UN;Sp(HwXW}#_g}@GUkg<7uJ6+d)bfZADiQ55hkcnKMD6@#2Zm@&f z0^TqXNLt{l*LVSqwg)CB&xLmwr$Jzf%9H5 zFVTc6mzMCQTq=5xjKG=ib#x54Td4gcUy(em(x-X9)O2YN1pKb>p)`(NyIB>9xzPmC zVQEUki+>%0q{5c33J4YIccC1_bQ{VBlaCaE&nJx{d*71M4F$Ol9~GJ=6C8Yw3c~i7 z#{iN2arWOAd)f6N@&!~@5fO$aPZZKnYasan7G=%9 zO-YLQBgR?#oy$MpglkZA;E!K{J$Q!#I_R35)mA+Z6 z2P;(&AoCZosdbqcpWp-Xal)Gn{R=6)^-vrwRRw^Vpr2b9Nl0z#1Q?Tw_rfxxLe^xS zfez7+clCjb0||31J3#B{7of&R4T>}TOLIsQrldr_2eSL2h~ZaA-$82}=m5uHyQHKU zya0g96OTO|^w1J1;t!{n&~MafNR=(RTR+sNIb3$}o*9Z$|`ukqu7faKayvR>*2f_b@bU`yq^d-`?G z-fCx)hUDjGkDS~{e(IkgWH;slp*}JB@iqT!YB#2mLf}V*Xd86yS2dUOpj6RZuSC+A z|0E=GT01S&OX7|fE*$UyzjV)~sr=r;9~%7YIOyfDh&;f;*MD;C_-XJ}V_X(fG6pTb zY#Li|>H*S45K9D}Lfx-xXURyH@EJDks)81OF2yN2e;s$Sm5|qx~oU(#hwm0u*rs%Nc#4pu{?L zr4~&h>Ypz|li#>G#N-1uhGeI`u48D^1n4{MGF7A-Cm*QuM$lrxyQGy@PNpniH4aF-ZWa0lH!WuU z=&Or{inD#FpPn7D)@b{9e+>KTOaMh zC_bRhcg$t&!izO$<{~Z{gQ<*$M$VbHGTK#vFk2j3hWeKJPC@Sqo_PV=o5`l1DU!)Ur=n!@qac0m{U^o`GKi9k!8zf)a8h)a-fK%95D(g2bW$GyWMn z7)Nhzy^ZdKfXxtQ+F(|E&mDctodFuyD`^9F-e}#;7@8G-wt^bK)6vr<8560 zc(wt1jRNovMTHCK3lVJ|`j#E0xlrf@rO({;oV#EBFY-b|U%@|Y?jJensymSn`I2A< zqUEj1^5dZt-FZN0o^EY}@IMKyRC%-z4bxY@`_)w(t-aA%FJ}@B>ak(xHT2|>@RVP4 z7*xW`4nWZ_fOZj$tRIDvp{FUEm2<&p1~3$ED)hDl)g6E~NHo4H2m}zD3xEQe$aR7^ z)d%b^YGC!9IGG1{nJc0!-U+inl)VVnYe*HCKncD-*t74xo<=78Q&pqge?iv}bWuSQ z1hjs%!j_q*FB(OlKO^tu%OFH&ihy=BUCV`RMepRse1P4N(*ey!g(sc_0}zm@yATwM zyCcIP5-9=tab}^Hc>NWHi+6t+b~vM= zPGhCU`pg>*FHoY}(Bhm@?A;51P&K5n>RpUq5XivO7L*TJ=jY)#G-sC}w78|@^Iw?p zl2Iyw0|rn9MC3A%C!F`gE)t?t1ScT>3y4Yb-iRayB)9nsH`F~5UOahnV0Rp$(Xd4ypab8u-E5xGnxb31xt$Jx>0CR5X%Snbb{J>RY(a!V%m*Zm&MtB zYv5y~5Dg)0k^=)mr0dJk5aprAM{1E8>-=KHn#KwkfRN^Sm70UJOx(J5MenOp`sTaV z=|%y;WgvQ!_tcxeN(&XL_wl+!u24Mty1dv4+@^lJ?7#7{VvF`C0)()c&s zBFI*8%)xH^cmB|V+2W$FDmfE&fZR!-R5#J1^;IHQe65E;Lou{$mA zez)e$BN%z1iSwwDI)-MmKfnNjp0#n1jx0X^X>ll5ziOhx=**iD{!s2wzR#j|rQywm zajwz63+~mekm3$aXMF%PkT|Qhia^8S8x&|OA}@m41M07Scpdj*7toLwXT9ER+F0S{ z-*-7Q9@MDx?YGzkPotD2ja5Lb>-~GNf;6)eG=wQF8+1T~$tM;5E+}MojmRhDA75*( zdvCY__H4uM#m+5OPz9sI|IZbhJyv>a!=#aaA4$a5fvzg60&Pe4gYS5&C$vS-V1wF& z=NM2hFI}m_t}){Gt)5T{WddV=e*gGDZJn>h;UlYF zJBe&Fauh#u`-j)7PTbO6vFW73ik1!k+;A-5>aAOioX|1X0*8VyiamF4d+3@m8W&zpOMqdbg^*tOt+-D ze9)$}B>7H9ln!&-KQ(?iS1~ljEiQm@P^b`0n>oDLZgdE`jD;aks8v9E=W%%Q@{9r1 z+>GjLOy5bL_mbD#BB`{OnU=%4arDRRO_aC?u2g;o%X{=&3RbyC!(%=9*{Ae;kX5X0 zG56lje5dhraVZoIb7~%knAge%9=#w8m#-CQP^K|wLh~!P9B87ni!tB4RKGqA4&4Lq zC=HgnB5EMd8+*67!13?mVA974NNb8Q&ax7;nP0JHdwr5Gu&idNosjf3aHyDaskQp5 z-JgN{T{Be3#@)Z0Vr<=7uuxK~&^CIj#>)O((_+6b*9sh-XK0I#+d{Zc$FE$!Y-afv z9JmEqJZR}`{VaT#_arC&G__+lGlWdJ%kChn-(hQnZ4bZDV>0aDXu=WsSdje5?VUh> zLZhtzNB$=$p#$WO>iN{PN=q%Wr8Ja=)7tp4U%(RQ4&!<2(-dF$YHax10C)b=Pg3iX zx*ix3&E|SNbYQpy%w*i#VXmrv(~u1NHIIJ}S*Irc>=*MSx!FR1^Viud0^2(Q9wvj8 z96hAts4YV}In})rVQwh9J!JFcr4Ugq})Q+Uh6lZa2-|o$&)ZF}}xSey_vb&h4r+38-8q7jof{DJ3CJtn0 z?UWw4s{!LWOW#kuo~urd2h?Nc!}L5viMNmm9{A`MP1f6fR6~VeUmQFsEs^fslv2Tb|lJ7n!c}9mg>Q;%EPKk}aBz-8d zlxLT(aUXqoQ(RYR{ACe0*hRSc(kdmVtqU8MK2-~}5{J^_EH=wfV&MonfTdCloM4iJ z$G!;7oJ=K8Ku?Ejqc|q^UOd=kF6?cBs@Ft7dP58({?>k(lVbD;ApSQ*j{vHWYjI^~34V0aI&TyJg?@&%(hjknR`%QhDISjm>+7>!*dk zegG{oC}5|BPGR+BA1^15;}8MjMm~?3-FEB!F#F@6jzw1k1rzc zL{h8KKbW)d=bAC`&%%@916~>p)~Oodw~jI@Dr@a=>;yPnn`|V+4YIN9avn>MxCLN6 zXFeJ|`YXIK_16>vqqNb|5_S6>c^IeXfCxE?Em}mG^GsVSi^Io64u1QYOD63t?+TDm2rmI-p zXPRw&nFnpT4@qkEoKyH|&W_yLz%fHxHjUDb7_YB@gp|KtpV^^ z5T-FDVDcthI9mtci(vK>xI0_k1PWiID|qB=(a79YIycClrY-UpKB}m-(lp#kt^QIN zLMok_m^=^c;w2H$S-X?yA_RuTdU9Y1m)N|!9}7J2h4`)^t{;hcP18l1@T}b`iSli9 z#u7_Mkm}7a4iCaEa6xMhtEfkmGtk^FzA&JL^-*&Z1!u@)MipOrBPUpn;|Va%1^3u8 zydZh+NaEbF4B7Tht8%6fxGAIW)JGc<2AcPcxr~(@=u%s#R-0SzKU=TSzKwx2vfQHH zz2>7PR0<@0T;3I8^PjzRdjrS3u(w=e>YmUvbqg2V$abPVn)eiR$enb9?GE1F5Y%Tt zw4r2mj!PpZKr4!l_}dTQm+0>{7(R4ICJ`GspQEuTzepk7$3ZqbG{oFxJE1o1hlvVi zqj!MuHL9lWc?L+B6M>3F=khd7lZ=YGH+i-9h&4Bra5|N|`b8|llC>kJl=@$;T00Th zT>R4wapT6O+{rN-TUy`0?^#8wEiN@$kr56D3IP?+o-@x9yQq82@???pfzx(;5B<7C z9{WwN$YC^mLjtffFt^=ftgGj)QQdcJ3?DM3{1ifE@Zc3e89Ta7X`D5g@exm z#3TZ6RpJdH0dxl5U)sdCZ-W(DcL9ye3XW8T_viW%VnkjIz89!j-jb!_!f`GJR(_Dj zguxun^!@!nxEti|wAOls;6cw~m&!y_T|#RUH+ML_Mug(z`LOPcMvO!L=|~yVNF|T1 zh`)q18ZF0gsKVt?zES+M>am@o?%Jw7+v?unSy9v{pU&)leIv|uXQfIe zkV*)9L%>Y4&c6H;X9^-^&}6$jh9BA1H`j7&@%@E-KCV<-y!-;cE^OID81(Tr?lFD7 z2btGm-Zo9KU!nkh0KYyleB(E;-FGc*_asCTfMuYVPU{$+h~xM?s?1k%>AL`wj^f%j zP~(9LuKxl+3u4z~jhx`^`!K0T63!muOcHFQGspy2uf&~IhZC~IRN`;0cJS`!Wi752 z>B~wuB&S`dc76Kgs>#WZf6f-e)T!d>iBJ0ea%y9cJ&1GHyY_Kh#ZE<>v+@vz76Q0;?Txt$-bzN5`~NWL;%!4fb{2+8#6he7`NeDVn<#Vd zqxyh*`PLhG-K_Aw zFMKvDII*ecezR=f+c@IWi1&B-|2j1UX|Hfi0zALF1;>7%HsFBr7oCo_duixs|ySD@tJ4tPq zN;TcPTsQz)Wzuv}1Pq~CQ9>9oa-VrLrp4&Qh5!iaoslAMA}YCe z|Mt=ZOsSA!(^2T2oduc+>sR(9ydi$R^qcI@OB-?dpU(b%Vwq7v{KJdKi9|`Y{L_GwzYu4@@?Qm# z{`|({>!0EONB<%-)(7e8d9g1&(kXSnkj zx{#!ofw-pFzGR=B%pfYmB}ggq27SBiRSC)|>cUZ%`}m}zH(<*=hINC#Ui^J)! zC1zdds|5QM$P+gVsu}{-4im3T{1))boyH-7t>GS$UQU`_QFNbdma^2~&wu(m(d#5z z3S8bQ1A`-ZghI936Cl36ZrjH%!+{b6Z(->*&gz`_s9q6n0OK1L1IM^56aBHylT`C~ z_J~1M1bLrsrd|J&yC%$}X5{WQt&ly-Ii5+$oq0{x8>Bii z+}!DwA_ZNo#=D5jd+Cv~w!0j~HIGYgpcg&7$169Xns*eL45x>gy=PF1Nm}wsge-gc zRd<~HsQ!E;>Oz?PsA-s4V_m+5gN-=rs^`*=iQl7-Ugmw6_%m>3mfBie%=-{HlWI_v zEm=-v3QLcx-}rrdWu%%&YZTYxJi|?o-d5J9?d3Eg8gp)xk~{VT97eGjnYjq3f3_v!(ZZ@uB{V=i7lCC;EFv@j<5V zN;6A$O^L)=7KZ`d;20w75$ zi)K7CrXSFje#A2AY8iR0Egd7-av`9>-Nv0r2AAJ2TG~-uMfk?MEkfsmwOG%r4(!o$ z_M=;nU{#sY-|Fv|7gedy*vqV@t7@ouJn+|&zDQwAvn4AhIb=PX34%Jj{7SO0Slm;a z>M8sGmKU?LNmqMwW^TfQye}oEcDT3wJxNF^U!LiqEzOgf^`q}C2%hzn?%k5ZqDF83 zFBcfu)jBqA0#l|vA)}{OXH+!Grz(+hST1wB>^XKL$z&^uyKRg@lG2mAa{syB0+vDe z-GfA0gH;N+TJY3hYRF@g;l0VQ@|BWIxs%$`A}kY*!~2VR+7o3fYFlw)2LgX4^x^=E_spq|OvR1(1sBP$GE(m&>Wf_@+-!;>*xLgETu(34Ky z7DXgiOE0n72I{uNu0F{@%3F0M=0mt?Hv(q@zAp{ZWVm_JZwME7*#5HXKW}&V23+)= zaO+9=S@&qeEA}-UTC8}f)%d%Ie754C+s6MqvYrJWY;W+Y!NT>9i~Fc&(oaV!WJ~3e zaFg0(V4E>HJgpf-W(`BPY%-fgXJ4s0r3e;KEL-s3dU(?Shd8($ONvh**2)=jN$NsP zw0ufs!uT0UDRoD`if!Mo8ndiU5NYL2dz_cPI7w=AA2x|*&)o}Z+!!OD&2ORq*9Q-X zjK+X+D?!4`BX{PP8U>0^c`E3hr{TFWq<{mRArsqaXc4{fP*J z^~W+bHM!}gKOj-+VD&_A^(3f;u%4?y>>qkPa;V8iK`6SzGuDUh7+Bm@gBQgxh$yS; zot?W!Q)qfVzyfBhU$a$fM=w zxb^0mqETV*>)!GeTlc`Fu9GHr-n!6HJF|k^8OLUKu8uNzerzHqaICJ$q<==Cq^+pp z&)Jn!#ukRvd_O(bfEt%o;8qyibqFH<$UDcOtBY>|6$^ORjUr!|(pWC$TOGN#y2xvi zum{HeAP!|ra{)L63Bh;qn5K=q`%?P)uu2=WW3!@tf5uOCwlQqOnmKK~*n1e{8%_En z4byp4TGvdGcYwaXt zk804&U;OsSlD&(jl+^kc$KbOl#L+L5l4M3$+zL`1s%paNVWR}An?lF3jEn_lB zI_(L0{jg7R_{3Q{O}Xc8EZd1}H6zERlVrpn=D~X>UW8FwbQ}qasSoN>-KSB|h|qNw zWGA_@n8qfae(qbBztcIcP2cb3-)3tB{-p$DDNESOXFu99z`gh`n?*j%U+XkG)lnv)<`0A3kJYjUf=tDn8EQss@x21a(UaH28o&7(x5nbjTJ0BS1tH* z`|XFbWtWOaXIh4t`ZeKCPML~QPQgyLLyHk-s9mgH{<#Y0AfuiE#iw2fzkp^hcd$8D z(Sd?<#$a-n3L1kVj~KBN+!@V>xY$WW7inbvCx@duJ!W&8O)tHhI>e*G%jSbt%LR;a zU{bIc3YNo>zJzU?13BMy$>gx07vfK(^KcVo0RMZ7j1Yjd_Sbn<90=^K`xdTLz|4AwBE3bg2GBILVZBmwv&IE25;jgt^%{xRH4yO3-XH2 zw{VDbHQUT*JT5E%$k_S)?`atbsffY%*b6PkZ z7!3z4fb)f_f43kImC8iwy+_b$KA*Is?@U8oh*&|5zfS*VRa1p9~$d_X7*Tfdpzpm%5o3Z_cC z?F>UE@$pOjl-_duudVW`ywJHlk8?T=s0;RtX>cA2vt{tjsSDF*ueZhgvlk)h-Vxak0YU12W9I1mR>j$1_I8T z7j;K?2;e#O>gg_RuF++XWJ69GEL9*vctY;AJTU)CT0^19H9-9aM zdGeO3IN4vJo^D7ges@%a;ZzGpY`hOdo*~S`oI+lo?r`(T0}U|ri!=s*L- zh?X4+aKMThPIdR|l(8~d*j-p&6S2~NHp(BT?;38KMD0x_n5HDAdBNuFeVi0hg>Eqq zEc@edJX13#7g{fUFqEFK2p}=Be}SYHY7lx(p}yx0AUpY0mdC(6rxSIs#s#i}iQOaV zgjp(FqvnXj1Q40Q-02`95<@;_H0zfS>=Ea;a+OoG1p@V)`CvH-5o>w?vM_6 z!XId{rqHrMiCWQYje}UD8m8U#CG7Gxj$h!@7NuI;$)H;rv8}#_|K$p;8iPj&>^%GK z{*jcCzuzxp+$<)-Is`@VJDmuB#0C$DYFL~J5F`|kfs9fmHsHo@p;6Xu*~#bm^BsZ< zX?rY6RMB&05)Ofk6bF}uNE+0j*{Z}53S-rK*mOaa zIbnzk|6oM! zhA8;YL42vrbMytWc+x}<7!Jhij3MhNl0--|alwFVXMAZ)hS|Zt0>1)3yFDRmbkZJrpBNWe|~cEp8kFMw}YG7g#mWX+={hYxJ~&arT505;hk?siMHJ z!0$mb>qoi`l`9f0=E^#^x}>;S2_W7Zw0rl1{uPLpQns? z%0sxqfSxiUJB7g~c-Wn9d^7|gulQttokf{>Y9j`Cq~1N@PX=Gg86EQ2=Uq+Hf7|$k>Xzg0 zG5(hteXPSy!KGSt;YEbFDh^MmLe{o?MdqcJ%vezWnU7+=0rOFT4sh8EdeRxK8r-9G zUbQY0VD6BWf>a9>vy0cuOFyLe(9Fj{+>>xVsbh9U8+r47 z0A8>b$=FTU-bJPCx?L5Q?|=;eGWo2K?>?G`ld`d)#_NR$Iy}jfAge<8{T1Bkudvc2IztTS64)u9p(SwPM*l3f410g;IhbWFM4%==4 zohNU5R|k|LlMt42QxuDHH?aV?P(t7_k#KSB^XIXB=R$`mzq$UlCNmc2s*4CEMmC4&0$sc0zH1 zO@*c=zt)EMNbKt@gbV`td3gL~3pBZ!I5-$UAbX9{cu7v%!n!6$_MtGgpo6C-WG7#S zm~iBUu3GL#e*`!}M>@HZ3Xu$*RwjVZtVr-DOsJts4z#wm2^bXb6HG-ZF*b%vyFbA7 z%7Pr&BZmW>ZuLskFmROP5B~8!;9nl(31ChaR`zU@0Um^34KQ53fUgXkBOu>O0w6M+`lq_mun--oL726(`(~VbE zS|gS>A#Py?8q<`HZAi=s$k5d@)AQLCxU=#u3D+LGe5X`rTVJrw_v0+mnTfF^u=bB`6y2B zvY2cg^@~22t2Q&j{UE5=ny1D46eKp{G6KCnZ&D9<$h`!&0F42cd5G09I8NJq6x)k9 zDzMa2?ur>@nq6DVnGT;t%`g%&*p{8=ecZYkId zuCpDxA~dtmzyJ4zmM2z!RaE}Koj%a`;&rC072hyAQUBbbby@yWsae!?MO2>J>3d)OO7Sua09| z`f-)a8$d2%ge!q=pLhHxf86E}J|@E-sY(#8j&S(kP{b6~Kc_J9`0{f8aO^^(?iJ z_qXpnw+LBZPGu~3Go%eV6)lW9aBjcxf4P=&i?C({B0TWq6AK$;9fLJAVVHe|FyD;z zz-f&PegvBc_v#(F@Ev1f4^aUWabIp(YvF1X1EL7xrkjr(aK*PbJkCT1Nvy-k%3{T{ z0N)*wp|w;OwBq>1<}U=~0y{ohxJ*~EBb-2_iXm7NhNpnNWme=P{Bz3k+-dkINJc=- zz~&wD8)LRv=4wXFEWn zaq|(Pvs2T&^yZ&_l&T$ib1hVKDRx)fMym>BdKl5*JjGPjWb3>7n^Ozn1_dF78Wh)q zZ4l9&!9Ca`M+VGb(yop+m(1j(EyD0|HWuIw>3pCeCuz|j;0 z?6?HD!(~6{+`SSuPXY5kZ+#an!_-<44l&tCcDc!3fVjyR_8i|Cx~|PFdK76c%}xw? z4D1syb1<#aUKTW>j>t-QXi+$>845MR6txpvF{5$B`rvqd1MrW-!8g+_rxeLgokd=I zZ{ofXh}PEg`CQOn4#42SOU-{MC^^mj*IKX+f#Wn4Y6SC9BqgB$%XCZqKZDr|mq49h zUI|PimosT{+hO}ez`2p1vH*K=Cr0>CIY{Q(pPA7B4;+410)#o9Jm(5{x%{lsQSTE< zYwwwWljLbivE!##^OgSdT1yP7fIj*L@uD%MaSYD*%IxyN8*qT!Bl@&wV+q3+Fst#% ziITC1k18Iy2=If;>g-w+x)iY`Wd3mXT&Y0kWKAb9V zfX_4M$JrB3!lkUIJosQ93L(*ue_{oEww_&1Q>>5u0tbi-m;(zA2s21hdKR#pS1%R7 zJ@thE2B`v(gJX+E(n`RMz~$4AVq-)CPxtMi6dgkMbHd#Q>i1d{WkJH|LMj_;IMz{z zsY=oUtA}#8&ab;XmYc<|?k!!=_48*QF;6e#MJb@5=EB83jl6tsWtVB5vJl4LQHXFpoU&g4@nOFl6;wIW?J z@jE(<4%oq<45gvRNfW^DO40I{mH?1$8KL+G z85yAu#zCqy0mM8-1k3~F6_krWb5w)FIv~?O05zOG9m`}Tp!wsdOKV7}35gmW z0X0QXCFhVWZoL69eTWVeH=i!w{z2&aBw-XN711&6M6s&@-w&J zFWgSu4LI#?lu8Co7r_0sKoVM7=FVD3MPeapD`V0@BTXoR^~gLVo7Iq}$fr8JYryxN zhped%sFx*G`4GW(Bh-Qxde~blmYjG5rKFWV;ZKT4t8@3Y*h9M^s@X3G)C{!kMf3%5 z!cw$Q;u!s8k7XtvEWlio0WuZu^BN_AolY8P1>*uk-};Kh7cQ(nG?3qNe%NlmUB@&O zas&D~fR6hiS#yb{xYKzQ{eO{iN}w!CR+wK=Av&5t#&B1j%KE$fh(4y*_5i;4fcm-) z?)q(mD%(mVxp?7u$p`B&yzvb^8E^33ApJ{7U23t5ztDvf3bUZ!aj|%sUEchgp3kLQ z8^nvDE8Haa;<3T;mc7iJ-N0<6*&$4}`RG9fJ6^ntspu=)4!?=DCZezIxRuowW-DK9 zYVEBMF%kVn;HHY@0>|$wxl7C!X+l4%nBO$Q<1TtlPJL@3r*r6^t$GZ3aN9LUV>r}{ zLd9AKWHt26z64aH7DyBhK&@>U)Z$R)rQx4X^K-dkm#OyL%s-+eNX&Z|+$b-Eb4V>V zNx}P}1*ijNbiY{^LcnuDs046ACLR&Uz(I%#>u_N5Der`1k_$M^0hA?iHNtw#1MRj6~4TQQcy8eU!eWA-)o+H0X~e##rAl?!qP2^n8f zFN|z`(skNTe?>6+^*ITpai~0N4+Fzmbz7U4lmBiE8j0G{5`cZvEHkNZZLtjnm!3a* zoGrynp-eyhL7y!ps`3vzNFsOonXk4-@DIH5p^=Nv6)3yk;rs?satU}{Saf1Z{B1wr z4-TL50WaRMcj~YwO*bwz7T3uDy}fWL=X!An+JIZwsFyY38P|CmVmEs8(IsX`nWokDi>>f9~+@7(^di@9$T$E7Pcj8Ia7hNuc1Oo@b1 znU8s)jOWX>CR=w9&plWP*D@09wSUvw-um|v*~sPqhv#2u4N8k?Z~F;0bM}2y$-!4Y z5a05}XV2HWDYxO$CpEjk+bS$&+yPGK;ekk_%L3iybLEWzJEZ@2l9B{j`r>(dao9-o zg$7bsm})G0jHF1)&tMf4x&46YP`1W@F3n+)81N^ss*NS)P~ar3Njw4=>%Ti&e_T39 zV)iUuYFdu{$)HM+?vuw-_IS{3axXm7oDS?FWBRnwfvJ}URezC7pn)=btQ--2SuvnS z(v~S$c70n)dD=4{oEP98)*nm`e*$yd*qf+Z3+(BN5?*BK-oH(TUzdrQLHq40iKFNI zEB(pBo&9Re8)19&?l0v7-`Yd>$}mXa;N4}W*4f6PJ!1S{l)ryfXd20`C9S1jin?$# z*CmEDdqlc7(PWqts8qrvm&CB&Q1oPuIqSnTozy6#?yR$3A{AM7TwPL`fcvp9=k3$i zqZY?A-572>lVJ*3LC4us`TI_zGg8dE$>H0!Q7rW9x@RisK6180Qo{E$zLR5o zPA4mjuonFoZpIs$36;;*T;e@s(;^HE2Z#MTHVVjY2Yz(PaSMmitUqWpg=`rPr`%*X zmXzx;98JH_3WmDO&SDbYn9OZuYth=@w*|=xTVr0)X@#QJc-}c1_ z)E_Ti*f%!np2cZlBP zbup}p0EUXYFdR5mxH?a#=S$pb@ps2z6_MlX8B}A&bcjLK3{2Xdm?X&zZqL%A!}Qby z_8Zb8sr>x#iKkZOus>zDPIL>%7VI&}eyl}D+k5@$=GH@GuD)ZWWWGZH^{u^)gYtvF4O`XKENMX0pwcxYyi7Fu>U1U;231Vm z>v)-7;FX*5gw&Ll-CG_8ls8;$CU$UmRs#Y00|AyH-xF}pY}ua$wkC){3JAGto>mte z5vCgj_cng{uJ*nORrI6qT9MY8x!-LT0^M~dvRp?R<4HH@J~GVLC{H#b(k7I?Qib+Ayqqa53>uXHag(!i9~6fY6GD2=A$jb)vJq64!!XP z9xojJJ!i~IQh_`inIKg0XK!_sH2|!}&<93I$Z2O!LTApHHG12!2s!mZlCcuNu- z&7q0PJNj;_>WX74<*?Rxs~A&@i^C^INdCH+#@5_M66ct+PuO`VrU$mbnzRYV7Y2}) zn1~K0kyf)4y=t}C76q2{`5X5|)QGKhn2uw4@RKKnrlnpnfxaG~LJ6~z{ki*|Z8j}& z{R3Ie-zj#r5B+m%W#ry%9jnF^Ws1_9cD%Ty3*Qr|!zpEn^1}R_vhZJ0<=h0R>kTc2 zi?Y&zpl!==(U#_rCxY!e(tl1a%4fCa^+1Gu@r=G@O~5D0ZrOIb;{d3yW>4o7Ffrkxx3H+(wmX zQDiymh#Qp_-2-HI^vX-k>bP_cOF2OP zA>$nJvAUW}c+&$AW4nqL}4vL0_Tvs;q7stQrT{!u8(h=Z8fosyLeN z-4rI0UNDNb5uXG^Jm#r$=9S ztysn;#YoOp3a~!hzo(Y?iqkZ(H!x;(UPagYtQWowFOlpfdk{lM=5cAL2%V8j4GV48 zCC*>O!8!069a>>lg*7DIkap&T7=n_F}lf7?|1Rjxi2A`-aO9X;oaW^lZJqekO?-Ztp9!-Z8jh zTx6Z}PY|ypZ^4cEl>3v^KA944;=7*}G$d_>0CZvL28PM6zpNB`49= z?A8!JERrXuwzl0v*SSfckMq9TThowgZg@OjnmN`{@Myi`UDz;5JQ;IXWO)bTC%Xj> z56_0L-I|~m`)=r4Lr(cBMhFHn0h7@>^7=tmrwmh(cOWA?(~E9b=(bna**EJO?TJTI zdmR1S1^OLY>*E!(9f>Ej2Kk>SjwFGbM>VK6;=j-F+dHp_v~FRUh}-|Fvpcq-zLOR( zDN@O|`!<7kM)szqq*367jjITXkAemd2L|6tn+x5;YKjlvu*Fv&k8TtkJy z$oqQVlVRNiAhmV!-)E~HrUniNT@#)?{2v^|EM~@Dor$=>F`+4!xgg=zQbtav;?(1% z4}0ZnDwM4(!7S@&T|@Hnu(+ZvZ3@%;G`an-FKHrOb`(3$njx)A;(B%F?H1<8y+(!8 zfWRAKJFxhhMjA0uQP%z|b^d5_?W?I!MOXj(;m#(~7yGWmNp;nr>KvpunRdAuE_5I7 zJLd~kL|1+3@MVNgbR~x~3OphWp6^SZ*QfLCxAIGKSQdg>KE&sOhpmBh}sYFv7I;C z>d4NA8PlIW-6W{zXZI}0++d5^=CEGpu%eQa?#$PvY%7pu{y}zUj?>IT0e&Gg8AbhLutVyr7 zW!zYkVgJXkmr8Xestu|(lj9>H`=m;E{m4{{%ji&S99~*LDqk1S9Rq5y1amJVBuO!c z)k5}b96CfiqT=Z?N=p0CAcK(%-2JZS3aijwcx63s&m?~6;|6pail;rI1 z^egmBG3-WC9RwTMzn>9xz}XX!AK|Cj>HtcxfKMl|vXKe9^sdFtfH8e*ku)CmfaR^r znEnWpI4gq$OeJPdOJ6KI_uW$M9CD!9LkTs1~kj}H;GwWW(Un`j)obHtV*t~1e7 z+qZe}*a%!gi0U>wWr$Stu&GVqH(Z0N0y3q8K|Mj9r}RaUw4w|i3OcFb0|jh^m%mpl zxouOPl-E)Elfe(kR(g!-zUxB$0S1G~dX-ltJXLZk@DwV{kt}?e38!%gb_}YIz9KLR|i8zcncO{Ke=}*Xh zCy#qUHFn;gwF^s{B6((An9kU9mXY#Okp+^cueV@7z_9DWgrsJ3Nh%L^t|&F6>q~i= zO84@}`;I%?LEzmiVJyY0AiL{39|nGR%TK#Ed?8P8N#ffwP#h0ydGYIY+M9jxGL7Np zB;9+9R0_OVW%{@TGm_ldIcpM^dHzXlj|yEimsQ~D`4h2m0$zT7qB&|k%92^$rt}5+ z{Li~RVvRF~b&P9v3-;_gmgx^{``g!ueIu}1@9XETe-29rg5)FCT#>7)$@KLp9hTJY zFkX&n*L67~k{47~A5Dfwe)t}eFZi`ucln7K_68{{w|sm(hJ>nPGEV zCmf}FMab%A)HoFbr|D#Mmj%<);+ZDjf^dF)taNI#D&XU&0cpkhJ0c{b1Y=j2P_>;=IN4kM=|gQaYJ1fd_$ zN04|D`NeG?KsX1V+q{WKAL;Z`RbfV%{&Okr<-ObYHBLw2$&(jh5FgF7n(j|$x3 zCf{H|XOG5J3PlcjcO6g4lh~VY+@Z{5Tfh+OYT@MC^{^taf&)} zGZ3lwGHHcw#nR09ola0I!IBz(Cn7L}P29R)0H=ikH1hEH3+wb0M(cFMJGHsL#v5RHNI zqchv|>wADklNnwR{4cu39a=B90tKTz?@2N|YhM=NZ? z#|bW_o%QOe-;GaIn$lI1C%?RO9qC*;3Bq#z_`0qi?!{Ma1CJfi!gr~jzCSaqa#)X= zOf23jWor~R#paxEA=TMCKVCWge+vN{A0hUl-pUv*&S5E)dFkRu4j6wN{PlVqurr1O zeJA)9FTf+h;z>$jm)kR_d&WUlp|(m$iXLMA4vc(+vqV~B)=S?niHp3jP}>s| z7JE=<2^viF{d&zbAsc=n`{BVPRku#mDmwWzf7jWLz?o%SsQFpntq6mVx2YK|K8>2IP2IeRCY`t|-k7G2veKI*QTOs3j5j(SqUSlb_0oS%BR zF<1kjouCKdnJ4KouEWYnEbns%(&fJ8$Fr|)uEYx^ARF5%zZ}gDHHH+XwKwA#eg5%{ z2m_XWrkk>R$zaLiG1HWL#TWibRc)=O&~9Z+^=6S3Mpa8>m@3glfJDKs6x-&n*ZTyV z%U$nBJ(CQoYBkL`w_J<#le2uA{@E;&S|QrDCTndS3KeaV!}}$?F6O4?qS%l%N4(0^ z6Z8Lhg}!Lgd1068Th#Y4+k&1^xaMyhp5}BOxSA8#{VCABCuD5lU7jVaC;E!Pabp=~ zRDs($(J(lV@e()VYoR$(qTH40ZQ#SrKjqELizI4Y7>O?-rRt z$@Y_Qc49M*6sY(4v@F>3GhI$F=OHLypbG#*v%*>ZdkQ`gjFc1UK2uI)N3BR6?M*4V zF{Qk(nM;;f)4M7vL>uV3#|5Dor=R$9Q@<#F^1Ho8oeIgfa8_~47r(Dxtoo&v5P<{Q zTjWj`Wy3{E!3R-MiTi3QNpi@X>Q@{9#&op-{gdoOf->(A62)KN$14xu2OmRZy6x4J z2DeHxJ>Wq`Vb~$n?5Fmg1lj6SHQZI6g)-WkbAaOX_;kiOlZj{ajVbevR?a>7^|~?eDkB4hk-uZ{L>vdgxK0Wno|g=FZ-x?r9M(YkM5XyaMQ; zwhAyJJnR)8x`^{FZ}M*(dq3Z@Ia+?3K_avDMGX4B^T@}?3&zBHGolH9J|ta7nZ5xj z=%2xzlyskCv+JCkMKm0E%j>9^q0rd;OyW=;n|z2U>442-H-V0hPOK zd@Hm5z0`g6-Lk-WU)E`tBAC9&vP`tH*p}Vu`1r6%>LC-|?er12Vroy21!5^f%s|)X zkryy^OjIMx{7ezHGVcUJ7Da)I$%|!)oFA=PnznrU@cZmUy&rls?kR2&-O*rsvmwk2 zU@{%+7Y0+9?I5yXsv2RkOO4(OSFrYsUV#pPgwKS7iCFW0!>pm3Ti8oCyH-1CgLA== zU_u)G>2IhnviAtc7>@cdD-k3`>S(LcXFLm&*Mvl34MC#V4oDsRVoh$6a@7txg}nWw zP9=;G60NfKy#5HqoE{w&As10cJe@L_ZrO=S%DlaZAzuL?AKGLP+6x}~`;X{TrP?^{ zkebgcz7>+tZ9fJ%egC_f1*f+lv~>KRRt|{N@G<)W7+pTzuc+nSiVGS=cEPpI+q(W5 zAJL0_Azkfr$~~jDAmTV88$Gig9fd37Tt_U}`0v#nc+6vV{yA*se=D!tS$&`fy-Ptx zWYp??{zQxZ^UKM;jlG)}JZjV6TXc$h_RUiRirO1b0t%*Xhtz!`2j)x9`l} zn0_;)gy&$YN+~XH-;kq#YQB@#0p{Xzc_IB!v3V%^&EEVtTFp6Cw{MXi0MpreI(d5m ztP59l)1fCAplN>R(0;5YmsCXYGsg*5we`d3H!iz3bdaW(5U(eNVV+3rf-ZLw&U#!J zW{U_2Mn&q|TgFJ!^1JVJ5IR{?jOIOefW?{9WiP*H^G@`Ji;v$%E+57I z(@F*|cQ55(q!Iu=xMHENh%m%^LpSa8){hE7fOtRRjTBIrFQ6G@z{%5TPeu=_Cr;wT zz)s|0V9W<0g&V5b>!0tsG)!C{`kg1hVfE;n>}JQSWRk6Rn)+EIzFqc8itU)g)KuLB zVLsH}eD4fU_)yKqh4E-G;NWM4y;gt)$sq2ONPVh~5aGHErgVAt0eeLh ztCL!tyQej_xc`y!QO`noNyx7Uwt2=L=Td}N{BUCkL-5_FYi85R4=u-Q}ixnlbn zQJN=Th3BO@5(3v*doCS`73FUNOX|fFAJQ~1CLToD-Y9t#p|f&89;a(eS3?$c={w+2 zTxwdp;xHwN=>}&}vh<(S-$>k5+#T#k9_Dc&+-|YC_*qx~ja~ipH&C&qA6|7NAv+Ny zMt6G#9zs_~-Kr|Mb9a8Jo%_;t{9%ML;4dv)x1SU~wU4mzT=FOkJOvO* z`$@oHVFO?>g_#PwYqttPVT2g-c$B^1(&{<(F&DWRq(8U~;F6<>R&~xMB>RV7Ekj2# z>X}<}?t@whAVqpXckT&PhO|y~J0TfQTT{?3^?gH=yKAgLmnU!kt>r*?cl+=uI3D&p zr8?4Q)glBw(j#OmD&^O7`*x@a{t$%u3`EM5>G~V0DFl<=+cC+yJLs%sp|y8oFkC^Q z6ijz`AQy*D+g!DiZco!{^lWEoR(UwhODC_Ws(FYqaGsOA8oOhpS zH9-|!kIK0pAZabnY5U1A5wnD2!r{6*p_s?Db$z7`VLyUEi~VG!XJHxgI)m9cesH5U z%el-NNmk~WtB&}BY7d}P$*J#Ku?4X8PL!vlU;Po(kAG{1gzfwJ)+Zt@>iG0g?U7aA zqQg}v@2hU8rP)uKmv<9IF7IKu{b3999GBr4Waejr&`eZ4lC0Klnsz}icloKw&lz|G z2N5tGm77Fc!gpincjkdM`$Bdv-NPg-X#;Q)w>`C2$}bn(>RuRt`f<9d^w$N|A#I6} zFo`Ljo!D=p%2vy6^@1N^{XOWaqc&)Jxo%Qwj9q$h*52*Zz7Rjt>*ya9vYVXFg93Hk z0H9McDfLFc8-d6t>?${B&y<@Zpo|0v50b4~K;U|Kp%#@4m)GlDNz=yKces=6`&KQZ z<9D0C072pKSDUpSxUZRts6b0dNJSntxe|l`@4@-2gb~65OhJ3vNeZXgGirhLe zHqfJWC*nz5wG?fU*FbMsJ$SMs7Sw0K@%HcIe&X5p0F9$|yy~7674+D^XaG7@ znHRc`OYkhLoZExib1pUOdqf^SFueAes*XWbhV*E%SNc`@!WS`oeWb>i-U@YCaF!rb zz2<_0uY4)Y3m{{B%NNGj6Yndu#!?XG3!kZFPYyc{<-c#H09r@7%?9VPZgl}*cBJNC zsu`QVBwEUZi$`#8h^XrvIepwwgj!VW$j(RvoEBj+b2+RMnB`oe-^K|rD1F0&gKm|F zU+)eE79}XV@vw7xYj*<9Zos>J7^w+7!9pcaYQdvm^nw1WPUFExOEFe0rx>eR^;dCa zO#MiDE9Y!d$jr`rpY{n&{XA7iKsBFjCaV2&dqlMyR7WylK^oI;O|B5=yg7B0$s?tn z0}#^707ghnWD>|5lj9-3VOM--Z&qeJ!>P{RGqbZNxV)PL8yzy?`RIK<+NnRLl*U|k z?<}Uj9}&Q2G*+gE!_LnN*_YsWwd{c_C%!?Zkb)s~Hf9RR9C18C-q_7EQ5|UnzHF1G zuHpk>*c2xmMv}qb(8+bR@0SNtlXW?sxs*@#s=2PONay!W%_oZv43F~ektL`4?%;i@ zBlVrrx4Lf*U%?>TN1p@38ek=$Xih3K4pN&60`G_{GE}2~R^I*aqGrX4PJKdtnE^cy z^xxA-Z*em!>2Zbt1#mV=O=JER0R7G-JZA99`9-_AD!PV>v?l`^KbQ*g`lt2w*R&ULj}%*FLmm4?~ooG1unm)E)} z45Q1XFas2vp<>L-FK9P+vrGW2Wx>gYjPuHkx__87e8wv;3c|M4>V&gbz)-TTGC@tF zVX}cTsQ8>C^13cU$$@hBWC9qaqlXQfBDCl>WYk9n20i%%8R|r~n{xIdRd7*J`Jmn- z>_lkF5882tawQ9%MdASo6bW@xARe%r{skSrRNT$8SLN9?l*1*m!G(d&h^amSlkmgf z9KmfPW>-OA9y0KrPP@!{s&~_a?%hGTPf~B9CBUgOxU$2NQwR~jQ`HCL^UICWnDH;_ zP&7yC&9QLigI@wIGBhsq*sJ^Xh-M;E?qtu$+*A?TxE2%S{XdCY^F9Vjb11Au=Fwin z;UqA8EI50xB|!h+^7@bP>wm52*S|BmC1E;C#qIf^W*jz;tFS`A=q~`Z_z!BAiCVh@ z_%gMS=99zB2;ag$ICdX8MUltEk&*^mbwIxb)oV;RzHru+6JwApEi>E#8G5tJgAH}+ zr2|hPVjW8dUEgc#Bv^24Umd`uI8PxVP()uit=TtmI;S3@_vln$WYFf7~{)-6Rf0ImKON4-UPf3Ku;j48;C>`J`k++s{3@h?liz zn0?`_a^^mMnM0f1wj^`TYnAAg=6>G*Q7b5kg@$Zs4571gN#9bXB)9BVHRs z-w$~%@h@K&8%}_iBD(e3jysICK-sIpYdcyLPuK1G0SZS35>FhioZGq27IP%iOvDaz z(32n#e8|c=kr`m1r!{`=ZL7^S!a1?0oB1b8S;dlC{6IBYU4p$D7%n5V9983-Zsw%$G5;q09G|prmF!oXPnKn zY5@ic4#`Nlsz2Cj$@y{gBF5V_-z;8Khm#LQPf~;}OqwmUwCF1EPEaY2mgsjz)$K<6 zFWEDbpn<0B#M~sS!DJ>I9=v*$#&`<(7L^-$1CD^EQ0<)N0?uwUHy;~G&d++D6gzbTT=aTqeDwOyu;B=^O1Tm_# z8fGc9N{>K?v*UM{8V*R$SIDe6^KlGQBGJRL=f_!J7p(wuUe_Z zKMKQkgsQ*s@*Y zb^DMV`u*8u>=LLF2adzXP$$_d>%?&T3`2G?nHW#d24Nl$Ess#ReY~xfoZ(>7Ti?C# z=*+;UXm<-PO7_VwJBYxOX{VNNN@3PO38n{rT`B=Zfq*GGd%6%{mn;X*u>FOzG3DLn zWUs4CbGQhI!|kGE=3Vk86seD6HxTfN|5}nF~&E)?v>jhlnv?{Px&eT5yWmwe|q3 z1Jr#|;Eq5_?JWmtEG#&_`|2@e{mNJpRQ}#U?ryGYblOc<=~N=aq5L8qI^8VNzpHv;N{ z6kpGZIxFRJO>&n=CuE(V02N4|D(}t)=z5cLw@-juFy)-Wut_jdpEh0V^Gysh~5eU)w#7+#o3uw3{0+w8<; zO@fL~oe zknmc<3rluT=)Ju~*i!71=so>YK*L(F%>mZ_{pSKaEU+@sy`H$sEl}1}RUgFm(wRs> z=>5~?en7=|)W!`N&;@o?n(ZUzRUfYDuaQB%>$aUPtp7SYBZ)awwkx&XUoR-l4g@fd z=mjO(T|NOLf#g=RQX8b1xU+L9Dv|^{_cV_TUcM?kYy@%oyaZEoOHNz+Fo0@$&Hs+N^HM9`DOD_- zzm#CrvK$uZ(?_>e+h_xg{__t4B2ojW0m9Qo)7_h;v2)&Bti>B_wU4#!YpSrH1YoKu zhYA7gT1PQvVbB@8i2)E9daJq@Cc2cTQQhKl2hc)Mq1)~`sW@PBs~oVd8PL#FsKKNK zTyd~8955&3pekefn(}Vmj+NpQR{}lO0)u@$;>ZCHs z52;1GG63*?MEb57h!+>pF(Z6$r$m9vm4|`t?Zy_7f6rYEs#k{1zq*3TXTvSA&^Oq2 zcZ(cX83=?6Vn7fDr%0cF;%)1l(f!csk}I}=PbHI4;Mp%?)r62kZo4H0T9#Xwb@K2)L~xgAFMJ;c-&h_K!%Y;UqqSFo|WKiSlzua^##s!ykxr77(@jEHwlgCJ)+X2JT`Oy z>Q$zv!fQb|Onu-yD#Hz5N(@3dN$~U+JDyG#n`rrxdq7l<^T1Ur3lmNql#b((RNa6k z-DkcA8-s*yw7=4O$e;C-)8rhPpnkmP!V8ot5fw%@Yir3oZKVC|N5DNg$eC;(?S_ri z?_hAuwQd%>HG3+k785Kp38O_s8RB2eBzPkI z3kqd5{nJmob^r#F0ig7>jl)@bH(#OCd#&pI)&~tWgol(|H?_1JDEApi&|<$1s(I*g zL2TPgCJ|_~=AVt8O`Xd$YTABq*NvHTli>wb1^v_eqdviQ$3^>!)L zz~9?Ib`;s~Ezhu3O#`7`O6SzMD5Iu zU7}St%t?mycV{fP16Jgfgujbgb$OF6iV8LcW)e)19j2qH7W28W`Zg1cvb;c~T8%?8(e9P`7Y&5-@U%PWlxzRRs)ZvDGM6td={ z?;n{Q_WG1k`^(DG&z7~U_-gjnDXj-`r(Z?MeXC)0&Gs|0qS>9_pJv*dTfv(fRQ7I! zG-N;joX+MA*X7z(?b77-+jFbC(>lgWr9HD4=L%{Z>+H-hCJRYPN zk=8l`3O=v`zoG}?XP~g=7O(_2$csHJ0lN&wyyp!>g@IV17c#bbbTI1#kw_V2SRUj&2YZuK6{FRxQdK~; z7|2TD=24yC!BoB=Bt^eMAKO&d?W-^FsY99bi;FLk^OKi~TUwOEiv|3GuCN}DkzD%- zLpm#ltxxy#NWoZCdnSoEBega#afT3maz$tH6l+yAe{@Nf5#~!IWSy`?(p9>RzS<_N zs_YkDVfNb?M{K71wr<8A_pN>R1^x&OSR*~i>mq9ITKNF3G*Y9*b$a44JHs3jm@Yy* z9!p@U*^VM$Qt2fH+?T}`e!t$Ir$X|IUT2A*xdfRULX~~ukQ{#Y*?=%Y;rE}RO5dIt zRK?3NtmFo0Aq1lF9h#->5^dtkNkIan1`Y!j?Kb5o435g>jHT{gWsHE<=Fk)}P3^mK zwSYW$dtuK))C4O*nKys`DaeXaA2}y|Cykd0D8Lp@gN%BbVh4JYt(^XtqRU`4-w8k4 z54Xb{C%8^|oBTY%#LpZN=F@~h;h$i~O|aZ6=TJ+8tkOiW@Eg(N)@jm@s5F5nZ1NE} z@T4#VDYG#anp+QIoR)?a8|RjDp>b9S5*jdzDbA$63j?tfeT9gC!pcg^BE`6lJnC>Y zKVFroca5rNNLMpAtF5503%Uow>kV-G_Kq^NVzuyc`I` zz(HCOr0X-A?@-2(yJkGa>hK|AK_t1RVd-JdZdwV=w}_gKWK`&tZ=>76M!J_=q^FC? z8)*x?gfc_lI8@Eq>Y3V{DW>}S3$<@9nh}LBYB;U-_{?PHEL=D9rRf~LD;sbK7$F`h z!_Oe&Bxar+kJr`NT{4yf)u%Fhs`ABJD(ag9k^j2!ig1O6Xx!I6tt{l z$&s;+=0d!fH8o<=%O~KGmYin;T1M82@(%{)|mkQ0Ru3?~w_ zZXA@cT9$JkBK~Nf`*tnqHxJdRC2&rX&ZSrs)+ zcQ6S!lMIm_O^jJ8lRD$F&|PxI*0xFeZp7J_GgJPi8V<(kOx>ueN*phnRj13ND9?{U zysiOmQo1YI(HcKA$hi0M;+;hj!2WsX5X%5=a`YXqr3Qb4%&6pqm(tj2bN=1=REzeORla*(#@U@f zCHYx_+xELdyQg`_W>#u!!_QuZiZ__mSI~y^bRRRgpb|dS=n69d2+cy*7Nq8D`j1EA z=N>>q-3;xb^4m0HGE<&9K|~fofm`RL(>9`IX;c-x@>xpC)?M2?)Hx|+`q;WK&FpFY z9vy#EYxbn@!TqPcLEJAoLz`4;3_9zDsMtNT)*n@LSs{Sv$w0WXbFI6^{o6IY|585$ zPaA15!kU9yrlJgcR7g`U3jW} zS-ICR7Yl8z@_^Y7qJ6!F%40O+?T1^<^Qi#peHoKy6T~H0PGV~RUhk7H25f3|>GEZq ziZn_ART$V#%5i&NWB98Z`K}~Y6wrh!bi$e(CA|c3`(C}Q2i!GH>AaDS7aRJcJ$y{? znU|SUvPbHB81;si%5tA0&`@1t{aCBAs%Xp&-@MKsM%uk%6z!QpD#jAa(GsDN)< z8N@xh^Y$2XpmF{N$Sw=>n{o-Yz$^AJh-RC6tk(!*V;siN6k#cs!#iHo&a2Oq;PD&o z%34~7YrHw+;nVHlKcsdgd2<;q-?kOq;0>eO-5P7DS=9^E9te0p zKqW--Mude_qYS1jY(!@IA_HYt%4mG5>VC$pW|^j*0-`H%$Purttm_>JM5PP~^;_S# zC!e}0lX*WTFANs=SzugyxhJ0w#7a`K*J7H8_GPiXMRV?Hz zURsF8&&uGMDg(Ju6^W}w_qxEZQ;3o4(rZqz28dMzhxznas-B8WO`LFXMZ&tGh&Q9M z-sX5kCwzSx^MPz<#8syJC>b-SRJVh3c9ZQvW6vmlwA!WA{pcG)r6SikbZg(mah<9= zW;kJKo6`6~k1E^-p>CJj>L#48>f`m)iPsR$%uKO%p%te>8hp+pm~g@vwIdXaT&H8U zqrY~(9M00x7$h^DCVOr1xlBR*$zaPpg8W^erlxoN=eo+rvyB-K7n2JBDlLqmdf-ol(U=FUrSorf$xd^bJ8EH1*B-mlWc^-@OT84bJaS}ueT)rP+p+>Q(HQE9*H ze@U~lp8*ReHDIV540nZ+`etT z!T=*gX7)05qH#z!y%j~78|0=kh*I6&LoNoPH~7J;hn^W3_~%sf=L%|6$Bw|^`P4cb z9XM+<6G(kB6Tmx$51N6t4+AIO{+u`d7#QQ_Ok@{QwQ;1G`)?emr-_JmAh!*+0_WG_ zUL=)u7Amm3e{xQX%PaLLqg6HQ2DOx$x|01u%s~szR`pyOh>Yg`YKK zEIn2=97gwd$NG97tg~~~Tj^N?!jY}=fN_rx+e7z;H(h0Z6BP!E0enLos$R1WJwZ~C zd(`L7+uBBOkgg^@iVQH`G(Cdv!EHg<-_pRgN4PZpQzwXqjM z@L>m#2!yE%#~U{w#wLE9AI;V3(Os>hDU&Si)~zqos`>5I1xMt7g&DiOX(fv$J-ne} zqnBPdj;nT;ooa)Ef{|{wS94#Iff)s<6;LB6%rUZo;7e2XK~53m>$vozB|3?6tyb~_ z`9NnyBr%oP6upL0qx+wMo!8x^<%Cae=Uv*P%@i!>iZt3XeuqH=$@O>R6~obO$|%dG z;ex}jA=CVE78gf~zyoejSsCYHHVpyM?FGoDIO&CUFzdX4y<00^xbM7nD+e>jA09uo ziiHpKLK2ioR@OUzkCvayTt;|pxiAI!n)*GNnExIYbf`8B-0~zFcpk68ZS%cucLbk_ zFz>|Vg&>aFg)T>eI%<|R)EKgy64Hr3L{)nYqU)t|O}SRy_!_GYpvW`r=vNJIc6b8~ zTK}-6-(imMoQMpWbNH|kg}KjD5iFGhJ{d>qop{Q1uaoB~nQ+o#rZuTxV;u7B?_~oE z?+Zq)Z}8&^=9Q@FsF5ks^CubX-Or1ypWvHrSdZyB#5VAo)U}!Mnk2sdZ*QzPT z8LQXYI?OFaO;g@Zu>H#r?C4mlDY7H>JJ&Dxx{Y{0A2V})>H7%O;!?VDg70jj@knIS z1gHZtgP`(r=_7bcKp%?9>nA&cnxg4P@E$58x=XOxNQkJTk>B4=3@^aUooZ& zsz{f`E$7mOO3a~+0bNZSwWmoeUwJkwB!7YjhilSh%tHgeLpo(jr?$cEY*xNUrthzx z@~`3);9MHRByYi+p$!ugDzHd0&3k8GUp8ng;mUZDn=1*CLTU8aj1)-W(MAS z<0(_}CLT(Lbn|J&8HY3a5rZAue3OLVA+(;7u`H0)#(4=P9Pz>I(mVHFih<#K_jc7a zE`^DTuK!mMHlXz$C$KOXk6Tj);=uQhzbB z$c{SeH>51^7RgLU>uz=QUa#|FHIdX9Pm)f_W(h#O8|A8<+*;CTM7ZI!O_gxDKu}eG z&@YHcs4~BTDo2-2$pc>{Rih7-7gh0yCWjsmtX>hZu2uLw5|P5xujZ>&?!ZiVuPfr` z$o009q@S&2EL|#CgeF6PEdXa_Fk2xRm~#yxn3igbe9gxU?GDwiu@0t6ZtOaC_zdMK zBO;S&Tp+-dw3WYj>c8sMV566dKQ3=YU+XLWP5pCIJK$#v58*ossawV}(S0uE-X>Y- z1nN$O!KQ(4#!2Wx5K&L}TCQ)SBxHqGBr3Wp!whttY zWsvU8_H#B$0qs7rVE|{KLkD>NU20J=wdZJ8-ppF;QJRt+^J7Kpa<0h}S&C97vkms4 zQip*1Uqp2sO~TNvoQL8*t@5>7#R4R(-SoNw$CqFw7p^jYf`D=snsc(L!3Xe$fom~i z!^OTmMzV$tB0PvsWeEO8iNt0e0v z5}Y~$aj2J3-^J)KDFq-H*^$DpuT{w(?nD;9MJ(}Mc>F9d@P3$TM@@aH^bxTZ_`dS# zaxTmW^CuFXGKR94!c1ll5~?g+_f*J-Mcaou%fQdJQmN7#F~D}q+dBiE{bK+Z$c-3h z2`!OmoUR&RptI;<$qRN%p=Kf)-a(|prpuvH_d{8DaLn$^P%#ZGlyD!>SdFd#pid9D(HzlvSB`zkY`)Q=QlM;xkaJB+REL&-fSlj^`p zeE>)DL6pqFYj*Vget*dCP~la=gIx^Dpx_SrjN4i)EbqYfgsG@cxo)6OB-rAaaqR+| zIkHp-35~WTbA>%YW2k{2dFqUK@9nY$z6?H0h0a>K*A;;qGUf4OV7xWoR<=!$_ zgz|`F2e_3a0^Bd5wZ$#WPgwb6(ak#i^z2X&SE!lmg?2>UThfu05ADGsi;TirJ6>Lw zajNeJYq9-~+m5?K=}c}Z=SaTr7XVw08DMRgzTbv%Ij!D+jT*O7x6LKf@(J0R z^iX?#=KcPmwl~_4l$2b;1uXFw`~AkXKPI_~aE2-1fWxIYx-4R_n;wO1EN^tJrcsPW zPGWrtl=S60Q;}Q%M5_w2>;tG(@MH{ng-ej6ProHqh?WZCU4qnljj!@|zVtjketzdz z&jOZmv;Xbc8{AeOg^FA*fo�tOD212V9yWV9Nxe8o~^gx#-LMB9;yTq9ZIQqdYC zJw*Zs7`!u#Pvgr2-A?1PUc6-0(P;Hg8A_9^9%a%AB%*p@HWenLU0@6AuLWDkUijk!4OTeTsJ~umL!KsQW;PuCJMAxLSS;nTEk(lz3io_4JvZ?F3RV;nb z_Swr?m1A|3(}pBP4}mdI=e4QgP|_C3YOjB2d#2v|<;=9So&V(hu>+e|@#!ZDj|+@~f?n_<~?6-f;2Lv87@=(r}xA;(q~LJ${6UaXAC^T6@c z@UxvF-5wl-uhpVcR7keggI1kz(FChwO$TNk=}H#H>Rdy=UDACv#Cy@z(E$#~0HRDc zh(TS=r);BxXzGMZn_v~FVT_}D=44^C&x&@jRyI9mH}qWaqM*hNNGV7iUbpiVD*;F1 z30_PP%op8`v$7zyNtR{n9*m0V^|Rze{MD)s47omw88d0i-GHA>hQpQV!_owHeXDR7 zGVWwV7<64m*F#-dvT}03S{V9?RreL02qIC+K=Ou=tEP*qoOT+Fe@fK@c z%fG-6XDsDGlr$nHFwfSC+fujzEN`@V@kh)bw8@rV{-{mSaxrMGB<|6l}IFL)|_Xv>p=2r+HSlih`~$6ED;2512l?0QT5CZlk!4g%qg-YJ`!=2FFY5`C)9vt?I`_OH zvY6g*_?Ps1)%r$Bg)%>%Jr3qlk6C-$gSJC*IjHOli zy>)uiT>!z!_y*k~kw4~$MK7)^pPZqtQ3t9(NIMKL2nRXCQR6m6awEB50bj8;Xx|;{ zgNhZ+C=U1omOD_6LBr>V#MI;cxzr#CAOs6*7>ww?9tQ9fr(^PDks6nl={=J}%2mYU zp^gZ{zXjDq>L!w*C``eAPwvkHP2o5;NL<@AX1=*2DUdq^@$wtr>>Im+&Zb@XY{S-M!IJVMs3lJJwyZC8K%#HnL~o*LnYG5#-@*_@w)2*9|hL z(qFDdC$y`g8?s@ms@O$v4H$I^Wvt-J^vHCiM}Gi@?>CXi$5nu2(^-vg#{t~ zO*!dFop?oE=z`R;QUv)>y*dS}_Ap!yPy=jNtk{%x6QI6Om0OfY=rMI8l4(r$A-o4p z_t^1?S6v=P8uXbJ9YQOFJ;}Nx@IdFtHdr!8&o&w>L=@6OqC5slno>LGHo$eRm$Zn= zz$Z`(;1bOB_u?}%m^at>=)3j-&;a~Yd@Jc}`muFOMdlf2$JTrJR00oq1`?i@8=1qa zS^B+*Yez$4&*T6ugmu&9`K!ixmU+hXY~y^2xqE7o6AW@_>utIKlJbM@7&;gQWywzU zy7(^AlQ+R?CK9KFrW|uv;DgBHc)#6$0wi%aT?q)Qdn#)DxqK$Vc+sE8^I=ibzh7ca zYJ|G-e{W5lVD*y+vY7t?(2K~JX`p+dAxWa23i#ybqRdUr9D3aS3& z#ltNAj|~6(iI8gkjU&NLJ7AyQ-?FG_O*ha{vkhH|hJB=fQUZH|0{p($2K$QiUzjQ>tL~JIFV` zG|sQX<0l9BAZqh7Yf$?~v(DdtYn*@R52M3Tw~`2pf)n`!`~LhJXsp1WZ7Mx1W47f{ zVyMt%(c@2-z6#*h!aEhs2zR?32J$BWKWCRlU&z1JLec1eI#JTT ztyAKOq5JcvU}yi^5AcDf5#s6`H5RK@+TOUNSUO^CYM__kkH;{HdU`7a@Ju(Gbk zHaGqjncJ1*#qWp_XZH6>NwH=w%2rO>0Rk1kXCt%UF0D0j$N}GB$w`O9Prl6Gf@FkW z_9no7AP#Rh87gaGyX5dN7g;<(Bxs0=K!TrDr$876{g>26lm8alrlaF4R<&~966=lW zfF9#O&d3B6sw8MRk?WMMQ@Q7M1=+EDA(^W8H6SvyAM`U}g~al`^Q(Lga)zoy48K1o z>PFZvSb$fwUSZ5oI-)cYc2_tH0)pw0y8cYA05|webt^*?NL+Sx|X{~9PM^j2? zej~yVJfuUMo$-~`Oai4 zu^`LeS{xX-B`dt)Inj2K{6t-(vQF2yYpb)F2Cg`;J32hqcIgaGQx<&h;y=hA3*+Yd{dS~#y}^u6SliovSR;& za**?4IBJ?zbyLz)@c&T@{Fx-alvME|{M|Q48^cO6J|HILTt1awr>8*C5uX6)y$u7Z zch!>KhW0aVg(WtM?w^pZmPdwtZt7w%9vZp4u>EErHz_(>I#&a z?C-#v;Nf_R0-$94qU-ja+>Ckw-1D{%=q+KAHTZlTu>b@@^QeZfvsOy@5n_aQO9zNi z!W#yHns#fxdyLfNjpubb7v0{__MC0X^vtN*VQo6bhW+l}e*^r&zSWz!97w+X`Fs1t zr3GLuQj?E;*rhb{{MPC3(!G4HTG%EeybA73Z;q@(Y-K(j~3 zmr9*DKwgY(d{Yl|TI`JE-;Ko949NCKU*oxsU~TL7EsKChV}@$m+~(3!>bBD@1Be|H zRqyUGeruyL2g^QZo{9zZ|JqzKXBZv*Mp)7YsGG~Z2H0Sjh0h>B75E`$+>;#YOJwUmS9#a#$WKIKa%r4Zi=Q2Ze6v!*P4QC} zoE*S5gGKVCbkOfC!jSd!wcu>)Y&{B?a=ax-CN-sQ3tbIIdbwULB_fg~h#JoppX#EP z<$eT9Bq9bt9a$-~FX<1d6J??jl(!(6^{;7~bU+#HRviPUQnbuyyeX$Y-N4uN5_%kC z{c=$Sq#3C_MKrKM7a{gKG`L4L*eqh+Dbu-u+%8QSlp}*(e*2S^tW{JRdx9me0;)HZ zN81J;K!BikF>HMH?Z&PVeMXx10;9;w{9juQb1l%MINt-k^~{$mS*F)%zGi;IHU94! zlk)2RA7B^!pRq>%-%~L;`Ow~b_SPoffd6mVYA%l@j?k(b)OJ(O0yIRrtjwoQJb`>) zvuZWl!4@0C@viChpi(4qU2Lw%07mB2gmsj?m!Y)yFZGLwzt<#d@@0vB6_bO=#`IlYZp z$u?aez>gk$E-xh0a|4eD;nV8IH=Z>91y&tN_#JVmpOK8~B?J4TJmDaRy6yo@k6wmk zJZ6BI0~F~j`f}jU66^KpvZWkrE?j>UFOzjxj11kB47m57Awwf9sDs7A5xHz4vA7%r zUeZ9)Akoascq@G-Cq>*liMxB_sE9~>LVf9C`O1;^siar)X>1lt#`pM88$1Y1j_v>} z^rYA>ErA*e<{;fu#}~&Tn<9UqB*3$Z0|Dv~Ct@V_AMMJ5ir1Uf=h5o-Jn+a6<3IKt=;bLZBx8*G zgLxMFo_Ut2Gz-i#3m$ruM|zjLO0cT6e*}Sg?}%JUkiO7<|IHK}ewS8X!XTl2YO;`^ zOgG+R1^zShtl|1QJs^GCSAA36<1j;jASq?(dIG{p#PI<*{5s88=iXSYZ&XP8LC*Pg zVjA{8-XF|AH_w9IKQzytWxNI5&q)2rJmdYfc_x=CL3;H5g!F__CvuS*H}$ZyM1syF z#>(8jOwzrAi$A_8+jCdgs@0xO1%L%4Jg&avi`4ifb)Yb&t;#zPMPGq!$8Ms6`e>(Q zk8q(XpUEq07iz}bvRj>HJCl`pF)WrHM&WhomF#ZUSque|cI55t0N%nYR@jl>-bmqR zYvFKx`e(A8N){YoHxlJK(7>#%^}EOY8525$H{3zzgI6P^fba&75!SIi3&rSex4uJX z!uY)GsPR=j!LcEDLqm|ok>g|O*Bj8OjGw&^DVh1T-hV@Zc;{Jlo_$!1M`z>PzWy`L z*U6>(b(=M$MA+(U8kF?P}e>*2r5-2&N&Zw=V4rVahWIKKHs0?`U zDMK3vihW)kS@z<@Z*D=c>=(GW+KtYnO%}dP%tCRh6vK#d2o^8{U`c}Bf>0T z)%k6>jt*7*dtig2cSyO^R`ZwOK>{8ydq9Lk1wa|yP!F!En#S(CUsZm-+(yNYixpJu zmINwnbr@lwBJ)@#YJx_N_q~mPplyE0d=U!+_PqanF{HPFAkl+Z?6d6PfeORPQtyz@ zr5gHb{%t_eJ6$5BE|U<_Gh8ucm+ak71`l;9A&Fm*fQ|M4jsTftW1xLf{~)6G>svK1 z)jftznZa18Hwiu33@&T`fx`5`t^YR$1OMe%|9u_44Z<`?dmrz>bO#icHw~ zPSX=KTT;fl3#iPl)ta>@v^r!#Kq-F=yBhs`C<1$LpT(DNp@+->?Enf3snE+|pADfz zP)PD<7qLUV&mS=`Y{3#O(R&(H0Lqa=X){R;ebP^U&0=-Z_@BU=GMH7ck#@=GGYF7N z4OYG)w!TPx_oRl851%2Zze`L~d&NrUf@G*#Mi>dOQhm~F`9DF$X=hv2L~pO_!SM)) z0Yo>>oPOUCUtS5O@!4$~Q7kGHkHoI607v{Gym1y&MkR+}hZok+>UWKJ)u%9XY5bXc zYShy$321-{>qpWh?e{>q0HV@q0x@Dcy&0EdagcLCwb_&?96$g5NTnu!0ch8s?K!cX zBWl&;RZ-IidV)jv%)Z9?462^b%J)VtmGdn?;tayo>)dMrA$JtgHaD9x@$2s1 z@(yBrG}6;Ze=2dyIo;FcJ=SL5^u- z*jWQKaSir+xT0hJSC>#u(&z8D{updp7mz$0SKrO3ZPaAh4!33>!2`JXR8)U^%J*_u zL!!^;kHC1E-z9h?KL!=}bi_m?^silgv z_kqSAgJ;>Dj7kur+!8`Pz5f(?75WjmPsFM$=>Jok42>UR*QF?fUG|tkRN)P{1an16 zKJ~}`G@~V}SB-mkpAn{dV$@{pR(0)v0$7PhEV@cvQFP6|C=t89yNWAj*8f=~9RFnL zU~yseNey>IfHA91oBo$(&3lXM1?1!9KTBM>6Mmc^BWUkEf$@{jrXvGUkj3mjlYf%> zeFardk4~21%#KG*tKw(lq6(H`S%Q~ukoUR}yBC1@AlPP!cv!YNU1qxBXM3SaWe}E- zUNgr?1qr=jlW~5A+vx{-s^(JjBcwS9lx(r(z2V;05uvRcdH}JX6pnCL*Xez=&DSL2 z+fBAULK9J_Ip1T`dzZV&iZtC{2B!utViY!Xs8Z=7HvF?RR(J%$wdtx<0p)D+;2^+m zr_aJgEEYh6eY}qYipHLr_w?wOKvk`O-(bPoaw!w_@x34Dk9NxawOm!|z8;gN0GP*D@Y_0Y? zlh8#37;;C?kIel!>HXN9F^CkL*pDu3&Rg%V>_4yRO(oGY1wi*bi1e(b(-}<`y^dm%yr>3mLYS2Hc}!=TdIEqSo8*o6|LDu#5@j7r z%XSun6rVu`A=R&fV8-cWEb(5*dziK+Sk^Uw~Zty#T5g8381rdbJ-&_B%^%xAa+gK z+iN`5HuV7Aa%SmwEPAm2pv3C`6JrBKQ6s0WOYn`hedMS2=d(Z#=kIY?I^kz%>-{1^ zI5uyq|3Jbp&81pc_&r%snW+)G9lap^ZE(2lpD22VlD97Qiug@&k}TZb6WB>naYZtc zJs@ZS%>H!;3eRGQ^_DyDh$M4sn(k>=7dQWYY3iP4@?&Lq@Q=X^ub>xPRpU&yzkIq zd&x_@-?(?)FFIu|KS*xXs18ye1UL&m&;;pJ$zj2M4DmUw?kRCm6~a!chwsOC>2ZxD zX_K<(12o^#lOAiqa~5%ymVWJ^ra*wYpkepNsC24_NE-R)ga(x96KQw&El6}7R7P&H zH07j4?I@xiA=kKye0sLwqlK6-!+CuVG6`+^+4XnM=$HQ~XH>2iaDgC8qu+XRWtwu2 zc4@9Hol~pk$99^cQ+^xp+|iaJHE91jP_S+!*cM4B@}JVQ5w2w_!#gwge<_*}kd^mV zjMf5T*4t2l^IV~U1#y@bC-U0%mnNdjS3}@Zz zpDRco3}#gru8IUPLsXE#-#}WeK*Pi5p?`bLiv@2I`1%axE!c%k>;H6ysmQ& z_WTrF`}Niw&tLZ*`p)dy){j?yyz^mkTuPpYJ|TeVOunr{oIB*X#eTa@SORm*hKS#f48; zAAa}0rAhVTajByTKRuH=_w{YL+gs1z&gh=;aW{J8;`ou*GOy(Y_C9s%?kdb5ad+SM zi=^il6MOE92YPCBS7X?3-{0TVAiZ^GO2X*iPdY1gc5C`hx;n;6`AQFdRG_=REMotC zkMkWKqxZsAnu`au`(}-bWF|C+GIEwZdive{iLcax6exUQI0!o zm{&Zb;7a%{`g&>miw4qX8qWISjy%~us&!WU?=(ZRGfLlnrXfAQ>33>;<)-CDAMN~@ zHF3`Oi|2_yo!g(_>hOh*?6d0O!sQLw4TSUUAytXTJSzd(XXR@gMKGRbaeVLwT|#waU)j z=rh}O=j6AjP5AyTv@BZEFXSTm-DJsWfXVvqzDWaLZ;#N%y-q{Z*US62)*n-Ot}gn| z`%L=Fx9+^j{i=cyDZJ$stnkcG(>OVmYjd2YrkNm>+RmNlQwNcEV0_RQEi_;`>fCajiPqF?o=i@y|F}KR%YMZ zpPt=m|I5DUw|VMG1-j|GTy0tCYAD9_ayK-TeLWc>MJQ6H{u-;_ZTVYkh{{A_D)+nl z-1Ez}rE{eO_Jos?E^TItx^#1M8SimA*PDQQ<83MW(?Z)y*1Zv);$*Jn(Y&0#3fHjQ zpKPfYQ|$Fz^$TO`GD~V*(n=1B8@Wh%Z`y&3-u3D#31^+qcOU&<#Jy)!lUvs{oDc+2 z0V61i6b+#Z2%#zMr~wRB=}46lq=QJ4mgqSesS;`cK_$|WE+8!)K?DLQy%SMT=|w_^ zcgJ(?=YGaF-tYH21|vhmRra;l-fPV@*IXAdl&U2CC?>;<@axCnP>;`L!98WrrUi@1 zaz5jKPnHky>@QpV@4OrW^CF!dP-HjYe9%RI_Eo?CErpo0z9YA`-4@VAox|-&rYAEE zycSpd&&u>!O{@9WN}X3lYB-+|ESM~E9oID8^5s?#8p1zi!i#rCV!WIEMARYRc1<4>JBf-4OXd+bHzE+o+%{<(XSDZC^f z!#Vb;$rv9V_Ig*3JuW=Vyt8>pd>QrX(RfeR!TzpZJ|=8We>#FE?GW~x{}GKkn0KOk zSd=2X)dZ|<)ypzohSSFa-Z48G^q*^`i_ot1p0STpqvwg9U{CB!Dw zE78k*K@k{9;bYmqYk>Hu`wdM; z$A5-1qp(8iT)L5O8=gbHzeOU>PP^z7q-2RRzIdel-G8Mb?FiWltlhY-s8L-lv=cT! z_Ja{u^d-}0U+*ot$lX6-g`Hp;ll$v+Q=#L5Q8nVFU#}@C*p;j7x=~Zme1g1H@b2#q zZR3le?sJ4tD*fzH=-bg z0hd0c@y{98epE~A@*PO~|6TcsY>U?rC?3dQpoeX4$L-6bcIxW{txc=e?UC#^yml^G zZygf;-Hq&LN}l{1ZF}aOAME)2tf%ZXOYeAJeivly&tLkyywL<*q%z#)JSr@iz6jgD zY3%VIzx3s|U;2Haw7(cGfyckdTWL5JzM^d3(4O-c-;pDD!U@Zia?d04o(F}_KbMl| zsPpgH*pjHr0}cNZ^eS*{z?prEUH^_o>y zxs&-{bLaG6XL$>GbR#NnU?!CH1!EVO)SU9rlg0iMe9|I zT;QR&0>2H()oLCUa%j`>(A8{K!PzBx-U`noHO*@N*Ggai>$t;!l?<|&4Hk#MMYahw z5{P}~F^=8S7P&oG=<+HxWAgnFo%MBokqk%ZsTwK7{t0*rQ#DjOajDAs5Z}=I|M+ms z`?mi^+9=?S{*?1OU&`YX+G^#8Z-rUGIs)qhRhH|iyPk25b!Udo)YN<}7RHG}4V}Je zhT@`d&roXvwjciE0eIE_YtLb4+g|7$H@P*aeHLL8x*Tp_D4RCH%E!)^MymcL{$>s_ zl}}N@Rm0q)KmXE-)KSdppg!J)r^_>Y9pYH9NFkHD9J9#7?O*@>cpa>7&9uvrG&}R( z?fgIcTaAY_eD7Gn6|~1;Rdx$53+`0T-IJT1!C#v4Yi1y$Ojb;V$?4uN@@}lbsm!0&1EbG`$W3%Itc!2)pKOr0fX(VpZ?m(spW`iy&>sfZa z|9uv(5xne3sf?z>&P;LVw7cSoMEU0khfDSy;`bWFP)n~>1UfmubQ=kxo6{(ZN&30i z8TPN0lZQ87tN52+p?lL39{uqf-I|)DAyMhbE?w1Yc z{X4`?B)shK@>SX&k*b-&l?fv+u6x9_(i5@CgdrXa01W@8s`_O}8?qRr|NXl0P<_CW zJtU&{aSSql5HS^jzt-MghpUoX+m{`AeZ-o%=!0X{G0$QRrh0jl;Ub0to~u9;O?8!W znfaS-gvICLvVr}2yVV*#8^?*A30v0|$E-ggOyfNz(xtnoqphw@axJop8d||S2wFcW z*f-|F}%lCxl}BQQ+$!Z@Q=vvAr%l zv|r-$Ugwt+sr5cb!W244AUg{?4o`um-^k#O5JpX^8jL!M<@_5MR+l*6Fl|`^qiX-&Me?$*tvb{c;tqF`TaO)xkE}AK8=d zU|G|l zBHcc8la)_Ru+i?`GPT7A*82pcs|mbJu~cC>h~`V_p}eF#q%=@sD5jLZNWqTAzB&)35vN|&Xa%2J=Cha1 zwhKHK**$=vtWaD@Th}LO}GpGDRV%pf5ezn8;yqDoC_ab!`LSP+LiYX=iWbkr4X%dN(jxxx1g|B$gjHlh03_GbB z1~2UjAE^9+of%^rDY>!|R%KD!=Ds_d23!ndeq?;~YVSK@Un>}l`r&hpGybs7AdN=% z%+yl4JNlUw`DHGd5Lqy2KF<1#sm=B8)G@b=H{DQ!=`tRH{c-Xby^0#@xc6D7r%$ta zhSCD=c{Wzz(0z3M14Mp>f5y(KkwGV@K5_d!g#Qi8$3g)TG2 zj+J35KIm5q>8Lfyqz!XO7po#!d8rP8Qd%^fCnDFa(3KK*->8CYF}62cg*IwD)c=AM z{EK@Vb4?g=>VDG&$p+N0o2nba^GrSzF_o^sv2n5G{iikY$jcciq`?8@ zM)`XP2L;;2$l-C7C{=wkBkp6$yqn$B`r^jJuf80IyEE;iL>S)jl(tiG>1g1nc{+tZ zk&1rsTAoX@IhfKbrY_XfMYRzbE-7T*DDNJ`o2Tqt)<9Kf-Res#o>Ab(Av>9hbu!qZ zx3bIYU#vKdhz?Jl&HgEaXT4(%8)v%s&Zeg{D8PAZlWipYQM}=2Rv%R9g;KQh&YaNH z5LLAr>=)N|#k>oXDrR>>T)S5la3JizA&x@j);Qt5VlC09AfuYiI;7x`Vz_S4FSW+< z&^e2?g;zZ0$t6W1)i9@-XYiHqk){}>Xo5d#?QNPv5;9-bIq7F1ej23M%;BmA)xx;- zJ9eC;B16sQIMmvr^!vm|oi8W@+*$EmPC1_|M=l)VI}0DpN%}%AfRQ$@#EVA}&f-d# z>=eY!EA-K-M>o|=k2vxKZwIciO{5>?V^&o{(5ck5xoA^f^mI{;%&X1UBP9Ba*u6$ZMnt;Ze5FH-hjM`B-HkYJnuoz=#8O? z^7^`F$xCN*$Bo4WRNbBh9XM2Kk+u%EbjBt3=bn6qT*shQGwIhfAi2@K0WS8a5%AV0 zh({tRF1uzc#HY4leP6|$-He#y-MOlOkBIFTLp+#b@|b%$7l`tEC#D~F`&&$Ov3sO3 zakkQJD~%%Ms1QkL!MS`=r}Ham^=28FY`YJ;ZG&JUf1HEG?D?~MD@jy7nc4U;`P9%~Q|IGmAD)A%GVc-)Y~kzF&}-Pt-akI}oEzb`h^8;S$l3^s=tuk&1xpA2 zNV^TN8F?avTwdR-ypU;X*{Fh&5y$sxocLEkp%%#}QUy%ZPp6x~9pkg^4w17Mf4tvSJ4Eik$qzoO{1&yNhDj3)N|1 z-Qeofk5NAy)o6PVA;D!^zsdlBAri_*Xrr#8_SQ%19VM>mPn9Gs{~94!I9>MDg?V{v z?Q=9S56Phplu!p5qz&hpYouULZ1~ZkWQ2G@+A)87JE7!9@0}XmMRo>_!j4PgUg5Ka zrV<(szF+T*Bq)eURLit|?7qSz3T1_)JI$1nYQwQ!&q&?v)Z+GaXPl@}sLQjl&l=*5 zMu#{PP;P=>R(*%^Qx4& zzKcX1$m*nbL%k(Zc(U^3)c zC>qqcm?iT-c);=vcOGV~7sjC89laBgE4-{>BVtoYOby6D!GF&U+?@ ze8iVMX*IHoqPo1UTkWfzVI$u?xhD;8SZ6&I>0}PX%r;0$c1UV9e;{pDyFDaW#2{+( zfdYPzE4tRmIk-OZIZ^(40UIVT2JE_l7uRVX{9J~7#Wq-5IJ}yvFfm>69k|HDY|~n0 zF|S+E&beTRMxoXwFtLC|$2`ni-;qDvG_qaMF~}UQ^zLC?)BqgdAehrq`>H?Xrtujh zsypp@n5u#SpJh-MHll1 z9N{1wx%B?v<>tbW&aGW*bVe#EknT2VWQ=gowKvotocag|2+ru6bNYJJVSAoA_X(5*D?zpCE)^0#d0R~Kxk>-(6SGZ-M? z{UcuHISgJN4j&csoVe<%=cVSmU0B8vMR2}jHxI38%)BU^|GmIewN=-_%@pOu&((c8 z*K-{c8gUH6i##Z}P{I$7%dZiDui?gBvj(53y-V%?Iu_P@)R1_8YNUO&0KSrHNp1i7 zC01`Ax^z;qVsYy66PF zL%Z1ux6!j-7VM1Ocg;9oogaP3M>Fnf3i+*Rf~;V|56dz~=dIb59Il+yyEV>jvQ`+Q zgQ|i@$QJLVl$ahYXQU2W@!DIvI0Xwd^|q6OlVm%F7hODAUOZV{BKWG)T};}+aPy)g z`U14b^vu#DUWY^w=HO)_noOQ^AHDhNVYiX8$Vx)TZldH@PY4bG@_f5}A)Dvb!e}E?Yelc3s~+?9l-01gEtC zyeW!MjsBBULMNg3{za#kXY%Gu#=#$8$dhCwR}rD*p`JDwTgQF4d{mY%*$XU)7HFW} zS;*vF=n z=pDPK4LqCE%GbP(T)1i3%2BqHMDm4=ibRbrZ)>e?RPpuW&T+V52?E+mm{JxPF;|QDE9mgv&*ut zQFArCtzwJ7A=%TKOp-?VXyDPyHKj$qtttS(G0n@u-Inw$@6Xy+G6PhxhA?<&*@7Sf;7kvk) zA=~DO9+7<8v{)i21gqZjIBdV7yxvHVE{ZX#4!^oHAxe3}{sFQ6H+|auhAP3|BaZHO zOj9;*z{PdPcSPr!5bA)-;_=k2FB>>kl{99}n{DIb>UK)n&0uX=6)ry_N7TJ7SLF;c zi`%GHYYBTW;Ic9c&WpPZ>U`@MY~#sI!N@NaWxm5GIW8&40^lBQ3-9m@qNeF~`>HrU&EP}{ED`RevBGH|~~B~XOE0=^BV zk*rsp_sazH*+{h)QHCAVFtH=g_cS6&NUMVe^P~FG?Ddg|teHoIO+EDHa-vDi>7Z1) z%S`Rp%HnJOyV|&@`}G=~7k_gN&NHlH68?=Ohct4@O}*~MFzlkOE#*wNpSXddbWYy( zR>Fj)BxYTrkQkN{;Ltlj$wEx2!B;qFe33_5igly_NfD$JQaxwUR78I+?8+;*c0Mxl zyt%AgKGz5)YXesDk$Se3R}`TL$+Y}=(2>b}0ka-_XqjJN$46=UO$Y9~%M8qs{Wx3& zlHQ|Ee|9VIDG{jvR>@uSC;Fsd1MKUb?YSIx=U|c-T^wU1IBsTXTUI7Uo*2q254DZk z@ZUeZlZ1_?)~leJl1Zbmv#nb7wj%QdHg3be+d+m2t!OklA0&!q7Yq(k`a~WXMwf7^zI@nY8C1)csEi0 zQ#)%YJ&MqM)8zJ&Dm|vGu#1w(JEW* zoKz=wAxIJCRvKUPJ2v%1Cz8w|OHqUkST_p?6CIN5p&)Jt8~PJ*zR?s%AXrfUwCcPn z`bk=~MqZPnHT`~RR@|qqqZnF<+R$TcjStoi@I~v!=y{#^jM~#eg@h|R2>K3c?d#X* zGS!xZP2I%w#!QlT9!Qya55vpYT4cF!jL_-Bppo=%qU)0#%nWfMD8J#Ak-^IDI&m)x zQII3<-Y?k@2dUl#a@eyKtUZAj@&01!aV6bUZ~3$FCRv13 z!+2T>rBH5dQ($rKB*k}n)`nDjwS+Fr4pML4p|i?3hXCu-q#w36jXay;Ef>BurJ`?g zxc<;=CQ{ZZM=CYAmOfHt`fB2opmyZFKic>yBY?Ab9d;+6^mpNYTLNVmM-YW&F$Fk( zyY%xUV^DH#H;adAP0*_1D4B)+uJ*^yDFTiM zJ$l@F#kV{Qe`r;Q6(dFa&mqj126FaDZ>!$x1GpgxSf|dY(;| zw68FSiG|VgNk`VaK^8TOO#Efk_HXSC)FthN&0ra+seQWfS37* za4@BbjIf0+QK{VwXhRog?kwNpLw*2>Tx3zpRCdEdpalsG~eOS3Tyqy z*-Rxxo_Ldz*rj|M)LOK_qC4Qw?)EQ<=OYjSOdL$MM=qFpy*BeJc|FOL@s#AfWFBgy zq1ntwJ7&+SCGzrsU71f=9mpme>V?GwxG$X^N{p`%-aR!Wj^Y`hbABpfI8%iS2t}q$ z1KEX%BNRD`8n>ah9cxAw$y|}=1!E0?pL`DZN}xR~GQA<9jVg7&rsODIs-wS9&M(_` zLD$WQq&&pT#rnz>q;~kG8{B`h?Kbutb9zuGZ-HaG2&sBawoQyAQ6U z#s8D>Yr)GdFKf~KDQ*dO4rFN8X@%iGL4B$77+f}P%DQyzd@Gmv%M6S<9vvfeZB@aZh z{Z9P}**{!QRaMe|d~!@UzZ)^NPRYd!2hU?x?il`MHd)81tc;4AxA_xH>ueH31tO&> z{ID3`qUB0Iw=7D#K${~4>mMKz$@evz9Vn9cLD(qMS5vk7f4)Re2XRZ-nQIMkH;Cl@ zNCG>)L;UptOUpysQJ0x%g+)ilNC^+g#2t&n9%&@=zA8=(F-HPn2B9-guojJv=-m{* zH%_gu$R8rxf(<9nhnTXYT%mM`5kr7c%m@TcTsOp9S}7)_PBHECNCaC@%HXDg&F>ha z*&I(PJhRtURd(+UhIW>;wY@Erhy)o{B5E^~EeO7__O>kpCZhRQYqiCfKYB`^5XSM| zkT`eGG<5aA%90j?G2RY}5ytRp!B_b01xJ#g2hjS9D4G1*^PRXX$XrtTiA`H<L%}DDV zK$ifke$XfI9Eo8E$u&+_>~+K+E8`o-mo+FZsI^S-=vw*Z0NNhqWs>g_^BWLzbIw*H zUFkore=PR@(SCPbiI$66Q&Stt>Z@u0p6{R4BvZ#o2YR^C&6g=haV|*_?$N!wTC|MS zB^Oe#&5}@`hXVsAT|uj|)f`Uk9bw)*6U6Cr-@xZ$EMXjH2(|jOzp`_<)E{d*l3gmC zpWEI{uVz|;3=}si=&a59uHK>@rX7e}4%ad2ML2}e)& ztUlVg+tcRqOOle)Fxq#Y#Gl;oH0G#HzOktmq6*S z8#QmTePOe`NR-cON7psUmfxM%=k6bCQnA$>DPNtJ#B)O9vcu*>Awx)1$&$@C5Y6q- z^Q@u#se>aXjb15%5@~{p&bLMMRihS9s zU%##rM4QR3i)s~8FOz>$EdzdgY#dm*uS!nF<>$bC?8LaeGEshxQB_ep1&=aTt$kxr z`%{Tj`&IsfN)+M?TjXq@r1K1{H_C{(Es8M9y>4I^7vC#u#x=xa#P>D%xlLR2%@Nx} zswkBAqG>%*-W1TF%g_-v5hX~7^URh_G^kq4#<+i0$A%+OoW&Xrn6yS9KpV=U2al4t zlN?3EP-2K=XgFm4)|u}=sGYc==?Pyh zuCZ6Q(9P9ue2Z}V@U1|0pKz?L&DYJIKcWckKO=xt8SqYAJ4v%9rxHE3?6LdK59r1Q zMsWliG3>Nd-Aw(;h%WJd$M4LT5X6zhWp7_c-5r%7Q^h z;u==K3Xr5tfwEGMi>AFUZI}{X>Am^J>&Lz{D(iDf1P)im#)df#3itQLnwa*K z@j_tIa@sRF(DxL5LzV z$BR^Ko&Wi-`O}FLMEQ#dhoknLpjNeEAY9A;e15~OGQn&>tTlyvrGmfo*uoi6j!d1q zDt`gHMQoWDFTx)lgN9J#sN!ca5yz0xpfAdUWQrd?^a=3D8z}=nq6ai9jyORniZc@I$ zS6pbhl(D--fyO2{FoqS72;mML}mw!V+KYqIyd zQ+Hj|KuM+2RPb)S2x=*-%bpY*fwqRJmN|w3s;J*_vWj%6_^cs`1o!1%U=9>qPDXa} zI`?eLkoIAYzabI^f^O!}Ur<4Hd$~>W8Zg4l(zp?zHEq!sE5A8x!eS(Q zYHm^qRP{*c?X<690?L2V`|cXTfR~aNJ5_Q)CeM{R`!FG@Up@!f|MPSEDncRVQgwNK zX^t#dGQaUyT1>b;sse$Wku22pV^p@W_>T5L^7VToA!%P1IzJv+Ofm3N#muJkw-1_W zcBki{EQSwwN7xn%V|uNL+Y1B00RC>gehclZo(eJI82%Vdx zA~`>bWuN?-AuCWzCh@?Ok_(}sa)^Pnb_>A%EMrCtd&W~qDS8?@nAxaliH^WNd8~hi zGh@1Em*d)3+uUo$tqGcNy&*MtbY@ULz zL=rZyqBBmzbJ5M8;VX@Vp@N^A;MdqPGD&B#hitiON8J7@Mr#r`IA+EY&IOn00HwA7 z9ASue^Y(Do-JKE1vIOj$lh6I1|lN^(#GIpd!OEzTSeI~wonsN0>ok(yr>FNp;9~N);%gHQ z^%3^zvS`{uOzBg!@zbrRSB2odEX!}GyY72%U6igR^Yl6UkjPQxj_f_W%gOu;oQ79GkN#ML6}ZbPFIf^K3bE)M%59N1~dNI$jq zvc`0hh$O=fs?go?P4RIa5^2JFFq#K0169{wIa|^TgRhv3l+ z^?TMqzH2qF$*t9oJWOG^fmRg=IujRW|Lqr5)iaUa0o6_h|8cqFX)gtw?2gdX0x8&< z^L+}klMfUBm@ePW`U+<(xAs{pn<(-3&Q&lgplIWBWI-bH%FflU_mpXhCnbzxMA4y$ zP+sycJbcOfV-XMvb`Mg>yy#|$XuYckx3G=AykEo41YN6rdprmzp)SW92gED9On6y4 za;T?V zq6zC_0?Xk%ElX2o2X%OM)Y_W~v=m@V(artr3zt!T4X138YskR zx9@@N#S~xeiU-zXgB0>j#?}nuhIg~ZzDkYst~`3V|KX~|N%k4o4tAzHgzFV@-2k1z zs+tt=^1Hj-TAp}xh2V{ajU8&J7Qd{H(KEzU0wv^haJCwL4v)g?1_5AaWn|*vZQ4?x zemd9!yYHgmkV4LnB%~NyGkf!I6ttGjo!%K53?6e=8>%qG?mw4#rwfYOB2zl+bDP%d zb2EXo?>Z=Jv})YTG|}jA&Wig7a`}YjocETblN3c^-m_S@K;XyW zWvnfS>Ss0QWFUf6YMtokh%>YsG|%WF!fp>$HDCL-ZciofK9q1(x=6EAH`Hpb)oBJ_ z#VUqTI}R^_HC~S|g*a-Ab)H^gZSinnK-&%EbqtaBQ+&qf>T!p=kFXa7`Qm4J;81I* zYG(XkuC(OAi6QQxX!`f1%e3o}kxOi2hO*ZNtL4_>V^_>`Y6cEI=p1O{K=IhFVYeEi zPap)|H1QUc%;(pdP}w=r^8M$_cKTlwS4wSksJ&C5{ZXxOvj~^lVx8Pz9vZk9f{eFI ztR5y_i=jcAH)$!{ZHuDLGY`W!j4M(Zj^-&Lh-sPEUfW*M{`1W=KvJ>~TT+zd)*>4Z zfoD1a&tJgDVMy>lp1J9L`2YO{6EKi};-{_qVQRRu)6a%wGYba)lhBOW9d%H6ku|KFn@f zFX+Z^4)TDcq=_yJcr4Y&i1;`D{0AbmY0_4DY=9xF0c7BU(m13@Gyd@UJXO`@!CvUG z%_RU}0Qj#^*h7)=$Kkq62QO=y4z;+<2GBylWPF>Z6ga2XiD4f_=x*&#Q-H=~RhC}H zv#f8A8QJ*sri~gEvTR7)Zf6e6*Fa320jaw!Wp#R{%W0!dylXEO$bsmW&% zrOVMs?r)@r6bDv-Z{#KyP#-LE(pZNect>@IfAc(h7L~C z67M#+$gRD$jg?V&HA)u6Z~=nR7&<W$zc@LG7d8SV1EoGoK7_+g{j3l_z`D?7ZE^ z`?WuJNL!IVHD%a={wrlFv}E08{Vc5o1eok`Im#0X(9a&?W}6Fyrt9B}snNT8VC$?Q z*h%FaT#b9m3%Hm*J9ydYQdUjpjd5I8_m#P|Aa);l9}leUXvwC0-EZk2xe>6cVmW4^ z;#}r(UO$Vx=+|iLq+pjlU~X^CW)Vs+&YzL|4MG9wJDC=BgLq#EG2k5SnAI;MjH$Sy zeOIeriV`SR@Z6?nGLQTP`=HLGiJ;6nlsQ$Q@Z|z1r=e&X?fvBI6KcW4oo&A5f%3^o zxwR+89M-&lz*qDmBWrG0vj$(qPB8R4c*)b3(pNy%`xLV{hp>+-pOleX+v+`H%M0QE zen0mnm2fe$6zF6d%X1h87!ovw;gWC9wq{2a`85ZLsw|LL-SJ>+-elFX#a+hd}2l~SvK;9~} zz^ry4k}2sb8tI%64Hk}%)XXlU+~L~>y-?6-;Yx3(3SwvIlmwj8&9VAD1s^sa|E=x0 zyE|v`qSzUfzSloe(f4AgxOS=wYz`*K^m_iz3CaxR3kB?gZ-gO9#Hj_pJR*76bGUug zG~v$V@XQ-&x<4T3Yo)g_@27l|ru{@e@7Kq!>(&jKS1qjC{7QIqMd`_`O5nIZ(_1@y?pAQX|?U3&f(*j1Y-yb zU|}q1#t#h^ge!7x#;q>BCTt3T6=)zL3#zI=Eg}PqXle;}BE0>DQG)Z}Ef1i2_48$x z{DlHeFFh>w;aQb|?}23{Dv})?vBNsN>dz|dFmBhe>P)-Ln;3M_;ZR7B%7WXXktcxC zzi~3dth`1dMOkOz-iK_N<~iq&P+x`l1qIXADL?`wK|3Akv@y3WScY^>wp4ziX!bGb z!<*9!-5HGqy=Tf;f5!yvs zDPf2Opvyz0cV7+j**{)gih{2=(o(6a4c%XUt2xPM#1LJ)(uq@|X8P1Zyo$ZJh%vLszCD6I0Y$k`Yt_lK6E1W|lvrK5mKP{i#EEW}rowEJ} zCI=>kcyp-nuxiy>u{g(1?pz|-QWAB*yep2F(3DmA0iB*hR5n?qFxwuQ=Yn@&XZB*4 zB^A6^a$rwELKlXZdYIJjD7Q9};}DOHB3Q5wr8r<~JFU{SUGFQl6y2Q+G`qCU=-caK zg|9Htgr?nGjCR(6mM?5CRu?Ek&>nyPlDJPKwf6C+Aoa~H`)Q(-ThXd-NO|I}A0i1b zoDd$w)sJ=CBmGbPL4#dSX$Mssmw-!PC>Um4S#MCe`z0c$Hgd3ap7<;!{y)Kba$CDS zGRPePvmUiT_8bEw3seS5XU)9k8zwl?Qhn?7%e=nuBF>DwK?duzzv;9!^0v)KX!#}$ z2w5x2@<56YFH>2*Z?6<7;n)k{3KFI^{!W^^?=Ts z5a!f4&LCZ)$>YbkL(^I0Hs4_pBmZ#e-FI~q(~14 zhwTF+&vwf&osyYceM>;*n==JL82+0jAU@$TcN67y1RI$=>h%NAXJ!zi6S=SKYJ@pd%@Of%~&8Rx- zz2R0?EhNSQlGUz1Gke@2<%$8SU zRb~Nd>7}2>LBJn*g`z<-k{Ap0(@C79IVRGKwrHIcPX00!G8d@jq9n$M3KR1 z}| z=Q)O(1yi32n>X5Df5^5t8~OWwO_Fvn3sJ<3)6Cx@Fe3SphXtTkjtAL21kFz+oh27E zKA9XR_PJD>BsVOIVS1Di4q=gG`W|lGDqST_irIiQ7HUA%i?9MtlbuAB2ON<+q2Q3) z{Y$;q=e~p;oyv2cxI-ihbWoeLn+5TncxT)*9Ez7+hnQAo1ayl@pa_-l?z&Oj-mCK6 znh!6ZlK0;}4`sJs046}X-q38G6FV_l?d~aISEzLV;A(u|zGq1mxEH_`Y3p(?8rs5K zAIXB7ZhsA<$h1$#X*H7!`lVe@-MV4fSWza1%-85Tv{C5w4gpCkqA0aTCS z1$B;h?XzG+p2lU@-{*a`UOKUDeq9RXm!iG^WD-Xh+c}QWmat)z5qbdKw8v%+c$oao z`7ih!Efs5FA2UVu>MRnmMFb1(P5x40&6n*_a%+9q?B8SahLw;v7k1*Qm5690=2a~7 zM)(A|gL)6^(s`Xd{Pjm_?cP|H{2hdYr@cFEh4K~mN_-KjdU)*U*kS8K)~O^V#gn;x zJ*S_DsvU0ZFPYvVt6s$0LcKAxC_`OlMMHc34p~y}r(5~SlzkDQet&s~4 z^p?~5A3#hw_v57?H&F^fVT2J}%i|eC9ou8|E4y?^*YmiXdZ9)fPcL z;v;?Z{3qv>lQ=_TlX4vzOJsU5&&8_8d~MW`=5$2% zI#K>cPOyG(dtHlrTiQEtlWie@o;k8p%Oq1rT%_@TadT=OxL_yD?EdVr2Z|Yawahut zLl}a2&wxE?j~;nx?S^awU6pb@tl3kW4k|np*Zi21Y!loOTsXFQ&a@6$i(p!^3S;q-}Y?`Acj$c z?w46yABCi_@ftNC9JFaJ+?wvs_jZczd(PR?0_?+U>yMT4mCBWxyt1iU;-&lq@+55L zU;+(DNjvkwq*N{6uY1J6A@XWw_3_Aa2!Uq~gJfmV@w#32n89^r5D@xY#s%{9uqpCf zK^GXEkz`9GV&Hk+SR+y>p_hkA0~*e}D~&o(?>e0hF+44^QaOqU<~hZV@yDS8A{Por|06ON}zwqhpH$soF~AAOX|8e|7u7Z z+jpdmlY%>)SUyra@Ev$Z#MBB%1q700%~{o9^Hx@U4EOOU6O0}71L;;jne|6jrSr)E zaZE2Ta)kjlv!5Zj=wybM891-!P($;|?2#B=ZL|mGrhkJ!zdAn9dB!F8G8SvgUN4WB zU<-XKM^}fhtWfJcM(_*_oCg05$Bp>Aa%?;`8Mi}Xvg?xR3W+v&RN7HZBH6d0D%4ZB zT2S`cH+lh86#PZ16R z%SIz72M&(#8LfG7Kr@ee7%e(>6M}TH>bKUy83(h27EIxMZN$_QiWf+Q+PPcDM)B@q z1*^Lsj>`WtB2YC;1w{_tdxnRSb2qzmXceT|(k_0dnQZuqC9QBe=OjKC@_n#Y(3KK; z8L>Fu+bD+${MpOkuiab#>C_J-6fkvmRhJCx66@-kn{ zea>eJ5{$#ak~SR8X!f!lv=3t3pSg$N-Z3a`W?0&-RMNI6a6~Ll{y-&1Lp5I`+d(!FM2_e0=*`u-)9=96lT0 z?KCqU#$iZw;{o}{Vc8Bi}5cs+Ji3^L~k(?-(Gm=5d;N*f4~_s-K4QKvWWU zMv8cL;=$DCWmuwN3^8&62J|rQLM+P1O!VCZrG^{UC*Hw*ow4D?8#i@~D%uM^tl?Au zotyJDo_rbIe3$ZsTWQKZ@f*G8Erk`Qgl=Xu*r@+0icy2ZM@4&f&k(N zmHy-gF-Mfq$&&1;xidu#;<@txapo7G#_xk__}V$)d@Q_-*GHn%s5XD?%3_x%#1Ain zZjK=ZJ9sm64?P$B?f^k8Kmpj~e#wr(^&q>!*fKlU91P8eR-OZke?;9*noj490;F~z zBWGeqI2haWjIhl?CZYSFw)*2v9rLmxO{g;Ny)IDKYyT3q$ILziI-?+&(!<#rrcH{a z8l@5F43>I1)Q-Yl60(2#hP}I%$eTEG47ndGP8(tvz1ZTM>rf~jQQNRq6R4u;aCHv4 znfrDx-z3jAPkI z3v@J`S_aU;R(lli?Lnci1;@#DpmizP5VB=Bud|@h3e-`i_@bcIkO)=--&3}oa#5zq zAz_{2;m*M;0!s|Xa>(V>X9{Ci%&sJYf>s36W4*rfs0d#8B+T}v*U07HSW%!wj8WO& zVJf+Ow?DdY$@^F+iSB!o$TB{`oit?CTCR)xj>UfGCJi!8MiLx>YGucCn~wne;iC>o z+@;Fybpwd4!ie`Uwf58?nR+^nwto|AgQvexg51Q~Prap$4veZ1XA>>%8+A$N9#r_4IvdpW~(OXjM^E zNuEjo7(8In0Ivs1qJOooX1)Ef(HgrxohulLRG2+PNvq@9TbTMPvpW6!0hl(6xE*RSZ8Pnx@m z*2n;Q8$07)r7a2qz+swN*hDVdV%q0+l5mrz?AK3sp3J&4X+yf7rVK-^)u+RZb7s4YH#{2uTx?|-VKgy}nW-|8Ep!UK~_iW@unPQ@b?98*>m#9}>5 z_=IZtadP=THE>q0qAg2uW+52fi~mvdn?w}$9gjk;cSI&lPX>No3gn-Yj2;1`)v)mP zrfBCKMq}VNdTnKizF9)A)f}{56=BN{?=V8vn@=94@zO#g5t`MeZ>m3lck7_z4t@^` z+398mfZcuSi?G{kpBakrzu-cPQq*FU7{-la3>q!Ex~RP(vrkD%n$0}8IMB{PAUJ~- zGTTGq7zInvi*}7?@A9a$(%ubZzIQ=ukyYJ~LATNEg?bOQFO19s68dCHK(~r%$A)rp z`b~^jcx&~EVa^<}%atCrp68dvX=~3aiZq)CKq>RP>9!y@e5sqN5|3?^5}Jy)jh%d7 z#wa(livy2Se|;^gg_lx z0_km=;W94;$KTT`-`gOG>b`UNuq#WDo+)^LlT)%_+9k{;cle=$t^Sum*rPD*2z z1d(9xO*BD!yI%>_ojKKrbbT5e|NBilAf`BZm{_VipI9(F6p&YB_o<~ZoU=Z8YJ0kX zLBMvdrv^#)JMXox>c?oF2Wg-aBPqCl$Y+y#NA|DAC#`oG<1#{-MG^cNS1-u|R|khx zNSRyik0M778XWg#r0J%fbz`Z;?CYH(#TE2DOYOv** zX)H4Xyy>bOrh*XoVLVBtvgg#u0DK6U%yiJm`83Grq9V#CzjB>)uMIh|pk4WY%KPr9 zrna`v&@VPbEPx`4p^1Wkh)BCCmPivJ6h%OqQlwWY3D>J4BIrRt`V~hKHMs5rTNxlI;lTAO~C$FM;2HM^vb(t4QUtXR)L@z&48Ii+YD0Z1|i(W(4!l`QkoP{8>`Z0rj`Sd%{g2tHjH~ z)sD`I6Tejuw|g9pplcO}Eq+t+nUQhEVPGbPv2`(PS$+c_WPsF zKVI+1@#f#cSMw+_EmU-Rf8XuGcHg_EeOV-b;5PmCM-m8hur*v2>*4uCnM>;|M!LC1 zgM`*(1dETrn?cpPO!v0pslSLM*i(tW0V+v#0<&g(`ZW3^4#W#+RA9h-KYXTR_2-Z9 z*G2rn_*3aQf{FEI7{scIy6Mm98oLeQqSjLJ5m1hVoXosHjR57^xWOF1$tOxggPsr% z{Z%z{@_SuZkS;!yxYq>iwXXojZIl!VJin#~HOp~TUxbN;?m|W5)r2tvq|q zyu3nI#9JxmCRe{#ar?{Q!-IqQ#LtxOu!`c(QKuW*DU{?ncYEmQ4qaT|mQ212?icG{ zPiT|6)n}VhnXe_MWF15fYWnKVgLs^n=#Ud<950O#3g>9wQeN#HoEgJPUqt4sw6@H< z_w95Lb&vuuWa5P@_GF4Cbwvbd5tmF2J{$ucSS4&?3lk+!`N70;3QMZeR_<^g^{z-nk^H6r{LsRHwc7L$XC1l$>Ep?1V>q4>M z7QUq7@dH>Pb^rS(=Jx{vkojRsvWzuyCT^_A?kN-f7<>)nrxlZ^*aHnWH%6KAWHnRL zwCj2$7Zj$dFRTh-HO3+pV9=;{J3tEHFrUzqVi48pxgYNdB1fA$LDz2G1XwZWzdq8g zg40V7==^g=&ghti^njLgkn3}h5on^Vl!pQ!6Q{JVd1>^qM5hnL7%;EARJ#Epb@m94 z8?nMmO5L3DqaHR=vmPe)^nNegenuckg<4(@vyhx?^IP$MEdxSKo#rHE!dyl2 zs==WhqAb4R7i>g}?B=_`zt#vq_d>Z>sPnv^zWLd&5>b6A3ixJ z@ke%iJPx&qrGQkXg6I&XDPIT0Z{(lNe98}_na)FxGa?Q+iuUo5_LF2{3%*6l1Aei$ zJsty)S~hor#H9x0x2z507j1}tJ&0gu{DCW2HxcM@I%^!1t zAPw=YmSqY+vR3Zu}K(vv~CTe|ilbW~)v zAoTbS+1H@i#=A)xq}^(>$*^|=ltF@A5Uxu?!L{;seebOOZ|Ph1@THGRyrfREhzDfuMuI(50N^Os%)*_X){^T{T(laKeTfyX z<{z1L3bvmdbs36+1yA;NQ5F80O*(Nwr@|2N7mbS9Jtc0JY?F2PI}dQck|r=8IFpBp zm{ahPJLCJr9DDCOU4YL$IVG6sXbXA}2@4z`x1i&%r?3bV#s})sJ4ZrN)v_fQnka6lvFrJ(Fr^88U;e&9A*19ZWr;j!VC-gh)#`Csug51 z1;Y6{@iQxRBpcCb**>D$Y>nPMK+_4Z@Gj?WepQiZs-2H9!4-q5B{hXQUo4N6T1N4J z?mXL`q6KU%U!NF!_(3vMcGAj01VnBkkePa)K03Np#?iZPmec?^(aJvHN=`^w zyzzqlgH(?#H(x&c^6TU+I85gR;4l{x>B0v#WEiy-mgpqz4vV6iz&&j7%@CJc#s3Hh zT>-N0-BisFvUx%vsRIVH;VJz2;Y5CC=}R~L%?n$699@+a5|WW_a`+7?$iU>cYAGN% zVjnDFBuDLP(d#IUoXj*eD`n3#MW!qwrWn!3c^2fRK3pIMM%lxWa|E!)(kqH!Z@rjf zYj%|#rmZOBzXCkFuMR)!7gMMZFlBz>m@>D4bPHtZq=@GifEs1#{Yz*ntgo9iof3K_ z3qT!3{?<38_-ipRIijjk;tP2=7-UmE<^Wq7ta9^TKwfq*n7G-prP8qTRQh(e#f!9+>Tz@fj=<89~9zw ziG>E}RbZo79TUw(&OJtdLgoeQ%%j|m43>F26YDK+>WjgASGVi6+U&JH5DUxKcZFn` zIBf~^yc%W_fSzjNoC|6k3+7HTWiB=DB-jSx@HUw1tSqrLb|-FL*n8#@YclmWBS_MD zhZ+jkd?|5I0M_O3yAOzUPYP}!Q;LlPNtEj2AleutCL-`R7A+BByv=dZ!LCE)xjQO> zM~=kL)m4ygj<8uV0@ogc;S1+I4kCSTD#N@y{}J#^d0w)~qyulLg(yi8W^bEN{fRiI6lLOtcrU+I*eH3-*NpL9QV2sJ7KR|q2g zwEEfsc2KgWcpQ?aN4Q#DJ-#rk4}?7%cnVeXEhyj(XeZ>-HP4SZ*x1Ruj7my@JHFDBHNgfoPKHDdj zQfb@z`X9Y2j|tC+YmGB`kg5A_bzor9>@9_SxT(%g^kv7Op<5 zzUrOo1W5aSG=N;oGOhGK>-O06(sTbb3zVH&fD3jMA>(+xZ(pA*>C)iP>w^S)fjuI7 zvQm=g4s#C@xviq~@s=+@Mf};)`A=cVeXziUxDUd8llfSD+5mklSgy*vYd)FMQ-TrY zge)B`i?;sssf+9`ktFjz!s~NC=Uce@ZU}e-@`1b$zAgOod>ty9`Y&+=%>~Y++|Its z&m6Hf{g1l<4X^orkjV~~n7GOMNJGWblT5oyE7k*G(#TrWOH^ z#%J;`wcMw{F(H&G5d`V>jMqy$B%rB(JA+SGbA~|CBVz zRp;1Gwra`KTNC#ZjR{n6AcNfNWj>#f$|_}_8@D;eN>0b};@6fVPZNYxnGi0pDoJ8$ zvwajD4RsZza?_VFtmXzP3}EFlx)}`#ezgLh>~@J79+dz=0h}s;zm2ms!N*(ukAPbs zA3N+a^x1sRSbX9jBJ+3#2{2~oAtKhJpZzE~Rq z9o>{vbV#Mkdiz@M0F&O$v8V#07aa%uZU6xCv_@>Gw@YZAWL-i|)K1YxbBguj!Iz5< z1%TGaZ6&7$jvWE-bC%FbTj<)Z`HVy6HZ{c{zs2p56ffoZ)6IN+sQ@}=y;GO6C@>@; zT*URSZU7?Gadap(aj@GRq~-{k7*L*__rj>0nVU!Kmq3N;L*|`^<-(B)>#sOH~kcCF6KcG3Y8Uh{lr)5yl^zXqXTVKcK$LNdFY4y(J}? zAs(Q|Jy*Evt2rgoM+HEDN9(TE?D2PU5O6Sa(DT_i1@IcZE=TQRS&McGc0T&CG@#QL z8N<7Wib!@H%4ikGn8mE#?BKKH8A6ovS|LEN@$=UEup_v3-D))&tas*=9LctCk;KeZ z?LC<|$imW1oxq9p!oF2+#Tc#eS{E$6h>1T8wh4&hpv+F5UV%MEkE>}v-@^wXgHnAB za`M_-&D*&dWMO!Zw0yJM9KPjvN%y_F1CG05Qrd%_oj)OMc=iJwDBY`#6pWGI@@Iv} zu~i}bFY(U+BcMDg-gW43!WKKwfcoDd^3OOE=e9v@*0L}Dt@jajumL3l&XiJ}IuT>g z%-@9fdkol%`SR_cKf)2acnK!ClIffUV_RBU>5DD!KbJ4(J9PGOL8Ohray_yxd?QE* z-|C=Lhw@U<&6Ii1{v*262l72<5YDq8i&qjG-XVY&KBKnGND#-^X{~%D*~Mn`Y{BbH z?d)ra4q5ro0-t?y>y*>G;OG*%v2P=73&7puk>@r1T5~P1^X-9zoZi$CL6$+pmHQLk zyqTBlpNw(_GS{*vrfW}mu_qzpM>)ejO6bHlm5s{^GC`RRJs;0?1&K^)#z;u7^2b`9 zWZx%giM}5F@N8BzCTGSZ_#*N}mdLWi0u@;&xgQSOQ?8$+SXBvEME{_Fu_=s@=*x-j z%tlBMvgPjSt==#b@@#VhWbQzo3%>buzs)$nUSRE(&TES{hXC9Y3p*^6)~S9K9;U>zZ)FdT)k}pc_z_M z0iwn~h&ERDUpeli|697jV}(ddU?c>{IF{M3;#PPZ9{SCW0%iL_z2tG3j+|E??B>vY z{wa%8vv0)+AmkuAuctq~QbYN4aFPkUPV@$_zv_Coh3Mn2SGp+!5Q&N->c#0FI7at@ zY#mGzXJG*+d5ER+Dg{>0g#na<&x5yk=>kK1yD#;KUyhMc)oY}VMco9cE}24WThQ&2 zjH7%X#jJNp3xCd4PvXpwX8$E}}o0KxSqh>il{%dzV}i{*IXWZOsD=^@E^n?y~KWq)ZA2(;F)NJ~m@iw8GM^Cd0 zgdWr%Y~-oVNrDk|kA7J{T z3F~g!LqEfMuH6xgQ`wFv$~)w(YeE1)=*&X5)#fp4{j#*Clu%(GbC=dPFQs7CE7%Jz z1mMWQZeSGA9+@HYuW3Z$PlOYhGlGY-js zOv*IJg6An&DN1d}GvOhB;m8qSJZ^#~5EXA`hTm2K#Y5EeL3FXfhpYpRkp_pNqXDG$ zFA(NoaEKld%junQ%Y^xedEtWIy`T~n@yrK7(jC%CBi%}=I@4nqS)a)IGA)ui$eSnf zGoqtsWqw46zU~dt26ZZG2u>DAnU8HYFEAey)cJO9yuGW|7%>>Y~N5VO4aqIhv;;+hLrwF&c zqK*p&hc+yy{|NSP-$Ak=(XqQ5e0L(+M<*wFg3^ot#a%HNM}TmEUHI<`pTSwDvZ}XD zw4P_Oi2?%C3Cqs&-7lVUJc%5`HoVsDlf57eb}V(10d#9WIEl6h^?n$6V^E_cqs$My z<@pVIjhBqNYGfzUTH;f@-i3S1f(Q?5Rdu3u@G@t<=DtAYBX2C~m%zOQt0Ez%T-dIC zB+Bwf1HN+~JgS6|>e7NWo5HnZGB=I$j`MrgJ1I3b^UMomiiv8w4AD>YP8!V<`8o+{ zuv~vs8`i zokx1J!H3Y4#rmpMDQ=HGHGm$0BW1r&a6PMd#2SNg&D6Z}ngFE$uth{xY_!&P01%KY zgNkUp(Apj){e+6xX<61RwD(y?)>{MD6+hfGOtSOhg;ksiQK^|kAU+k)ocBR(0Q$+! zS~*xQKUl6>f6Ic8fhSLO$=731_6X^mSErbkAeo_A%89~Pz#WOCTv}i&;M*?FF2Baq z)RiWic``4Bu4XF(EZ597V;v_lY<<24uzy{>1gbY#Uvw*xz=xg7YLZY+j*iwCjfSN_ z^)yaWJ`l`oTtR2)IyzEZ9UaQ$_+`aKc{ zPwxhyMWb_<98wyVv`7H2HHor($u&|-oi6BU;LEo==3qdva`L2L&~7-YfwCOgRfGO1 z)hDa5vKuBxASIo_S_QPMVB_ZAoalJ&6w#tw7iqrhX6}!25ZMs_b!eB=nD?LKMa7ja?)V^7TCc%`?38893Q_1>BDzPs#0n3jPOU*)lCb8 zxYr_ky@v-oL1I8c7H|&|qeHG41X#vO=d&G2-Qen=*Ke*$tO}hthEbNW)9mVOVC(Le zsR0=nL9MVsyVmV*`4gNbE-^vQ${+yNIZJXU&6A2{ez<~jU$W1u@4HuB6D7V)9ES|- zU(2!5aae6wdU16;|69-^$h`s;L2Wr>*gz02HGJm7ds0_Q3PSYt_Nfbf38W2)k(zv~ zx^++MFWO%5T%<=^3oKYHVzmZ4mH31%BA=+7o5n8DqaMnOGUvDNpcg-gmcFQyvyw}x zCVYEk^o=gCAdbH|SePc>|9+mLQ*&r}`mSHA3<+d+?jVVh0K^hqffXu)SDz|Tt3l}L z-N!rty}4`qWVjjb7BUZ@EDBGEzEhyRQ|^5 zshAkwClNajE0r6&+7tM4f$Pq7C?~&(J2VxSAM+`R#?k_rTgESU1!&Nk$qPZMA)jl*7?i38#72J`(?{dPkSTg zrCpt&RUL=hGu}GoW=H^40styz>$tYEcVZfAp+G1}pOnyDQ=WZ91*qiQ>{cJ% zsSgyL&}~k3B02&KGE=1E#?3-O&6L~fZ_*qkRQLgf$7ahc8+ZXnHOQfsH*TwtRo6db z=CFOSI017KEhK>imi2R%`yHmUdv|-^kLCH<(L5`(RHY_l?J?M z(B1eoO%nuCz(7VEG6R3-zO4%s|9l1B2(K}r|M=bJ=(UVP@THr=J9(M;jK4nj!!Z<} zmFqA)AB5e1py2=ONpNAK=XlEcZa_Wjb zQjhuSHm{1?psEPv&8oZLUlCa2I$;L_$dhHVkS@5RQ9zBOeHXHecLt%22TIB1H z?HAgxiuy`4^7_MJWbmd~

9&99e?Ke);g#Zik)dx%>y;2!v+awq8z6h&{)7;SS-Y zaif1Bi%n+CQDuck#_3Rc2W?d^(?0~-n2`QR_x=2!-e0D@+Rq6XOhyCel2y>(liN7m z)BfU{GZx2aZWa%Wb4N)c|jAC?qB`Pw+as1cMiN-?zD^Pt9lUQ_ag4-(MhykbB zBe}SxlvopQd&RcQ>35REnqy=el-}_cqBeOEr3}x&ZKy|+Y!2IPQ2h1nMwlDWb$Km!ouMTp1{#plj!(>BeE`bT^%KFA_rE?EIe3`7n z7Ife($iHOx&pB|>_pM-iO$`Pf>1{Z(Fx{D^zM;TAYv39!;^RS9daButNVhDj0A?d~ z&=^th2KOyPchxSVhc?+0Uz+)J;Exw`Rbi|ZE6(-E2-26ER|4Q0IPoamYs;6x4c}Tf zPxNFW;Y+-Sk(ItZrRvY|LpJ$$y6b0~4QIYj>!JL9tR!y6e|MkTzws*f?r$s)mw*;^ z9GAbLdOK+Lc5V*A_89|(UD`Q|n(E_o^V1%(p`Q+&;XQ=amk{QRjMT#&m|ne+t$p>~ z>B%&AjOX2Va`k()YIU%mJ!cG0o|@&(LGU*2YGoaeD=N0GT~IMDEl#^u>>*zyl67q_ z$u(%?!(7oFG&~GI+B~wHb(z&V9%i!L&TwkxCHZVHU9Z-z+}M_NNTkPRkG^ljM9gz; z-JO?$4pnj9Vo~ToPe{5sQ)OF3c+?>GXCH)c1!tFdSfZ~N`;HjqkN&brGAU6fzeerN zbY@i)CscbRNphR+tmX^}fwigL7iMB6}<0QMkwVfoH;e|?HB)N?j=O7af_`%p`t>_K3)`WJDxEJ+T@86<1+ z1v+r)pi^9mr$u|0dI5$4_UM+UPF5qu$gIzqVx6X@e$$)A7$zl3$c&zTVKcy>WAQNR`FZ{wkOXo}-pB1_uS?SnQ ztw`1-u!aPZ__@C$cK^*e6^{7OB3z*6hiUhap*_5fYXik@KENrRR%<0!Bwd0(xK_x4 zkFzsKLq1^lHLdTye|5JA7iTo{7gCo|<#p}jS{afcmt}uvRU);awhDHoK*u^e-TksE zY|ackNaC?VcdKnEC;H_nkq@J4N(tU}*4Nf*z@J>(uAMQsQD1)(T_m{$wfFJBJ*Y=M z%*1OFi8<7>c6~C*a*#h56zfEQWqtnpQsiOv$cgE>>yXY%LNTp5aDDwBl^y0VfX*N8 zOeT-4slp%qWF>rJY; z2|dujU1YL+We%bEG8MP>kOK)vu##S1Q~1l>p56cK1^6@8fV=PE_uy01R(K<=zZ|x5 zS``1hGB&X=kSGc|A=;C}_yhVE;I?x||)egPOqFn+VIFRkJw%Ay{7gb>` z8lWucr4?G_{0s$IFJE~bN=pcrBMZV_dl*!X485Erf-}u*Sb2ez4`5PpqdiD{9o3+vU-N?ZRWjF(V zYK~?boy{#T-tOMKVE548J`L;{>GTnL#=tUimwe?3@<|jUZ9owf*W9~*0W->|_aa?c zC*+fy8O3T@v^OEGx_&@|gHLFWxY>6&1JvD2{s?H|Z*C>0h6TP4-mj@UiYxYOQz`EZY3CdLjDiD#l9F=nyn`lKjxC#Cs7U2(?1O&WVJQ80+vj_OU--9Lw1 zOp}aZ<67#8h!Ui_29kvJu^Yv#`eIq_f z)?wUm5wuNVSG9d37XFim(sSymgpMOC|9;AHdq_$eT;2Y^OT}x0!*Z8v?GwUb>-xs$ zwY!YYEmj+PNdR_3|;XvivGWNpF_9TzxT>)#KqmsRY*fc2h%|95)-&$n{t z>k)Xx9h7jmVdJCp7Mj&W{blBbnSmEU!C7zg*N-C7MRc%A6)fI%`r+Jzp%)@F`Cz6t z)2UEiuF}En9iz8qb;la%kfuD>1h+fwB2pq2eD+vkVpq|IDi`Wi^=pzK!GLVvpwG;QpLiNK{3S0We0NKAH6sP*@f(PK2 z_)(4sLGn2)&<`I5krovk$qAMoj5rH3Z~9+LNq`Kvf&gW*bH|br`TCn-{`uAfTbg%`%eZ!0GLM#rDpa_p)b=I(b?`cdSCsfezfQU`XF&CW)~!q~;-&1SAxl17sA6QPyzF+jM3(ErNVd zqeh2ZT;x;CRGrIa=((k6G0)G8BTWrw*r+YEdPxFqv>94<4aT_I2R7kwdXES8_YX0U z%rS;aQ$?LFWczqPxxYw7w$eM8UPI}uO;|p4wt49(I;rN`a&_|rL({a-{~9E1?b;+# zFr(8n&PXmUQCVLs9G6NR*y#4wgm7iD(wj-2FlbNuzyK1HG{CYHpRGiCQxpbjihWpL zZ#7?-iNYgtB`&@Ekq&N1*cXoEWtmTJGHAp`#!6 z_XNsse#7^9F(@3sS-H;ngsGkIU3Ej*sh=}m>jYwV11xyrKU%amBNr!nrZ*O53_L&; znUv^~%}|VYbuL7gJEcX&e&$duv?tAZ*jW)}XM@(RVo_Z~Mf|^IYDd;p>XL^OY_kSB zkmq8@bV3{{?@_%M(F6i3JrFne5M`IBODvbp$JtLZXzB&i+4skqM*d{KvuJNYt?Vb4 zo6xEblLt{n66HYXq4!K{t+TvMF|Y>VxgR|j+cWLV$X7c-W>+&-X4)2>LprKt40*(2 zGNSS*ITW>`OukpedYM;RCL0<6sn?AiUQEO-5g04UE*;=(PbD}d?JxQU%OF6FiA3E7*>%rkm5N{8l=B26Q@`by79thcbQo^cZim#PRz%~pNE=#VhVvTArroS*&KIkz_ zBdx1n5lk;Pa@BCqTb2{|IPLf>(WTw9@)K!#)v!VrRmC!I1a=6fa{7x$3_W>rrP$S6 zi+0gB1*-Xsn$RR4R!EbQ+R`=>w5z~LcbEL)Cj+WT9Pv-QDLT*@GMBF^GMTYbiq&?{ z9#f%8dP!5u9oG*Ngo7E(X&pAc!V!>*{)`ykqtHkEK_* zrTIWxmI$yrG<@Uzr4J1}x<9|0z)EY3)po|c>k(g@X{_-X_-rb>d+z#VYq$P4+NABp z!-jgA?U5f&;jC$AJ3_r6vWi6YE1Y|xmP)GoYRiWHn$&^aViUPHeT3AMKgWn-}^#{ZDIKeuL!+&|0SjYiz94 z2d%45Rxt^rrw{0&RZnC#-? z>1G%7oFR>!`{v!c8i;+!Q6jF?J~W>=O?7I)RT)C7s_hX$P}UfuxKNGxe$1@)GR&+Z zBXKNEs2WFLO3WAICU#qP?!}}IXmp7=V0;Rzaz9FAdlkP0+N%&_l(}!(`m%Fmn$MXYsdCbRYOzRzUaBm7iZB@$pc|>3?h-Bf1+NG8pKQ^u;dA> zir5wH5KG7(>N%>hoSQ$|^@g!7O5-1MHkrr5FAEmjBGahUUc0uZza#H%Y3HWEmG2g; zk4m=kcG8(@zjyXwvbhq zTqE1&nM3O}4{_w*E44&qrE4}DkGmY-Hy?msRQ5=<2n>MCU3)yJ7GcAi{D%u?zoYhQ z*Xpr6X0|g4uG^36%aUpGOY}BcEAc^K3%uJ#45(#!@8pd;jx@emum5Qpr{_F0_Ge^q z#%SbKG%Zj+d1c0erC;FNJ1J}P(|Ib=x(Jt)dt<|Ur+Bk8|Dvr$bVDWyJ~d8 zVv2G(Tbw%E8$9q)+@+A{ug;wK|5Azi&??h`UT>xTVT zT5^F)A@0^GG}{$T3oB$j_^ib zeKe3>MJ$0b&{``T2>U`W@b*)#pAd7Z$ zXxSVZ{%kY6vQ!(CJAd>JdhRdsa7hl1VU8vywFu96&?cAj=C9O8 zEt%(!lFgg@dDPoBuT3L9dz8_B4$y1bSu{HUT1|02G17z5%NkHZmC0+JApiPFkDp|0 z%LrG8k-=$=nO?~y z>It&B)rN9;RIq)*KnkkJ?q2FTVRmq=T4jGRA`KxSWat^F(MqBQ$SJexQ1$gYb9RXX z`m&2(^g1f{lRcntt6)q(9h5x3cnO*$kNje4$}U=;m48ext6S86JP<08afk@zCsZFI z->0!ZhK||_VIFG>jy0$HK3q*R`+YSyA^d3YGVkASyAy054G0lfKWXf__G2TAVENGV zP%<(!3~F`>IJL}>@K|TT)(N9_hxx#gdj_HBzHn_}2NHUofF)Npp83wG39KvKn=tSS z*ek;iljWgmB7yk2CK34I4n9v91dbwIwG;1FMq~fzlkTLF2Zc_db&rs9>jP!U^;N8E ztjZx#RGi@qDK>Mq30dy?OCZWrei8Ua%Ju&d%RG<5>I0Uq00$;xmwZ)Z6#;YIY;Ju5 zH{F4G28qW4C@G7lpy%~hHRTt}7&WfGYYq=!Jg((h&VA%(m&b+6<;hta%GZ_i*yFI_ zy$_Lxd!7)k5XQ^M82FR1^63X|UD6eglX{>G8gt0U;p88x1j~h5L#wIpOuh9@|0N!Y zaMW%Ll0^+V0S6-_STe=0A|G92CMa-9RMTj0$PwK!7a#%jp zIM}|d({FufcXQWFk?UXl{{N!tygoR@nw56#^Z&iN{{NpH{=UjL|M-!{cB}5+;R!&U MF)=7QW zf9=@BBef`hJ+)zjNR_N^Q|ave2e`AYZ9EXOyRDO{o6qj?H9FeItHehd%T=F<^tM@D z*;Fw7LCC`(=oehYKOV0de{mN3$8T1CVBVj#`agfWux4u;F87}g*K6yC|M?sIRQPI* z-GBblUFX7ek^lVVD<0n04FCDdPc)A|ZT`<+e&2Y;eBFQka%Sy+cbUKZzsvl$f%<== z`EP@PZ~yPE&Er1F>!`M^@z8zrpzi(fM_tN$@tr@{y8FHBEcIy|$$YYhU#s3&HFo%r z#g8lBty7wrEr>-u(#LG@EP36}J^0E*jD>4#a<{wloip@5o>}TPCdRXJAOw&Ub8P68`r5fP2D&+dspBE4M`N z7i`76ea!_5g|06A1~qS0Fa7*LpY-m8cq;R2|EJgU|KEMTr?im_@X_IevgZs83=YZG zHcFB~b*H8-QaF0lox14zqym0cIO=nkJn_4J_m^Q^5>St>x)>D2t(6lo-di=eFgq?S zCpR_egQrmKmbrHA+JUpr|C07Q5cwyIG#fAP$3{tHfTQ9Mf`a1SzC95l;ii52_HAid z*~!0O^7{4b1Ilra$V)C3-#PfXebq`d-Eb=+f|)_gQHhhjUTL}FPU!U$i zB>RvuY)h6u9+$%mf`lC>u6n#5I(cW?+5VbH<&?{m?d*ytJalKS{zabhDaarQqf}pf zm&Rsk!GVQ^MQy1d+p_15+!MiP>gk5F=8y2K@2sqHPd@r_sB)HI)=rP!r;J@lNX>H#lZvHf%Fq<1F)|_|=JbQT;`A(d=E5;) z={tXJ-O5#R{l*RD)GM-U*R7kss)WB#eG1%r@(vp_^9jEL%8JIu36)_IX1QD}EGGka zbW~nmEOr(=-nsGnBzdZj%T(bf>Hb2h!`UQ1A9dYMPoL0|Zp5+s)lMx|X6BizC-Cd< ztX_pQzphymV>{Gx#+0OIA09f7XCFU)q~4hKM8vLAYTp>sO5QFlp=Zqs;MNNIF@Iy} zPoM7gv3|)PY%D&QIUmT6xCoBg}xDTn0Ud zT1tfXsg-Ed(M9_;IwGQ!PnPLEfoe;y)bqi8_VO3<+YJZwMa~J$?~395v9-i|j4eHNX~k*R zlfT-l9zFW5FXx5lEPl8dl6t1CdE`F%gHNa6d~4JTp1C(VPUPo*JpS+IoBt&int5Q+ z_3k|{b!%a1>1mxUv9E65y7fZzT{g?1Lp3#3Sr%Oj7d3z0%O{@Fw^mGnf*81q|KG#7 zo4a+k{P>`!yYJk(OBrIW_u0nTe=nllw;?FXfjzqSKY`^Zx5uACz3Dvuh?}5%YFu9IJmM?e ztSodj=n4bR6b*Mj9i`n*yuVF3|2##45@a0oRc_0CAB(}g2o>%)OKTbV8 zu5qp@%Oacvqrd)Id-s%(SWJ3e zUMewc%d+r|Xin8PT9_GaN!9nR&1lqd%ik{>6ye1na-~J;%$a)w4T(k^Tj&K94qy3T z?sV^uKmJh9wv0?P4vK0u*}@G^6lb+<*jU?$7d9aI$whfKvav+>C zxlBBWk_(9o5eZoqx6pW~oWU z_S<7^=h2fcvpoR_W|ihnxBq0Bs5>X$f0IUA0pF*H>Rd^7GP`^CZtX6!yl2UUOX?+F z3|8u_f`aEW+iioj9eTF&8#QpMzWa%|+|Mi=IAqa?&FO(%vY~(q8;Q|~qu;cry?aW5 zV$|boIlrFb#^$ouDJ_Dd`P;suH3DUV*<#8yt0=9^EP`z+l$tFby4Iy~VPxo?c`z1R z#Alw)O^=KmDh-I(wCf1l-o0wSMcE`ASB|&6d8+zkB8h{$b#bsF?Gd=Vo)cX_d@N9iA4!#G++nH*+uIwr>Hy z?6|w+;spv9i;Zdn$IDhHIYoKTOXryLF9v*r#L2rm9O~pvX%Anyr|mLXPhA4AlNiKr6nEnGpCrayym-+#6Q5-8t?4BJiXBcP z`J(h(WMxu)FRe~2U_7>@oFADiMRob;{$a7pUoL;~Dt)`^=_lQ_(+h)n5vM6;GC8V> z43yy^i>`v@(}sqs+U&8{41&yrf7e8~e{+U?BwedaT3 zYxz8NLfV$5vun@PKH=&Am2%M5#^|);yLOQ^`0Q5_&ZEUN8M~J=T1{(nYzD0d>ex@7 zJZXSMdB@wk5kOTre@-G;l`K}B<+*@lk0-BV&W0aaGs~r(_OUJ73JcQ!Lt#|pv8koN zCAad4P!?C0|%g`IzPuUosef3`QQ5fhef)+uh%l14dr@ZcRUuLhqz zlAJ@Cm>K-Z$+~dwzI~I;`e78`H*emgnSVasYSdjNu?$EaJy9Xh$;QW5*RY?9OBM^H z{@QA~rOOpcodqs_j~~a3^^^}vEYEt&g^C(DEiKIr@-PTlp1ASrrj#_bJo}ffGoROa z&y8mE*G6kxcP`@PyYPyNTm{k;iI(ZQMZYo#njd}n@}=YFn>0!hr~lBvZMx}Lef=<6 z{P9N|b3cCbOq)~b+xKsi_ikP1e*OOX;n}K-6j^3Je%aJigP`y;wF{Mevc2;)mmliV z{^84*A(BQ>w5#Ql&#vt_W7lv$E}Ypfg(KN_;>!Ns`+j_HKYy=vlYg{=Naep_pDE5s z?;?x5CDV+jh}SrC-LJpKsU~aBO*ZOm|MSm_A_W#*r!b>Ev-S*&6SeY=*jZd9q0VCz zljf9@m?{+n=R;|+I)w$N?$JI&I5#Z5vt6661Yo}|Sw}*~N5XZ%K2bAU(XP!x%47Rg zg8ZeJT$D62jL%}Ej7y@=1U^sH&`SPo3X9qR>mb9@-2BB39_<8y4*Md@*C(a7bV$s0 zZ6X-DF?2D9k$%@t9JXQKA&Wz!2|l;= z2^`zNv_Gr&aFoIDVOgtagCK+Kwt6>atwq_nI}v-L4E8&ut}f#Jg?W>$plD@UXV<&+ zwR~>=X)VJF>=c)Lp(A8FXD1`{1@Y=0kFwc$#5l%ndA`&CQi1lK6Vh8g3{8%7>Wt)1 zYkN@D`)QbF7jtyY4Cjudxy;*YI5fS`bwv8)qB-?s{iaRz*j!v)A)*c`wK=h|v2+>V zoN*sEttOcWdEwsTaV3mSA1ps8GbR1?*I!qc7G@7<<)oDhV>i{1R~}ogiIl+_aLaC& zzi{Dc!Qzz0&6_v%)JL!*(lmFgWf%w6)L70}S@m`}4x&<89M_-I4|9n^tP?A@6==79 z2q1EqBTUpmG4)DCncu;m{OZiQK>NxEw;$ftIk|r`)mo;lZ4a*L(weZOr-`J!;;WFb zd=|fpSviGcBw$%FMIAxA*b_3o=ybCx8T_6&GA4QESX|GrPr zMuA%g0HYyNGy1*QGu6ZqbV@h?z(LDY-^% zr$h~#;3Fo6YPa8tpP#y^SMIM?w)$6Uh2|8!acBByxsaN7_jj4}h>YZ&>nZaa@1vi3 zJ#lj*%@fo2IhH-rG7hiYSNZquJB&<*{hiNQqLQfIGc`lMdhP=?z2HYhuY32ba}&GP zhJQ%ATKz_Gs(A1qs-2XzBa&Ohy3fv|K#sBMt;`t1xVdBu{G{d-Xnk(?(g$X356qfJ zzS-@D8t93|6MM!$nZ-17wq%>kX9hu1EX7R>8~nRFbXFFDb7hF%v7`g2+F3Z|PoFNm z`A4?d>$>Qe*`gey za166!lN+{~L6}WYut}u@NM2D-F zdz}&OEq$9<`c_O5Q!u+_Ynv{HTbaWDZFBMCsKD>jCM=tZXpL##9V+6zNL`d=Ond5y zF0I>6kAua$_e7|Rct!h?UP?MddluOwjM$5lNpdYa_cOhXuCIK!TSvOE zuQulFK8;yq7mzP88YW^6Vl9O`SUU3<8N%kVL>(5|3KyqZ{jCI@hJW6Y{f}*>L3Y;a zqsL0t*a;dADs=ErfM6e_N!954n))ee^v6f3KB`ly;iYuSv|Oe=m75@ZkUBgoLVdHR zSbNdCm#+Jw(^pnp2th`#crPudhVLG=4Sk2Bd6bB(-uf)D5ozkw;Z@ z9-~hq^nBxTs|(U2{5*8qLQdx2@%^UiB>%v=X6S5`RU5~<)Z|>UaE=~%0@iHG3iQ!0 zzc`Oar{^9^XRWEJIYgfe)@Y~~yWYF1KP%_%Vpjm2*@T|N)OF_M(7$x%4ufX!-;fVT7kz=*~KR%SQyGE zQN22&G9SJ?X}(B%N{`|vYP{p?{Q@%fGlig|npHF@($b3R>Ou0qxRkt@kBts3dyyX( z4Jt3-^ZEC_EG8U*%q%Pp&XsRZ42GE^SXsu02+SQ&tKo3lKgUqg>k4=tcQ*W#S7m>e z2{)MnJWgN!61sQmv^dyqwkIHfrSureWWTwF?&(L?U~mf$!nNpA#=o_!lL<1ReU~0( zplwm(-DRc}kaDo$uG*8sxr_mP4KlrC?0lrCi%N48_qT2G2I*(Eaa^`m$=NyYfNJIZ zrbzlsp+uF$pd9P|FO#kS$od<{YinupNN^`=UH9uB1f1Tz3d;^+E;wIPB)30P#uqq6Sy7%cHJ{1n zQ`cBLdq?QeLovGUPHvG$clEngX!;GeE*2-aUD3?zn+a+9P+VM`t(=Ua%75%@MX=aF zi3X`=*`=hUdZi`sxfzebpFbBh968@P>YQZUS+kGpsIB91mnA9|E{H=NPSws}$(qMn&%F?@hZuCpBa;zeY z#;mu*l7hOr`hKpZQRL^W_9~Oi_ABgefabzZQwgm@`7C^VN(h(fe$zv((M+y0uLllDk`7+?KMt>|(Tng{-0?zX=XskH8IY*svkRuMjYo zTB90^Y6P+4FYJTErWQFU5sbZmGJo&F?G8 zGTHVESs_!%6;x|M>|z#}NBtPnI+@?QR)t^mO|l9P`@M*lddu8{h(ED}HO|zE8U%ga zEWbo)>HV?ey3c@^F_s7uvO0yOT$Lhw{P^__=W$u@xjxV{iOwkW#75t44c$~H6Y4Z9 zBr}WMsEFsN&iA#X#~aqi>2WXtbu&4CzoubQa*r+?{Jn;dsHkS6rq%scm*o++<=W3h zYHpp5AQk<#Q0)ez`-dUzyLJ!VGknxtG)26X zbRN1bi+4vY-9CHheh9Euuc`7C_nnvnW@I&pjga)vr9Vi0DM**L@k+S2wui3qgKb>> z927H(%yGBps`h zs;wfwwy%LI_m}6|SB^83v5Fa!VEfd)zau|4QWUhk%;Rrt2M?YlwXnvum-*m~%9ccO zbX+F=LLCR#1ET^d@oozX<5i54y=AMnh&}~kYbtYFoD486T(pIxQ8#225fO3q>xV#Y zo~vtq{nZd~$^Q~cBWM5V`7wHTVKLPspSPiK~}KyRSr%n#=h6(GO{#dBS*omu$? zVM5OAF@D6KI|Q2YzsB2JB(D?JnawT_eZs_FKlU)pH*Qc-E^(!RTo z;X6#dPo?G$$~g0V|2j3rSj~add%Cnb(&{X+0nGZjk6JeRO}t>v4Cnzx7Nbj>%3Kjp zci>?hkf=*zg#li(n|PqwhN5*pH|7dqT9Yb5?KE#$_al*aP&2K4&!whCK{v=+OT=E z%Ke@EZNt&n8IE5A^*KvWzlf!qwyPtbpF_d!aiqGs+7W2IE=qQnO@B>sk<(XAVCk=w zA@PUw%9^|qH8SN0!fbkZ2}rxLFxmOb+x0Ghw!r<5k4sAOU;Vfnfb?6{YwLZd?tR2_ z%s6xkoYgWrU2_RphU)l(qTTY+B6+?CHQmMREQ?N;=~(1n)6PubG#Ot)KlpQL7$Q>m zzY+(9)#*B)2w6sNrP{G`;tyF!fS4I{#3ZPv2^FtRyG>*NLwWJ)+gs@h3r&NfP^U)o z6wDkal^$-F@5%?-49m4tGr1YQ!~RNQJi?eJr5bh0Vo00w@fs%S&i8!kzD`bc`YVK* zFQa)D`wvDiE`A5YTLji|Naf3U=mbD4OJsrArs` zeoA^LS4o2S)8FG2o?YL6=J8XM8V$C_?Kw8s&wdyx<$OmQLU+BowmQdt^m$?>D1c;e zql2Xn_L)xeTYNdeAntq~h4o8@)*PGo;p|>Us6X)lQv|_)!L{iw{Ub!osexm<8hQ9W zpWBjiyH%B#u+`Ul5fh15S@D_cx9*PtE+VY5^dq)s0K@F!;@TD#7L1dB(9*^v7tBeA zh}bnelkD$QmZMOr2a^kvkU8Q^+jD;MN!zw=efZ1;;cKE=iV6Jhi4%WazkZ$1q=gT; zLte~rLV>W?;FJQRVpp%*eEEFwJ6>wpz(Xf>b#)mh{d6V=8|A^f*5ksW)6)1T{Tw?s zF$gOGIx1HL@e>kyEjW*F&8fnuxuZCik@vS~Da>u?#hyB4K#@2g7GE&%KT&t@-VX#i z$oY10db0a!ACw*M>+Ib;lUtcPr~fkGcZwBt(N)8ssIE2km;kDqzyC;Ch)LU&&X{}N zGzf~OE)rxO9OzRP6_wTVOo>mq?MB5>IH0_`b&ip{spk)^ZU&MR;5p;lfZ zQOs$o53B4Yy*GGI=xsgcq2w-&hb>=45gR1tlp(da26uuHQ~@C{`8C+=01Hd8tp;?x zsp0nEMUl_Xpb{E^&CFR|nol=)IO$Xblmg1BDlK1^7M$RfC>x-!Xe@VGd|2H`;j*bn zDA;P3`6&aiH*&4*uJc24cw?nFC3b<43JLLr?~+&mDwtM3W)@~e zIgz7Zm1k;{i6T2x#=+8lDJZJ;UMpY4Wy&sQ6G$OXA`Vp!G$VRlkDy`LTnO^*gr`+B zCCH5S-6@LEggm3RWX)mUcUS6ZFmCQ|t^qse@$LZ!^k(0y#?|gR>fH*aL#C2Nym4$| z7czUDmznyVJS~xhs0DHd1{9X+`6@P=W~{}F72MaZS#uStO3=Ye9@sEFDcbh-Sq({A z@qg?)bvYNb&qNtV@>R$gJNd5ql=*W78!RH*T`l$5(~@OzDP!K6g_HBlE&qA2nq_;&Ot*T`1tGw*^YgESM$fpIMk-FcQz4KOI z4xa`{XU30i^Fx_I!ZvZ`y@z;t6|jqI8xl1p`@+4i#D^^;X=IwV6uK35xGlS&7CfW2 zXrKkvx!t0KVGd8RhI(!@(jn%3Y6I2L3{L;L6N+lJd?LY7LS=jvBY+Ei6>`)?w|pjE zv_F&e&B+aF8!r9HgEcQ(rb*WX2R;!{srlWrNPb!D?25ilVBtmv0<-C-#g7wO#P{^C&XvqPQ=8XtvYm>;%B-9w;tVQI zEh*~~?Yje%&$gbSyt3m(2`xQ4ig<%gx45R~VcDH=d%4!rD~ssFI+8s<5gsd`c}dLF8%HK(1+l~4d30P%dkXUgFJH4iTf@MPZCtJ zcI#SML_tHZVX0$VX=tKRpZCp-b`f40<(LxG>Ypl|3J5+zYwB#-N_EI@m)i)~Yf0JQ z7M{w)C{SdjQ|mulb(Fnb7H=H!RbSG|+Z&s15aiZ<*;#JxHy>+FMV8#6=8CsW0>O>tu8 zpUc&hsX0oiJ#2(>_g2J%&7Qqkab`hRfWZzkiy7J3C+N~XxU#=9kC(b@huV#W@xVy} z0G@t7L@kLtsfbuT7Eu__@yZ$lCO=nx2F0go!R%Mfp>WVAfl0r0%c2S<+5{02Sr>cs z34sPVtbb4!(btUDqgrM8jA=l`+K$k+rOaKIL)r>-6eEI7qTdJIo%Zcc{oxT@*ov@f zuX}<}V&~jpgj&87bR{k#fPQn~C0dX2PS;IEzbQGsGF`T*Izd^kc%Cc3qVa)V`mU4i%L?qXk=4S)}W*IU7%v@k^SLoXtJI74ceTOzg((k;e?X zig}eM$c?j#7OVpNc5E~VMNrr1`9WO9ixXOz_nx10m^n8^k9iR=x7;@h$g|Q^)Py;o zi~Y@KzAAvHvPrQAXKL>WPvUOjdSFk#SY$GrSuT_Be*K1j zU0k5~e-cESif%nn>K&1M?VIG6_I}rDG6&@0_GZoWLca_py*)YK>S4ZwyFM2{IImgPbB0$i!k)9qzETXd~<#o5y_bF zrlaZEH_JbE(%24!tshpc0>Se09oEXN%$Hu!*Mk%RO3OF%b1!Ocj2|IVqHK*I)Dy># z@xADpL-hN=&OF9t9$C4Z%%O3Y;f+sF5}bFL`jE2=EZ!G0Y*v~B}cjcZsi)8 zIJVf>2wmTTfVB6#_iWW{Q1Dx**|GXX6ft_$gRS|2R&gOm3*algi~zXLSNQZ?K!i)6 zQa-0aLB!W61Fx!65&?)+I*Lq`)8L_u7i_T3F%e@fi& zsrd$9m7N|Ib~`2yNFVxE#_lVZBUWbpa&u1^W5&-pbay7UEcf0sh>s2B86`zzd+62$Sm#G5L?+*{QmNsl6b2G=!M|?)>AhUf zBmc$3MDl#_WsCKQ5MgQ8ZH#&xk-VuW>os2m7xx@{zk(bLU=!vEw@GbCT@=F^>+4zZ zCa+rH=e-CPt+BJm8W{4;=shM;?fcv+m+9x9jy_Xqc-HoIxR=g1)I24td|MH(uuPDC zqxkt6<09UqMWVvPWb#snYK^K~&^9YJR{cu}0SslusTM1osXNo| zt?Q_ETdh)4{rTRgH+-HXM!25r=g8C-t_2IO>?>|3C|XzHdcA#D=*eo%$`zLlK5*?X z9RG43yT2K@{_v6nd>Ty^Q|DMVrEut&(Vlu?5ah*?CNkBP^*mREUe(y{$kewPg_=yp zjP(!GKFTcq+*$5x|H}$|RJX_2cSd?kir!nPNi^u$l5X?#6*(!_U zbLoszwSsrY|DLdG|K_w-V8eowrc+f({_@%2fXE~H?3m1oXU;cr8E8Gu$|^GCO0rvu z3;n%N#>D>1JMI3)_<>}0dhVu8MKOD0J&HaTYAP*vJZmfFr7o&S$`O9#hH!E{*yQJ@ z?$%kcNBy`;whv!L9y!r@d>)>BD89KzE6O0${H$GKgnh21808PssqtHq4$p#DTzh!I z?#_R_R7JYwl4=r*!3CB3)J4BN;H&xkonCcPw)V_JzM{|Hn-Wwk5Oa4BtWl}o@RMYv z>bCp$QS~*rb*=1&5!HbcTMzV~ z^DG((jG`M!SYfkqJ=@kC`{6!Zxfyp3P_t~YSr3DQz}L}vR2LT;cm+je*D5nb8Mq>L zNJq*G21Fe4b>*k-(xcSM){5#2gdXwj@Za{?JV+m~tYs%>!1T&l1X0e}FyhJg1WMSzP6k!o%uzB)n7$0R? zdamVj)KSVLbGp*I_e0UlHUhHa0(SF1mx24joqzNGgZdQR8+#+djnWc8sW12aDr0CG z^mWE~!sS0hTTQS|Y6f zwnWU|{I`*^bjv>m|aBC*7~){;p{F1ZK^NFB1><<$W~k#&|3(sD^*^T`2t4luUJDd8Er*qH;=zK~jeb+)`V zF=|YzhxEN|$BwUOb8oEMVh9Z|o9_VCFlc>WZMQ`m4F}Y735u(`&rP>kc@wJx3JKyp z#wgW;`f(BCB*Vk@qO>@l_3QhA0>VGy6mx?G`YARXWRWLOk!YL3-{B`4OE=f@nJmLc;Uf0LS+5~M?auxC>3(qH4i{DLmbi8AURqx7!bup? zOwPc9QNZXWzXsC-5+vOZW{B9Wta39yr)L{y_m}Ui-CvrexHro`xI0hgDe$v^DX#44 z?}Tk1>IEJ3ri-^ke4%jmYjFM%ZmLiRtQ8XpPnh>me~Qy@a(_Y!+3VM91T@dc$u&G; zKj$n8W)Y7Kn=LJ#Ucf+Z*nu}r`q5*<_Sdh}v=`=QK_02+JEpgqpgt9VDMdt##yt;a z0mDVuNHWHV4q8-A_1y!taSVn#V+^C_=kNa&3xmA3f;k-MvrO573g7XK`OTFOaCDC~ zirsjKL>VcptuL`^YNxC)H8%LIlZ`P|+hLg2R-`oI2iqdG`jy6T!Mtf}72$b!3KzcM z6aV?H?}AxoPT+yRV&AuLMSi4`RNg} z)=HLZKLFs2Z(vi54hC2pMtGIK~UZ^M| zV9&RY^ah6mLPi>7oAl|^3Xnz#;RhrAS*Y35(oAX~pQ}NO8gbb5eLM!$YN{+-wzdw; zXPQat5mGI~+x_g>vkhCesG>k4_D|y1${+D&l1Kul2dj@9h!N$eA^7vt;U*WFxwHh{DF77%#^C1pUfAod_oNGbCZL_LVu~miydx%*&x1ZQuU?CqF4q+6%TH< zudg~B*0CpWjK)FBjfa8MurVp5YDC}E?TDT#jBJF00rNKq#*Vlzi2DsuFcx<&B%Emw z1o9;uLloIn;?2Rvb{d*j!+n8{81Pz7dJA9+KYn~BY0?_u2KIcQCi1RoeB=(;Rw3>^P6Pg5HG7&VWN_lk)TD&-o1N*tm2G+H5~)!-1&n*w3&a86auP(qoR=F?)@`O&z||7#FbtYTV8Eo$ocZvP8=g^b z(Xm@#u6z>bEk3_lOPr_>!0JGGJZV@@O|1lejPP3Dzngo{e}4-q-3Dr?2AGmc)6Dy~ zZ=VHcWzzGLAOUMb=q_!iA^ujU5^XU2oWy#(ibxBpH!D&WlEdLOv%OVe#B!H@;q@;V2KCTOQt%blYuU9& z(rDZ7Dc{I6r76Z*`QhW%>`}tBmzE#X8XL(4b+KA8FU=(%3(^ z59A!2rPWYtVlf1{{7LcPcP3u1W9l2q?6h?V%e5Jd%It8IY1Fa{8ER5ibIE9iNirn~ z!tfB79^W+UenrSk{eyq5#IP(+%_sQR=FyASbi_4k_#<2I7y@7lz3BlGGa zlUL3~onE+y&%s5Q+U^F@7xDQic1C}Ij;jUT7a3y94t4lS$8XZ21p7^;ZJ1g9q`zt2 z=qY$V1to8dB!T*mH)+jKhfS%R3gWQKPEq?8#BB@7P(MBl^B9W=KG#^d)WgT;TeCU~ zGe{x!Y1g@aR`1GXn5qVXjFPGo)KWD)W_-6n`-Q!zaKpxpwa|b>2lgd@Ys)@Y5iHOM zyGy0|;DsHoQtuW|Wb&y$>F8pEO>-!qv&$#=L(X|s z*@2(4v@YoGzC77qD+LbUX6F}~{^=2jYX9=|PEYm(=)@sDgA=#)_+8>KM20x1X%SW8 z^B?fWM0A5o)ITZv>rN<1T&-OnVsYF37`)mD%ELo{%_P+&YN$d>sKdHAylIrBACYJd zcSkg-d=Rr8v?&^v^Qr8)i15GR_6Fy3;22@myrN!^@uU(Qm)N3UQb$<~$#=ZH~A1gJd z`|%I1k%5TY`a6#xN}j=t*tImABTJ9LuI(AJ``#iGEQNFUfVvmDl0-MRZ0*Q*st4RM zUb~aYZQ+IAiv?mss_HFR#IBfs5M zj@aiRvh^dO_;>Buvj@)om)K9yNFn-7Nwx?}1Mmbz#k+UEMQrEl0lw_+b1w4SlBpTP zj=X@&`#ONH4e#wE|iB|%$Wi32h{Du z&-@zCj;|#wI!O7mpo)7ku-=G6c_eS#s|2eBpArwwnHY_R&f^Kh-VcLqPTSNR41oSA zD`H9%u7D_k@d(Kq)~|nAhh99)({qH#Pm3a7c4tZir;sE@vJkH0ipY+gJL7N{F$mvu z8435jy;Z###bCkC=Bx^VZ#GFQ*AT-+XBw{@?+@ZM9wX73!9sw-jVJ$%Tn0!Z4_=ICt|p?uF=mPE+5ifp&;qNJKketoIY52&WA|9ot|(Ma=Jqpxcsb zmy8jJXlgnS_pDx%x&@X_5Zsupm;5523btHtS;uI9)NNtZlQgHmf=}=bq3nr^5<}nG zqM2oW3{qs-SQ~ivhWO+HL!kzME|O)5w;BUI0RWEGb1vwxz8AoQL3{xG^6+(@A#W=+ z%_<-^R=STQh&v$e5j)jjHNJzSLsSH$B;X>0iN0$8jr>G)U=4Hj?a6jqn$_RLB;Gca z6A+O*oFnt#!2=+!k5Jo)U3sWIR}~n{5gL#(bTf^1_zMS6)Qt@@sLc8McwN(j88OwR z09{iqQ_cFmHJN{CBj+J>N5;gkwHkd!DtWo42YsA7g{`kfaZC%2e=pj?0duup*`sRg z4;v`p#10Oj0vCD~(jd(KW(J3K->fM=poS*I>RW&8OS@FExwxc+gLDraF{uG&*oK~5 zw5_Oxj-UV#+N8S<`2rEf2tX0z64;XwUlOut)w{URW>rPD;Rb5zI*51ab|c!vu}ylA zLdBe{;YA0KdvDMRHRaT$clWAE;s-n+{gh|Vo+UUZ!>p6^V;BJd&}CGHB2#0QAN4d@ z?iG*-w!GL~`hfH+LDii|c3YHz0YKQY`xc&Z*=dtJ-rCY)28uN4gh>&d-pG@8!9jCV z(MR~v$sLfY4L44f4q1~}B?kaofwx~8>jpEZW?JPNBF_s6{~#@9){&C<1o!X;e8qR$ z$rq}hERw=4BIjUL$0shJc*#vLVv4XCYEed9EmsM{sFl62d`r;N?0B#KZ?!0IlY2v* zw@yOPJntnRBFtYqj+s>}jj>SQp z<*}G#fY=zM6!k*ae1cFQyj5E|q2#Db(h|{dK+yBwD8HRUr4B1=l7I|&k1NcV02PSL zpQ>M#kuN|x7~oLWkI_ih7K3l(Bx1~2IF30pwZw+Mg>`M%n>4Jipx{%mG-u?386kPD zX9^XRNWS?D1{ApmY{<(=${=}k!N6`^9SW7$uFf(FLExMy}Z=sy&AN1E=q zG_yWt*res7&bo@#OQ+HTmH1RttEJS*ll?HChxIg}ex7*G8g{ua{P@icJH;F!Fiw&( zs;uj-rWc?`5cQ=W#8<~L?xigV&=yVv;dOtZBN%V>cZMG<-pwbA{&6HS>8-sNPmC$Z z{(>f5v34B}B`IP(Br5}@>$gO~(M@-~QC?zEY5n^3rqdcw5Gw)?OJPM%8o%01aCW=% zctv1CAi^nb@&boWp8eT#QD;VD!Vtt1B|WI$r^x}qlQ^y+1mi%;$>-s)1oUHJWLUy# zJP8&@uPN#y@o~fKytmx&7@Duj)57wwQ~7`=j?@YxK@h`>aS!m68skPOy#LEJ-{E-- zVnkmDXNe{D@DF(u_*8u6(+$p6hc^dzLz`+w-^6q5D-G_)LUBs5zVQ1Pt)GQ`C=TAa z^6&yMWDoX4SnIv{YrX$nc9gr;My<_oPRZ|+@=EhtMtG-=ztod~JfH&fJsKm6I!bDi zgtT=`&L34m1#QNwG6w}^gsPbyq;)R;wlYe~_&TRulDZbOr- z6sWK@C>0M6g=^*7YBw)sD#a@LoA_8ciD<0gwGF#0EvkGlRr(&9qDI|ck{;aE2aVx= z-RmcX(HO7FBV*rdoW66u{`ay+?BPH&dhy9vu7=3z82|~UX6GD<^$5En!}8+A=LK^E z9GUY4aO6m!shN+KHwo4V#hN5pkJWY%x2v zX;?(kAC-7Bg&CMTDPy1VU3~jn`O5?q$M+oAK~{s4wA;2t01;|TiYbhgcJ=~#5&!b1%$QD)^Zp}1B;_k1+^QfGw=vwC=mEr8CBDIN)&cmh?X zx*ZDR2>lg?QZ;dA#@@R{|D6TPpY!#cDdi9AqvzwUPE$o!*e2UdIU>#O z8x)!tY8PA?$?Dpi$?fYPi6qL^0~g#^b)D?d=I%`}nc2>Z4ZQDlU-U0QvnpMNqb-yc zvG1=|o7Pv{>v9swRNb>uV?5>ELu1F3JtI+Cd{~Nmm_8fMZW3$Q=zq|{um1dkhTu0T z!f(;g!@1|OT!wD@3*8%$PwM@nyiBuucE~t@`7q5i0U;yhBGlD?d+7fNwAOSN|wffHpJaJmN86~}=QEm1K^pbY- zeos;cL3ap=dvXYEiWYOxqQQX@2(>k+$=E4`a`R#o8)z_kZK3SU(^HQO7i5Sz@XXDR`viV-{fcI?#V~Z3`3?P!wvQLS8kSv) zUpHkR7fWPOOSQ7K=vr-sn2{qodphoL=a3NXQ(hJt>q#!|S09tZW5ADzi&# zS4;^&-RDD)|IgIcMal&5=~vQ|A|<2vxh}0xi-)o=w`SG_c74`I=Ehbqd~-^sqP54q z&HJ#|Dnk|ek^%eWaYa+HskLWK6DH8#{WaZ6=-0o5To^@Nv}BsyOq|BFC#HM%9B!Wd z5D0TP;r+^AlA}D}phj>$2Le$EM#Sx0>UAmGhk;=yz(;?z|M0>xZ}-LJ$GPF~<_j_2 z=$b#kqoVd>FTdDBQ?(Q5)!z2O-RONQA+Zn)`gegJjOA{2m*85gT0>-R-w4=`+s3$N zzkmNuZ^FYCX?EL?=itHWE-S$dc9bMu@49aTjCs#l(Z_c!R>{mRzO0h*dOd~AUk?(O zJ|q<-tdOBu@|B7p|1p48Ffio#t=+{&A^_WHl}`0@L*M4wwLP5gV!%nudHQkSvi1vNyVRI{ZMl%tAMAPvudj?{*cG9;;_notT?fi z$&$f>TljID2~`s{E$^!x-N|aH`-@D3&?Y7%BP621)shMN@k1@Ikhpk9_!9j{7>^_^ zmKMy7fuX5S&D$(9kgiCb?S1OuS*$b89-s!W1zuJ0B4c0DwJ`KDv@IagNaNYy;>-<{ zVk8o(48!~$B^&%zr4?L5Z^MfX>0p91%E0tb#^gs&GJw>mv>bgk>heP=%=6R~#r}ZU z=B}CdX%Ee`1i5xu;&s8}mD|Knt14iAm3baAc+PZ(la=!lFs()z>LkYWP6QXd*7q1b z7+2`M%e7iF&8B0Pu)z)3d#xkGo|N`q8cDd{CA4uvNiVywaEsJFizEak|3n3=9L3ww z$%9CDGGV9^lria6e81{1EINFTg8x;c480CnttNKgnm!MGK3aqRb|ZE(P*mYl1j3zN zMm)=Sgd)U0{HGNFY!p%iw#t^$;*E@!7R!>LqB?&hT6bCO&3fP%>Jq2Pfk>3yy)z3a z>oXs@&GyiEw}>>@iRzeY;LHT6N!3JkJ@!oWy95`Fo<;?=jh6N*hZ))d!xPtrhlktD zeAm^;#vOw>_g5|H;{o+=%AZ-}`@E<%?IrSCJNG$|d*SelySWTTfzCLj{V-^^AX^)xoAMG@`a zOaW&8CP_5+(NxisQV>evw78{(AjHE@W6#}(R&AyugC*iT zr2QwQ;v00T=U6{;<|pWGlI9rn_P(#4CEbvjgGBLCtW0ctv(l1+imZNUIxPB|>e7Rn zP9}%t0S zY5l{a;3H&-^Bszpk8uxcARIz_mHM~+b>4cgK^Cwpb72rGU$s&TEFNL^RF24=1ACgF zVNy6hECTRRsltsTJBACFU6b#XYmsJbsEI(TK~aQd6gmQbrfB<-hCrM{aJ~$8nxYY3 zPby#3qoF-b=%gK}e>wXQF|-ejCMkZ9ozU4}$#tUA3p-V<%qxDc!vLwH^jP+)+J0+# zuxA4C#nY-TlLH@~k)UFQg_A!~Ba>Z2N?EQRBvdpLB`GDU*DI1q(imD=9B~`OZp}W( z%+}T0cDPD39D0>r3qcLw?-~*1E$cED%dP^LW+ccF%P$pG9t0qM%TYIYX;J4E-o~MF##?Oayy+G$8B%qi#<|E*^6p)nS!Y3D(jAMbZ)%g@nrl-m zrNH0YfGX-8IPYRYdPhnO0WH9FdjI+7pKan&s1u0E7rbi4U{~&Ek6oPc{g)?$K1ic$ zn~0!9>(L9z$`YI$Zr30*2t)2rMysXG+9*|RhvG4ZQD_wgsG=B6{2W2Yi9y#U=P8s6 zgT#6Hh)i$Qy5Q9W%SVc$P6B15-|{swK)VJ?VQ_HKfeCW<1WsRQDqFXOu?~!bq1w$4 z9T0gYK1yyeKx7b_TmA|i2dkW0V|J?5YUxEuH*Zp?m#rj`Hf=!ew%fLv z?38dN2TyQjE`zlp=YNosI?6{0cSrVG`7>bx(dETw-&%enLIKWNNpqgH#K{oNUaYLF zMkvP&5l%?h4RGDMtbUZAa7 zL=06dpkWSCry4f!hLRRtz4~YbD#DpH3pds`eubo3hvEu4OVghX_{2dpe4{W=oPc=J z>_x+)t%<7h*pZQIPDGB$pK3Akzl8c^J<<6&*p42H?K$#3vE>XAYsGwCDGW=QK<1xo3a_|7r2T{2JrOFXO2YrpCAqeejm*AVI z_!xx?HZ>Cnra|{QHwg{?8~5O21`x*}*GJ=4IUqU1NI|ES;09eb!^$l<3!%rVgmhjA^cb8cTy{ zh-Q+yuJIEmPOw34#)#FT1g#5~+Tw@h1C!1JoCb$6^k}@UOB-}Z?+!d9d6qhd#^G@x zV!8ju%Lx3{V4#xS-KoGd%4|QNYhXZzR5=k7C00-;@#b+fW3U6)tAXO$`}|Op(>p5rEu(&d@Lp9o`WDEv*AUS0{=5L%apaUh9_o>S7;8 zLBvEmMk}|iHdr7a3HDvJD`kPZ z1fUIrrNv71`0(xx7>f!o{D9F8NkFRVDVJ|US$IvINsjpY$rD3XgLM57qDUQ*ecsNv zlYotr2$SeTKkrLqbHbD3$+kPcphngLU!0j>`(+C`qbPs8QY2&Eq8>#Bu_h2_3ElNp z01vW}2qijh86)0^gEJDVm7viVT}k24 zAFd)=6Zx|C_d<*_U5oJCm%BWG2YV?%cgbMg(y28}LlMBpBtv}Q+~bO9P7cPXPf$CY z?5W-dM0@n^4lYI1aw!Qopk~?-2@PI}bb6k1QTH@lfJ2WHN!Jf&8OGrzs(z(j*+>h2 zW@nk9Jo6@CIT;&{n0}Vre`G4>y|{eb-%YrSNHWo%<65Chq1XddHsV;Nho0ddVsr{! zNw11W;;td=KKU@0sX%{DwdW{IdO!EIP2(gf14JB0^zx8?h=56QWDq%81INLrK&2Zu z|7$56fvzRnDw^OH(qvJtkcbtK1CtS=B{MoI1U2GIvdEbc8DWhHYT>Bg^#?_9)XyAJ z1Ha9H5+T{a@BuQi!X#HO%-rNbtHjI@I6Q9Grv00e0NJl)b zog*;=GT0=P^*F>01jO5@{|2i!>=T+?QLnHPQBn`5$RRP2*hQ9(|3;xwEgY=kX>zv{ zqFNlP8q$}DCIzAh6P?efA)y+0ja2gGCu!a3Srt{7mTr;%G$sNUeF4s`GwE0NfoY3rVDAT)U5DivU=aNHF>QUKMxzR&p!rk1 z@@hb9a;go<7qCYW4({K&U6R_ozu}m!dTclnJyCl}lLHW-&!Yd3C?q%^rDw2l81s+@ zsf<{ih*b*5J=NilWI+`jIQL!Rf3Wu+UQu6d*Dywnv7%9fD2m1bL_|bXM4HBk4j@ES zkZu7%hhC))iHWEP=+Km^K|qB8L5AKefI}70LAp{!nhd?px6hb7_x*m~Kk%+^J!Gv! z49v{$l8qpVZhOMZ3X)rdqb*v(0Y1s#~iefrT zS{31pW|#Lv!@E6|8|ziJ{C1uA&3Zog?PA-}%qjN;lX|0}1)F|1d|mA2%P+Oh{ca>O zcgslR^}YXUh9OftNyUD5hA?N!ech(VCt|Om`k-PexRsb;uEl&@zy5=%pqS}4>{Oh` zUA^ayshh6t=FJWAh)(es1CJe#+9nYv)vH*bU60gl5eD38ce8&+cR48Df=z14mr&b= zaHX&J+~x>x)Dku7qn73Y*+2Vh0y_m%uV(TszD!AA0+j-?>Xv0^(Kkcg2vz1s>&bDc zZ=Cc&u=uG=r65#`QM)NB-TK{bisU3~^qa4GG7~f^Wf8$W>E}Qta zmVIUdj6}Z50FOD$|3~Kjnmi`i#)fX(4)y_fwFn+vux3XPE7vuZ^{ONzXY=P-v)y;Z({yG(&XFK1f7CmxkI`JKLgo) z9lGxGM?0|Tdz6l0Ci_aWccZGe5h)k}Uz;n!L=XMfk2M>C+Ij#-(?STocofC|eiQ)#{bNY)AO<5~AoI&O(xtTHyT5$| ztf0lHFPbj-W`j!pl71T9et}=~fN#jjjj4%+mag;dqkn(n^+tk;=lxI5!cL$RHDnjH z7-X_X$T4{|K%@p#UNA&pBrf6wP?z^7mTM|rQ;*EpjDk&kTO{(D^}hgriGEAn1&kmo z9T{CIkdg?cpl0pJ=q?}6I1*xje^Y$F6{K$WzAiqo5`xKSvbt#h`04)p@xJ}{$NzLf z{LlaJ{^Q%>^FMz<{_uaXU+I5;&i@~LOdk=y8#iDp zbN^82G-QYEy<5y1`66>-%3620OlV14Z-bBx*ty2`3Do%~-Sc zmXJgo`SsT`Dp!{T5nZcGVGL@tkfM|E^So))RJiul3=D}E4mtNPg$7ygjYG#DE_8?0 zgjD$-L;m|KaSli8CY{+r1s{FOTnaHdq~=xYhc1dAiBpY|(s z1w>X4Mpy{DuCDIo;dw7Z={~mPtO2O^p%C4!d)o~OPo=-})(Q(>%D$^?)3o1IaIxE; z{q2r6psq4v!hoo7)K1&&A#Y5$=+~e$eSqD9{DgF&@?_s-{a zTfaU5FxMxRe^3@C5I@Aam-7TV-hjCvwqA{8i1z0~)(hCs&`J68&p)pb7M7&)C7)LH zyIWTfH;mU%ZVw8t@9AB21-$?QL?8{5O7U%`bR59UL^$rNm+zI%XnRAmzBV z8#d5#r6DXJFqSB80g^gL?dENsPkMd-^aMiE53Qa+#U0NzsRxmIitoqM3;X9f;uGh& zoErm5s^8>G)Fg;pB)DjoE+CJuj}U#km0v2&a$S=yl6}89rs-EgH2!lT!;%N6&`F`k zp~rf5dc2O<0RWElK&bs}qqe5zI|xBom|LawVgj4x^U%kh5d)_~*vM`b4fy_`w-dD7 zi73*Mwpt4Lty&aKyp;G=oY$cF1lE|4A-HLzG`MiWUBE}~+POc4ui2xqhL|dW><`>< z%^t=p#h%Itpr`-=N24B_Osp-+hfu?@gw8`{{aS&|3A!mJOjX`Ytu86mdG22?FnJmU zD*_M<-B2(j9x{X9^B>ye;7+utVm}DjZWgNc(6p>8NK5MN?Y%ox7j)GvG%mrl5_*hHH$3iUu zP3D^fl+cUq&rnm(G0|}r4dAyv9m#Vl_?sRx`1_70p}`|E)N%ANm7?3OvTAi8(L!SXHV)3ab!0clAba*5s-e=Xe(4^#-c zVu=bI`>|kCv>w67z<_TcHinLQGnK>)0yrNWUIYkT)$0X;)gglNv4Gd285=~xBLs@e z(7c8YvJfULfs~091l!^?>mOreC`Rf^dy@06^Y9b&zTJKOivo5`ivQ z&M|jWH)73Bpa~c!CnP-~+fMvKWWz6BzFfN|*v(T23R_IJCEQH-qIu=6X`(0wxzB-C-)X4r2;n5Kh);ogA}Uc+LD@#wa6Sf0_J#DK1K|->X%`Vt^hp z)%=!Lyth?Me*7h(R3bZ>$bt!C;MEPcS)*eUSscZW|CX*x*AMEUuQZNX$b5`<(c|3UDS zwX~G{ct}2p6TOQ;0w5AGdm+X~5a4VtcPx4JiU=4oxX{Rh?OR4|$yNoVBBi0=@bK+a z(%6A59MqX5g7Et~t?XAUj8W)zuXsjRKp1VjT3quD5pY3=vY&YpBspOL2~LlH@bUhk zt1!c?SXL^yN$KvT>t}fr7Gf}ACH(=U_2ur}yPwA3kU><2L~yiS*C}82-GxBqc+_Y< z=+40a`F$aso>_7>1uHUiyc#M(N6*x5* zcTCxa)-e3KB;Y~&bUU-oPYM+G8xU1{Veq+ezg-bOS4Y8u1`ZjWA>&zs+DXVY(UFuI zqKL+gen(UUPH@J~8--$#hJ1|}eH(WBLyeE;vF=Pv34uZa)JIuouLSHe zWb#KC;Fg1XCXMqKA%{qTwkg+Y9H#(jdvi#_C(9T&#oi=XCT*4=neIaO0-~wG#|cMi z72?yV2gZmgqgcT-7-tLHG@`CX@CL$^Hj+!W-8At*$MpRMEtQi(a$l3EtT-O5^eI5jLY}p^{e+(hBC@DzA#4?59p*5Vr%OCjeY6q7 zt`0GYqp-WiTVzFqvm|~boBXBVe}%;BG(OnqOF`AFWkYczwpR(gOg08c`i>K-V|mVW z@DdLcVb7>LhY3o*9MT=Jnok~cAzx62PyvHoQ^=dOB|30Iq?fNWWe}DFx#>Y5qRd&@ z!KGL-rvN}ks}u+KFE@`HdB0g@>ho5T_}9LH*T%U}F7m-ILsy8G#^NEw^v@w7w?O$2 zJY)>EwVbpOyo@7sJC0sr^=+iGbKnd_r@))ZMDgF*dk(volm+IdTX_Zn+7bJXV+GZw znU@=VuSeX!!K{to<;*>9MStz;Exrfe8xxoZkyaA&k#Pn9+x^>!F#K7La}w2`pg7Vv z6IgwYU-E(#pur{BrS3fJDd~0k9!f1o{$V?n26~_T(^zq@z#E5H0*Kc{RFLn@@rq(* zK<|?>C#hH@Y$>3SoEIzeX|&gve)$lrN(lc$l*;9G6+nZJiGdHw6(*t{Hj{vA1osd^ zytgi;nmcQUBf@{9qArdI_QEMaN>c>dEXO(f8n?gM5`D$~IA3g?L0o3+aIxU#$r4%U2Gd zrm#xmX7EVHLl3d{cY^a%#@vgJ@fyk{7&m!dmZ_9Fda;>T!4igv)Bc%1E``5Dv$OlC z56ph!FI9y(U46JNH)k(JIjDIKtMoPtLPCQwFyVHI&1ByorZ?*D#6>d1wFL|C5zZpv zFQCQCNmgOltpc}iKt8j2ov)g(#|iNpPMQeUnF@tVX?TaJ4!# z(!^-mFdOxALRKmt@Rb5M$pO(kidG%7iP!>=-u&YZ9d_qVhl7qzghiNEOjy%Tpni#s z@Q+p?M-357Pa{u|vs#;rMGIP^(fk-G_K?bxF6?1Xq3!1A1qV+pVr(1OklVInKNE;1 z8SOsCu#LOil81iq(=cmH0C2h}^{5^~X5wFuk_}beH0nOkFL6pi43&09ne?Q#avV-V z4RyhDsPWA^1h|)WR*XBwi!dTk9VelfN=O+D1H#08he*-?qXg6v6<-5(xtW z_V?P_ZKTfvq`{T+FMmlSt4Qd<#JMDP4EH=BXLLt#Xm?&fvWTF)F!W!F_yyiBZ;Ikk&t-4YE_K!n}eg@S?X7B1=X?UA^pUrR}t|y0JdiU5lsOY+VjU*#y|W7V1wHJgbRQ6mcLzb(suP z$=d-?vlY8NsptVO^qx&OFaN1A6>M$~fHntZ5GRz%ty}W+{~>6RxLsJB6~tgTVdpn~ zM|JHeneE{)BgB#>5kQre$f!>D$u)|0GxnIhUYTMQC_yDXH4AJIi{9Opy+Bf9(tt#m zdXzPt(0YIo!&Ma{sqc@Y!*gq(Qrn)9f*k)gR2fglsjqDu0-XF1pg1j$<6=kY3@&RR zzDL_l^0G|4C(WTe+m4F>h))(`8^Pi=u}2Lz#bRzRy3Z^2X05N?qinzw$B{&Y-XR!> zM9|Q6{bTx%&!qmni9TabGIjJ<5XXN=1s>pJAxS5|c`ekgqY$8;`Q<&yq>1*RbQa~h zQ`pF-0U?Q&d^?g10+2EFq&tP!I}wD<^hQf6(W0XQt&KbzRXlR`VVhcb3|e6{@rHaO zG^{VfMpWBLr=o(pXBuNeN?0P{a7jN1cPH}B3w$W@n6PH9O*=Az z`~`HZt=sqtsab`3*dZ}R)~~*iItCH@GDVgO3f6%tjK^*vm#<`$4x%OC1gb>V zqvVu|h6tKq-R*Ttpnd_yx6n*5qy`)V6n9&E^7Tplh?fXEND4S(9{D z%)p$pY{c;q?$+4kuP9ZmJRZ4XlM-?4<6oM93r7Bqjb*{j9?gHun8E=S@9#QNg zevsQWP;Vr6XAo*1Kk%09E}TQCjcFn^NoVDvlin~UcA%`!-eJrZqfUx6og(+FD>uOZ z5AfkIDYKF8Uw~;#z}SX7w`bU_50Ufoeb z(Kmwt0Qui_fUjiIy97}V=_nxxniTGFIBMkL@|G(j(|0K47KINr^@hoj=ri+&k<$2p zAUO!Nkm^7&O8!XF9Wd!FXFE8VF}KJ0u4;+R53a^v;taJ-9v17reX48l@K()Q&(>YH zj#0;WuEMzSXPJDJ(B_^j%5=(T3%*U+8U7*DSWL2M;7vQMLV{1{Ho?Z|-(phqC%TS+ z(ynApj`K%DekEz!Y(%NY_y9|U2CZ$U5Iu9KV0fphXCM-eQm%BjDSh@df}wtf2Wo+% zsGu1J%p%Vq&H$Zfz}?jP&=Kv4&w^ailpSeeH%PZUx7g*U9cS+2RLW6~Cou?B%CfKh zo*twTN%s7ogtBW)Meo2{^ZWPo#=C)J>ilHpo;|1`Hj<=FxO0$P7({fl8EaRdyN5&~ zbhp31m&FH$ysK|Gj}>{^t7;YE1s^uE=4GJ>CC3{jbCI@ zsey0+fbB(nyCGs48N3`&7f~5EP&`92za#P49%P|d|2jyfP(wYxIH{lX9fvNpLCT38 zXcZsGl1S+Vd2p49B1le#yz;awvggU>g+bUVaQH17G*zWyju#redbJ#3|36|*Z z3B3Ry`5q;6Ib;9cdlu0(Xu-W8MWiQ)egLnmNKPOeCuRz*kh<}a@33M!yZdhYw2`_g zi|BfCpdyRR$OiX9idcA~4*|wr+N5(+N;kA`(D_D8VSheoUngCmO+2 zFwRY|M)$bW%jNRKoYJKa(1>Ncz)lY(Mk`*RB=S+~wQ-T$FRhAnhz5MaaaRES(c??u zibn4jeO!NUzd(^t-kjpk(8@3K9~u2&_mdU|X~!Ou`?lQ=d;IPCsuu_HP4F5!o>^;VP;o_i5ykb^^YM=4RWK&_ke zz5v25zRTkqLv_Jkk?E(cChtx_+9kH^5&R)Sapm15v_|`0BBUfBk*y*a?-=4C z$5HM^y3G#7JA_@;7`4P(vBPG z(llRRrrz^AQ6cb~cSzTdR`0bx{{*)Q_hxN$TSB;+yEn9nh@ruZeRLroqk3#G0=O%o zao$C9h*S94&uFAYv|EV-0mp<6L$=($`&HOOobHLF0m8w^$S66*Hv}Kda8pMvld&I@uJ@G`LD+_T#@dK3cmPD`sL_Hww{FAgn z@RrE(GSEGtow~I+ATyG3?7?%PFRVD$o7;ePZgisSOcno7%1h{LU}>P7%Fm{d*71w| zxWhr0*v_K1=AdFJ=mn42(CQepb$vzQ~!O~hPgw_vACx0mXNyaGa z(gm`%e3W?|mxyvuXC;Po#vq9Wp2I)N3 zZH7F_psbKLms_3#RFvHx@kVD#p4XoVpGKf~LX;Rz0+odJt36|E7*7Cp4n1u(H#4ja zY_z3Z#X*WPhc`&~7`HKW!^w#irB|Qw8EJ4=b)!Dz@->dSx|N2m4$M3Z|zI)5f&H08^5?9j#D;yCP>Hs)4GJ-kDjr+BwxZ&-B5;Nw{tF2afPUgm84#xZe@Q45}AfQ zz2g-U$HO}~H&>ypiUEZ!eP@?UqO3- z;+mCb{Rg40>dkt4?WEgev_luxMP^dLPsF&SALS$``KCBjq+iL+e)cjsK)4qN**TYD?BaQ49(r z0sL;V9{#F;834L;04j9(X}8RkyB`B~2wyvK=vnH; z$fEGQ0h9vf<-fT$Ih0F>9yCLIwPBSrr?(OthG)UgmfUP_Ya7N8_&X-n#1kr7>7< zoM%{n(58C4Q<2llTvPA_HE)~DW^@so`!z!iL*#1qx%usvl|gkoJ|NVUi!hg*Ld$xX%6Cw{602_i(xLf}YJ61SB%r-wdEi{ufDLe^y*tJa1W zOdXqav!G8SokoV%evqJl;=LRwaK%j#yHblnpkpehiS683mGM_f?tjfJxNy)UnLi6v zUpG?P$Zx@77w7+O)C5@sw*OLb?DLI-)F&h3)zcLJ@waXp6oXyeKeVJ4w3F*WKQ6?A zdIRn1-E&f@73r7XZ+|J@D|bP3SI$&BE(!!zvd!S~p1F40yXbY!7O6@sUA*##G}~W( z*cRc8OP+2Yw_de&)s8cUCnU4pdp&lJ%lLUG%Yc4HXhCY*&FgJ9zbpIOXX&HOzm2iZ zZl3q!W=hA*++AwcaOIA1t&0wWnk|EMG?VP^re{iWLH9JHrz;c!=`-!mpcc%`Kl*mO zz$(2)O{#$oE9%B@`Avh>4vR$W4sIIHDrH*I5g)4|ZdC17ONRMn>8ZIRS)LG6lr(9GEE<6Yd5)9WH4;WFntjxTKd_gMeLk+QFpDfcWNc&qE zRT~kvjyu++oX1khSwEL!+DE)*OIR|20)2Dp;?88{+om zWK6hp#)qFVA_MnZTLU0Noab1|J@WK)%}j%EkNT(huB8_X=SEX7#vt26RCq6YMp}#G zyPQ*)F}SbA=Z3n8kxAZaZX5Y0YA`i2Z=$TDxD)?~ipdmQ+%Q?SjAI!We3da{tWih1 z%oGfGoWu$_fwp-ar2ORuek75JLAQ*0{ndzeca5RlD z+gD~jUcJi8B4$M^vaXSi@xE<$_T1%+UXvp;9~Ug*SRw0Hs@QVp;h<`v>2yP#LxpVV zvI7O9YoNG|PjdS1)f3C(>(Mi28DhHGa=cyfrvsBBEN^ed9o3^);8$8^y5zf&m}@aS zdo)bT7O8yw{gA3k>tvOy?k$Zet@_U$zutD49SWpZY-ss>S6xec)&kaK}L9TIBk1L`=EwgPs@Phs+YpmDG#)gx8(!LexDvQ@k+uaz3!H< zTw1M`Vy8BJ>LjB;C~qKdxN4rv%<{Nqp+ByzC+CsV9=fw|f88kwN4@U4cMjmFs#|9& zTRT8m8`ZeJT6MHztLWshM%oUvmyqSCGTWo=>UqA*A<8>&gG}NSt2VDBx4HJ3ZfAGs z!{I`yeD_XSFscb1#fun1q8r`p@z2odtui}hqF?(3UdzkMn=pG=6tyKphoix5l{Pkg z%$l>h723L=+RMucrDW5trykB`)(rIJt`R6&-`6h6n^5N|L>_RyOl*j(o<9E`5{4?D zlM4@^W>ax`xxE;ZU6cBD!1jD#>2&QEGN~S|(=BTk`^k6@`CS#~qC0G6UfmLvLAPqd z9y7lh%uUUs)#8Wsqx4dlW!;t!7reqKac}D7{mdH@<=vrVgR&UL`|e+~(dmu)1-;U} zNfuGgx+YvkSi0BS(z6Fbp&mBpO46toz^pE{cQ{8rb;p)^6l8t zLDKI6;yXrlZV3IO8Zu|zr$jB6Z`y?(M>dX^?~QG@B~CeNB+&K3Z}7U7l0-fK7n8ie zyouP3Vqb9#atqlfo;zOq32K>mZg#UbkhHVdFG10tOZk#VvEBHR6;b$P@?igrX>eEm ziVNJ{n7H8MLFqiH3tkzbe);nRbi+tIY47dNu~uTpmh&z&S>tk5d-Cud>9txK3?uiR zxNK07$qzfs!Wu6WPeaTdY|<2$dlr&NS0f1Se-7X~)P^~m%MZO`*A zsLjjzw?lx*KIgk}-{u>p>TGO;Xyit605+8XlhK&j z{QGp@Ty8cgK+JE5rM}(Uot{e{UU*$={8CBP#3NSM+LSBBK2kSa5osgcy6)YBSwUm3 z2pDiFu_4jv52Y6&CN1BY+s8m7!2z7&WpG$f{+Rw0Y_oIG-VgcbPZzqVOX?#a>KR!# zut|=G$}Tn9Jb_(m;p|9bmwK_7sdovwmnzYt<`L2r z7>CNJ%aNZ|dokNJGkyz1A*+4hVMw;iKM{7CaX6E1dxc#s5 zS%G%Gm6~kK9t!24`fJ z3HZp? z4z5Zhob0nUAeraGK?4?hWN72k6t_y6E`^K4JsjkP!l3tfu3oyfLTB*W3z)V3yqQiJ z(b`!QBJPULd|V{ez#oa3cG1kJZM5+vs%i<7%9qiV)cZK)0qWDsEL%}%u&%bA+qj{U z^=!Cn`ApQL3$LXrLOvz7!(1+-Yq9dJ{MFh@vSg|1rh}htj&$beOU*`YV8e`TbY6e8 z*MOq}3hIsF9-uIt((AtL{!phSK^?&DgBC?MPDkbKN;|+3=hl$`nf2+K@vZO0lXc3* zs4m)R&I}f#Lfhdq!|yUPR$=q^0zTA(C(G5DK1!6bzxjE1KoWtN2Wpa8uiFm*Ex}J{0wJPvSntp=ChfO@Xi&uWK>pr z^W1=I;Rd^fy?2gos&~=p#^&5;_hR`4Ta4j`Hw7S~a@Vjw!ZAbfZg=>*l;$Fce0byxPO%G_cSG~?F3p*8DoW$3>=30$j< z9!n2^tUiUF-!`PS!8$msU?k4EI=}6v)PWXTXA*I{Cc517KLV+&|N6_&YMi7y)n10* z4^BHR*;yPH92l%qB^lSGr~X*lRz6^Oj(%F*Ei2VRI!=VOgtkdXebSmi3yKWwh^5X+ zvw0faVG3O`Zbnbiy!~A0Jb|+ehESN$;669|Yg=Vh_P7nPHTVnume|69WxuJrU1nsm zoMvgv(H#2^m(RsEE7jz0tX$m~K?~sAphmy>)aX}YiFE4PF4QFY5JjXK&~JBeC%U3` zs_hvw8M>*r>`Ll+H|`wR!i`^JCJ8!4c-=URa)@o=yne?j1&fODGs&X{`J7%2k9q*c z;U{|emyb+?&odp8z3lZsOgM&i24-MY^ZE(M?9XnW%zjw?WoAm)9~h@Y5&-Jv81`<< zSkI>FDyV`FUvcy5og41Oj$-37%i{Kep`Cum`dWX zW9v*q&&c#Ij-HPBCT~24toF#X6&+KT^a#-@IH{g3&1O;yf;x<;V;X4<1KW1SX&!H_ zOsFlj%omOe=20Eg7zr!noOBuTl#Or?| z&x7FI((Euq9<51Vil}Hpe|Yid-e4VdUs_V5Wgzu;59VmHLGRkAJTc)wa*^fzPbs{q zltt;h-om*=jXSpjm+$*@QCexy3Tx_C;Ak$9|NMqI;?i->be=u0s7j z^6n5q?5#$X3;lO51W`y-#J(^_UKiN`gcCz>J-mR6> zeHN;UT|>Lx;0#sy*l{28DuKGZxzJXFdUEO1{bn1kBk-DtU0TI)`R4RCgEkieIoH4O z9(xwkJk|s+s$T0Db(gux?rt*mH7zjE@%4P3IO_4+?o`arA2@Tiz+UF7Phewi%V=_5 z*WTE|1y4skjB;CB83l!=g39ma;=K8jlIvX}Y|(-DwWbZgC4n1~;%WY2)cw%#^lO#r zNBQPPO3G}%AglV${Vi`r%ePC#X;QiV6nfp2FLx-Ij2+bB4JG1K?^Eh-U1wf_D!`<) z95u=Fz&zZ{n|OmDCF(Xb_8LKIO;+ufPHOZ!-W7euh09Eh(n~3BR0H~wsA#j=EhQ_= z6V;}ZPv87Oz$e-jY?okG3%9X#&c*xdRZ%CI`}S`%|M27n#Z=T4jIq}CBX!wNqEe~( z;NcYt6ve)$FK>>422-+G{1K?juDCsSus{*sDZH#cISzQ6T&3~sYU3J}_FHn?nm})- zBI@$?(O=2|T~zLSJzpr4zITuue1IBh_SdiLg1D}Zz$#zcZ$JwGLlm8}d&;faqs7N% z_*B?~U>)uky+Zect%@x}0rTjCz7A}$unrJzQ$DN!$V4*6jx+F<(lK)*2}ecrXq99V z=6N06=zQwhl<^d2@DSDXeE1k(rYZrdh|A=_6@i;lV!BQ5coxYYk%O(XuR2Jx z>%~E>WM0C@TixB>NO7v58O#1V-|o{3&yVv(EolP@*t$(v22u@x)@;Y<;Yis)`_rsw zafqkVMeK^^8Q;3L_uZN1FA7QIc$s6x(Q3BuoD4|vl=@6Zvc)-&$(ahKY!Fx2!>*LR zz@c(0b;|lqH;D@PEdKT1QwI}@lbt`Iwv;1FToXP?n0e()9pvNY*?Q>E`c4rmQk&9W0{kUg|m&RD{M8D z+J&oM2StxOT-#rbw0%CKiT72I_hxMEwJ31UmsLg{2rmEZQ5(^c{&sKdR(Ms>ND|k9 z`Q6}9fvBI;X3yLUU5>lObC(mne$r5^eDzr!#4(^TXI`q#yv*v$#k?$^Xrgy3wz7{1 z8Sm+fd{%Wp%GRsbuvBc5?pVBh{-vTDJB5tw4z0kV%FvEK#z1|dvo>bVN$Wt*L)k!E zoZ}*P;aU<2m3d<32+Y71OA#JhUygHD!FQv}2On7(_Zq)65FoB=#ywhwqgP$< zYHVx?HJ$yUC)I#7NM!6?FlKijK&?T|9Dr6ddQ4r{)P-AuQgEyBGYL*icHgrQ&7RX8 z9YNZgxJQCqSmJr`;Q5p{-8{I-WyW-l8zzEoMr*Md!{Z=+3HPCwE`t?ps3!6*-p)jUHKJjUb8nvbNv$rdAl*QsShPl2o2zzf(eJss_ zvB9v!ChCW|^wr_}OHPXGgK3giO_$9%i))E&Sr4shu0ETHXE}6%e@l zXA5%ZuKQP47}OL%H|_X(i*E-cYLyDzkwL%+DSNs}Em$nfh#^Rycv+7@tH>-x{#)DGyO2B`1j4>j%nAa0CCrPLQ1ezI&D)^ToJ!t%_HOauO~`I$Ffd`7))C4u#}CgVAEokwKcPvG+NNW}3y8?4i7vR)O( zUaXFeA`1=$zp0xAgIM#ju2U~@3X!n6Zp9DlwzE6kHNTKIpP#RhCS5)^k*}a@8 z zXM5Fnev{`ayxer*Fv-=?!c^;nT)9wHBFaf88gxhU{=aD5Q4x}Ve`3vT7y+m-1E|Ow6!^wO)e=7-8rih4n!Ph(~x6a#4uzN2O4BkOb%rTrb?|T`@Nt= zG@nGa5pf|vA)c8{Adn+DbjeHIEI@@-hCIqMws=HGYM__ZCil+|u-=!u;ei)b7=s^h z1jVp?^5+k~X{k(h5HL^)1!<%p;KgJneLB+$8P7e~GGj9Y9MXQ}jwl&MKGxRc+0e{9 zG0;-ux{(hZEBDrQkN~o1BhKIMi+Ha7ZDZ_5ljjF8FT-!c3ewx1qi6dpQYPd*v%6Ks zvlTwyzsh|nI%jvJ6^0_=;4StN%0xWEia|0j%+b29wpHaOV`)kQ_JO^h)j4(f1J098 z-71-Fv=Pwf)r(Xoo*ycW_T;h^K#?_=c2?GK+=VRQ3 z)ek;qwd`)F%~qE@$;eBqnSFkssm7LinW-uh7a3zVIF~%i$lJrVIJ))+0fE&4-~_K^ z0t<+caL?8>@pJ<2TdHN3@VDw2X~M(q1K?t;>PB;;e_LZ+VfJE5d(!u@nt#rbSdac^2JhoZKKe%(V5Q6|H4ZTbFLZQ6uVrhRzko+Nwc4lXyEU zPal?VUoSL&qy4K@*&qK{`n}P3RuhRl5VR|W897js(QwSnE67_PAOA; z`{hFrM+}qTIaz7zEob>74@YI0utlWo$MpLT2+3bXz+Xm5n!D#{qG=_viUJ)TL@zOZ zG6nmgVjT6MI|l4;yB>)pv~h5FqEuA{n?_G}%H)6v|4?WXDtt{4V@P!FP{{^IJaiX^ z&`|OQ4?$fSX7it(ChT-B$9_@zxRAFsVE_4|)786fMBX)<-1st#qM!Zcp`3?!{lhpf zFUD{~WMf{!?CsOH76Lh{nRt4#{Q@;jB0s(MEBBK-KuQ41j{mMG_0GT+>~T_UCZ#gw zK(f`XOFtFKxSn9RN%v<{$E@X=^yC{XG86>Cd7Q_zO}>&)xdQ^>K&gnM<~|%BtGZ!5 zB0;|Mo~n)MLM=dqw^{FbqRHr!dHp1HWAVP9Py{*84+12{SZCBdxQmw;>bH1I}k=3np{jC8Wnn@(2kjcGAHa*F<)n+`DVd26*p)m{5 zIMd_$YcHs^AGdX{y;({?XL8P$CmG$LIwVKgQwW^LCC9NG?&)>tL*?+^c>bW*BngR1 zI04o>=N%QX|8-|}2jfuC{qo8vMS0Vyw_)6?qBCbd2(5~kBXEXPzlLFUuZr`QPC!f& z0B>R^?Oq6B&?Y-&==>K&>>In??gBnB5@oMRMD2{WBhgwwvgZiQ2Ic5ULH;w${ZOhx zFzfov>RF7>Fwo^5QUgiDp&*!By*m2qpJbg81QLa+(Rrgb{nM?p1FmwmEwPvKIfGKW z^n-N*j&Wbib-ktV&d`kaRRp^z71pSDJgjXrEZx^I9je1IE(V0Wd$yyvG=`r-3g1AS z*&h`oG`Ll!>a6;7_DOeRN%K}pcZO5*DO%LC^<&C1>}Q5KCi*nxxXNr%jkoTqWipID zc_W>|V26W@7?x9WjF}D7xnKL?hmRf%5XUn7RP<{6`2+gd*rT3bTWpRV z+%$W3+(phojBV;AAfAkmVS zgpA6YdLKAv(oHhKLn)HRQ4mu%7`fD&gF~5P;Fz|+S|+Cq7F|RiXd1BQT6*n&?mg;^9C)aze&VC-@XN zDP4idh^gGyxWl6_^{Amtv}+@&rZ`sjYaHH$^mVen+I!!NTUGw0JlEu`wwv=3oWM!V_PP#pmCL^k)cXl7Y+oyULbAPx}UwAYA{%E1!>UM!?#+uvlj~AeZ|W(=$$_BgIfi) z>*czWA6ur^WR3s1clSL(+HC?z3&COQ@-sB09;)`2^S`EFHj#28`OYo5s?X4Di#g7kH_U$uf}rVM#h z5R5XfAKzqX+$s7@j$g9m85D>&zf4ij6uq*?37&Mt^Ua|}{u=g*PA4Th?<*NJMN?8P zN!ytIBGd}%EvDiCh64BA6Q|25O+$xr>$QBl!_^#+G)x>~i{M6v@1p+?r zJ7Ps=Kl_YvYbl?X*BLn;FF^E7wj6x=a>aZt=I=MoGFhCmQq?)j^`F2i{|fXMy;E(0 z<^qx=IYQYaL4|iww6^Dq?A4k(YWA;SnDzXo;I7>^F4+;pJ z@vp)dFDveb`N46#@ zY)73@Lo(Ne8)`P4`eB2Bz>mo6k;|L?EVF`a5|4OiMS)`sgWki`fE{t3ifoS{CAaGj z{1~1JY;M`75hr8gy|4 z36#)vX2U~{OMV6+w*F>!CSoR8HqA>{>efJ8*xbL;XK@E+#6I(|kNrvYdPO$PAg4u_ z7A1epaF1V&==$RIf&ovvEc17=7nN8_3ka+W&AT#)Ax{euT66$3rSg&{iTehx58nSLR`wwLF%Rc zt7=9-vPcuI{F>(+oK;4CSt?MpKu`VNy^e>J@<7oUedg#p*_MkJV`sl^XHg`6YayOhZQzH zz`pttpux?WD;2!>kvec8&dsjeAofhG{-L&A>j0055ZQmZJw3ppzkTb{PxHs>& zVm+;~iT>OY&~>A~a_`aJSCrN-c2#54Dv{XPc>-syvi-(U4-vR;xQ5(h>cmEwAi{u_ z`SR>Kkd!8vn7ubs6a;h=bjs2xrs}&{g}s7Q6&0<P$jqe_el|rxlW5oDCWa01+z5JKdT*4nvyk<$Ox&K&nzt)a8t2<^|8g&ec zUa~t<8GPkifCAwEN#OGzwLvqN)(orM>9`@?A1F3?Nn<*BOIK7#hp}}3d=1GsjzQyx z;cWl0Y!>G)>k9sF-L>NnB3^(NY0xW8wdrv(ku>*??JYCtt!}vM4s=Z2H(*zApazX&yV7v+>(I7n$kNj6*wu)y5a8OPXi7#Rbo2^fkYArZa28Lvg{@j2T1b=om$k6cAoeV${=)mw#vs@;vWcyi_3H>}ll0Syg!yVl?+$oo&7N zr=O^VGMUBI@6Hx))Ck?dMzt$Fq$u@3F%+Y&wP zz=$o`e*d)7FAU`%k*2rf4V2Pg9UFBATSh;_>doEpvy3o~fl$)5b@T3bFAG_1N@KEe z{&`K@tElcpn|dHa8}kqp*!6pej;?wW;KpczX_v?MJuSbey!3g*N{0>$i|(+no6L< z?FgpW0n@jGh2M?uHDo$#WnQp6O>1^tR(C*|-4hqQk@x}#qq%EN4F1M{V4~YX zHAVF6)d3{hF@QBY(X-(Vg=PpLs>;>~jpLK&Cvd`#ZgQiLis(-$&l8zjoZ({*@HsTi z`5LQUd^thO-^XS(2h106Z^mMH2GQ3=Fq~3T(B0>q1yfh?5WKY+csgettm^r=qG~HD zH$#rly6t)#tdj;PY!>Cr>2cYn{CqJsLQoO+XHp0Dic9pvfQg4g>Lg=mm3jnyk`4X8 zLGN;i6sw~$=1XB!dUnqLfLnZ|MgmgMJfdUov6O7DpjQWalY)qv1B(AD zEb=fy%aV1H`4XFPT@4y_aHnMw&J8I{UGfVoGqpXa?pndD3u?!sX)x8>VU)ECJyI2D zv3uM91|Lo>9TgXI{6skc^?1&Q!EgI-yWjlI75V(bUhGj5CAL!;e@Jw;J%)M9OIaBOYxAJ4A?A^?P%`**5pO+(A>jVMqw#di~pT}yO<(%0HJzi_NH07iZt6@`moItR+VsPg9imk?z|qU zJ)+!no=(|u>YO6G`!aL*=rdE^0Wr2zP@WXK-FKaft7PXhs)`QHcuzzAe_qDAqt-D zv)N0XvIeR*BgC&!RLkKwLsk4zG)G0AosEP3K>gDHyy9nLBtv0;wLk4j3Ci2TPG)hI zUuG)4HyD4!vWYQ!Mj51X50+0zQnjSxl;W-`&uwK7NcWplRf5fi4SEAu90~FIT^NE2 zTj5M9!!}eW-etywkDR}~h4Rtgr(Xes4l_J=us>0|C~nW!G4pq@c@#q8++%TgdbIpB z1?UFC40?Tol;qgT(%Q$hxiS4#r_}2u*{b_;OigHBbf)tWS>Vf02ECHhF|D-w=6z5f z99H!BueZuSj<*_~rR0j&-{<6*GDo9W9NRhr+x4-dDOBz&gWlFUgA_{(ysco5qH+Fv z6%0kgU2h`>XZ43d9olTeE)U~79sT|Tg26iRnX9G#Ge&Q6!Itb|ae6N^^*9D${4qO#?vCeEDo?iX+_Mzof=ek1>CX2kqE;7jgM!k38nKP&DB9QcUms6d^LNDyJu_+^ z5vxj6RoUsGV{UlGqYV!Wvv?h9<6E|>{nv3dvS;DIt++}5u|E88Va?p7MIKSjmZDA1 z`8F)yKH2?6(6a8Zes9^T{9-~vzCpaGcUxRA zrTVgysa(ZG57oue$+UjJo5d-nCexe-n+81p{b7Kd@ojb%NqrG!xuGt{x$Wmls*mqx z#?78(I-B@-9u2q}PIAPTsS!?vofSdo~ zcMrzWei%k2Bv@xm zi#zB)z)NDydH?yi^8AReTI%dokQxRl8r*~$B-AA%D3hfKFKJrz@nA|qs7`V+Yp$U3 ze z#LzsAYIQHfwMp z#WyHYM?HHFdm(k-XZjaO>f9DKdu#uBrdoI6KK{NI^Y{5VnEA(`m!^8 zVTYmr&kwsI|0OLxyR~ZL%tF+ies9pKPn&gNj>gLx@WLtDSiG}##r;fto@3lHwekOn zSdXRqQ}*~ZZumD~jdXuwE5xBlO^*xSEyjLKHF@)P_80>S9s2H@Vkz2b>2dikywT*S z5Aihxm)C%D!q=NvFi`IeQj%CZHzbUvT*`c!FFWW#O}294joLY?O9oOMEPHoTRX&us zNJw0g{@l8c{rkV9#qBj&a)0ZnQ@N9rqv=j{l%sV9+M<==ERGmIqP#t%DaWX=c9QzW ztekaLD6FyBRQ7gchEi+L(2X}0y%aRpHW##^+4t5uK8I1XAg(CN#d9}1af6p_5-U3G zX0HjyaIZfuMY02e4 zgI;B7L1T_JLoh>j^fc-e>9*?JXQ?;8eM+^bpfC&?_Ob(gg;nLrp>Y-L%EkdVjoADP zzTd9K5nr%yAn9Q+H;p2(FGpL8TVnrVU_LdJmCh>&cIeoZ+Rx}{$D#J#Ky;Ju2Qoqe zXMJ?af+>{|T681YY~i_h>jul#eK(mAj^VU#L%5_?ZPPC)1hbg+ABuL@iB*0U?C^1A zd6NmvxM!+%ZpgH%$kaP)I~y)}Z(MsXH+Iz-&=s3}40=Q2f@Q=N;^U_2>XM2QlV(h3 zZ@LjEF=GbrSlXfT52_=j-<~Y-Wn)lZ&0A1<%3CY$y|8>Mwf9Z`>L0?qEo0RH{O|IOXa?! zX!qJ`Q@I6{!R>KPx6SOQl5MTUd%MLH@;Et8Yf|~E=ipHUUx~?awQ)MffUf%D-9_)| z2Pdp}AAf*kyZ5bYBj2499N2E|%5|nJ&LW1A3|qlJ0nG3PhQ!6rUuXTPV<{{Xxq*57 z@p@YFPrz5Abfr;vZ%an*`H#Jf{o$N_tn!EBDdZspR!4v5>JID?O{u0jXfkNN!tUA( zkYtGly`p+Yt@uBaRIe_%L1OX*!{0DxP}9MZ$ds`=&K|XIr*)E>x@2!$ zO4jU)UPPRvfUyXHz$2y;9*gEgGn5I|+)POs|*ZggE2@<0* zRRez#o=HF;Cq8($9DAIh#QcBQdlRT8ukCM`wzqPv3b(a&0-@>yDHQ}oK*ngT!^5a( zm`9luWH1PkAp}d+T2$&2WDcl^NEihfLV%!FXk-#0%ps@&WC|LF2qDRL@&r2E|9#(g z-S1o9`qsBrv$_hHob#MvpMCcJ?cd(X5nhDaz#`=pT#O$Giig8^$h0j{ECa-+braItIR(P};!b zt`tC$zFyq@U#l_=AF@LCpLN-+$ujsWCoGNnAl*O~%Qv8~bgPSK(YD&P7mqII2xygqP%f*g|;2X~H#s6KY)S zx3OIw+ArY1-GPGr&r2){=XAYFmK?9ohZ?2yD+@(Z1_XHB_S0AfmAfwFBod&AU=TWU znt1Q^=$Rr}Gw{r`vw3R&VHY*#@#{R@#&6W6ZDKRCWdoCQ$i8KJ!;0U2Sm5VhDA{8d z)#)@1^Vwa2NzoWPZh^9h50p@U$ZCwgCC5a~i$|8eHF7H|podf1O0S1o3DlIR`3sr6DgX-_) zEKlsMkGoZApwb(C3;g`Q+K7hC<8iatojVzJz{*ptRC0-Thk7fopZiZo8KJ?xdLu0s z_zQ($W8a*TVdpycubH4VZ2>-gEPx0M03@U1f`1`otR8X7ZdVXvHxooO0ve=IG%(>^ zCzdy`WD85Wq8U&lL<>*3BY+k{5C*ked@k%)0L}v03v3B6kS$H*;li-ieMO?jkg9U= z+>st&DriFs-)RgNBOqk50lu#e;)+>_i%Wp(%j+McjpeEjE$_$vjei`TSm<}K9{rFU zv=UoD|9t!TU;kYF_n)$5lK%hg->b2FPXAtwzlGty(hMCSLb(2jG$GTJJekPd4Xaq= z1CaQD!tR9kZv7Ylcy)o8_Z}=02k)YSs87;gK$Qa*h5xVvUNZ5}P}Hns;Sn@ZzLu5; zjE}YRy%19#QNHEP-qx_B&ji6MzoOS}SD*-Ykg~Pg+f!pW5o%;PjTSz4`{Nw%4?aF* z_87S5=KPA;ugZgITju)>n3c#`lP53ONHlP@{Sgv~Jq^4v(?v28xzmR?8SP{$AxnW8 z!zE4=+Qz+qLP_4bN)_tXs7Pd^-`tm#*quzpGWke;5!nD|^#RGJ>B&Q<2Z{WY*{>+Y?3dt@J&2rj z2q5|whS8x=B)Vv~=miu!=0OKH`tj^(2KnrX0E%+}(HvPP?5+h|eIu!pn#z9s=Se5n z4w;=}XK`yFRd9O&RKZ>6@&seYCpK3Z+nAZ8z6K$xjP5c*7{`mfDa;*sdeNx$^Ax5=l+N*f2?cl;Qe~y>xKV7aA&OoG!A6x zM7B`Xc}=VQxoE__;t>e^Mk)2z>H?H=%3a;i^TA_~(Sazl-^N&w?wI`1tFS2rwb7g24^H~U*__?RR1`qkK;$nTc^6(urZE@-(|ky^<#Ek}cC);eh*5Rgot)YT#BZ%`OdFK`=uxo^-Yq>!&&%juOT-^-_Jg%+ zm6HNN^JmUW9#Lo_OtGY(o%l}YL?-8Smg&o}sX{NMDWZkOM1|p>kkYpYJ{vd#9H-f& z`E>wgobV7|x;{_7vbjH+cQ@Ps&<--W4M|1i$mGkvLSL33pgNmDQJUImoWW7%xC9pn z(mEWbUn+E?V~PdPlCOHNF4G!TA#-0rmFl#ru1L|Q>2e~%CZDC$ed0QTp?%9d1dOZ( zJZk&Ix`A2W->Nj_Yy^5_1cH;O`;oi3qcKz8tHxeeW>>3UwS8_kw)107wxlgr&9T_$ zH>>h4L$8uHb=d3|?gMB-VfRQSYz8QMpS@7dLk*` z09whTGugy|D>KuUrF#>^>@>tX8>-Z62+X(#P&bH{|FkwOK;H{JM$*XV@3^$yWMwcC zoTGikG~>TGi5}Z+hpama4o4lwkU_vZk?*l8Gp)lVw4_enzp$KKyXtCS3DF2>kiAUx zt=9c9n)9f6Uv)!*XHqX!fg zySfbwGTKU=CN{(KmUyqG9x%po3IXuPqz)2T@)I-ATsfHOwa>d;C_?mkI_HR3W)ZCa zpd3ICM4(Rk%e&GW{Nn(q0gLn6MG1wUj>hdXV`@A1m62;|uTKr8UNpEZ{yo=)`}VNF zd2!7!YG|nEoB>q8%rYqr=nLm=l+L_2<4T#Rc@&;+|DdWn%4%A4Ar3T z3d@shZ&BP2J^5vmKqkS#RS zvUi5K=O)@7Hs>b%tN%})<>FuX5u!V3D z8ZD=F!x4|_O<{%Q;I9Xg_Hs(@tzpX(UZHUY!*P}P^{=JS%&N@>+Hk;b;VhIMUe#@P zJ^aX_G4v5qhrA4#?073aV;m|}JiFkSEgbT^FQqNh;|{vF21&u7^XK==P{r@>fODR& zG!-a4=cE&bb9Y7n%PbBKQh8HbG#(-oihv5&4uV`0-k{S-QXIFiQNPbd#rNzCExwNp zz{e<%N>>eF1`GN!w)4fOyuEtyzZzTpGHvoClHDf*PtwvNMwazcvGcMdIskoFy`709 z%>$rw!`5a_etX^7l!q;&^JfWUaS9;7YQdx0=;4zq@$G-uUYGN9q2+yllC7`4JgDr_ z`n(b;8h2~yk!}B{(%kldS}apriQRU_FGwQ?GAwBqi9GLTuuiM?Fb*3p=X3Oo$Xw8) zh!s$A#u+3(Bu8sX0|t^j&;UEla4Z1$`pT_RuWzO6OQ>Yc)(U@nRF>^?;0%UdPJ2P(FUoIWV?Z2monCHNbwMKD9I324Pr99m9}KxFvVHy$JRdYx zjb$2K*@C+MatBXuxQgBTv)&q2$WETCZchJ4FQWVl32Ff*kJZyM< zIBIH_%p}oyW%!u*@wY%fKVIK$%&bL)wx7X6XH{!NvRNZFMOye9a@7XMQK$+CUU zQD1;nOdWmuAwPA;W9GDN%vEDM^|L@!%@;|i{G5ZwK;Wu;tVJxg!dq$#-=C$dVz^3T z3RNumFP$cSP*|S*@CN<97IIgAyU8#2X(QtUetTC!2zA})wI%tt)viu6XFA};#PFAj|vTloTzIfAlmNNS~BVmlM|k;>MZSe|x7BI2&4 zC*LbiAx0ur#sdNQhw0gOQ8Hfa)hDZY>yH6s!GCbN6)N7DQ=`Sqgu|^l8azb|D2wn6 zpcaj%i#x~}Zsxt)m?~oyJ;k@Y4K8M+;H!-3aaBSztH@G15|-=LW$c9 zt?OffE8=2gy`og4*BkoUpX_qe8@7l7hF-kF$TaJ;yMA-eNN7|A9VS_ZI!Vhwm9k|q z$Mq{z8;|QJ{|gNgyLtsQDNz@?WsAo3NB>PPls_6(@2za9P1{ZB9YL+s*wugtkB$$t zi9`-*O%csCgo*}tB-}a0z121V{#5d}mW1Z+t;XuS)ZqPz6sce!Gl90RAVLKX|NHa% zxB+z^ELU}`tW*6lX<*MW>X+Qi&eLt0Im-Kf-BSqy&&s~(3F;AtkQQNozZwmgJq-}2 zxV%g3P+`pDgt2bUKaRvNg-#KGkA3CfioP{9u_Cf^aXvX1Bc4y97I! zn8SVlHu~ApV)fn%Kz~;=jQVM`E`$5vj(V5VG$>;dh-5*jy`0)WM3=1jjT97*oBb-? zCeRYA%WUlbDVVk%I2GKXq`GbZ+=Ec(qIDdnh{Ui{RF61Q7oOS>MidC zNC}gg#Vr-@G)L8j$IF`=ZTt%vz%s&0J-Pq-Y}S9T2h`^^z!kn``+Oj&GVJgsY*`{d z6`Dbo_7bm-sjATm6Y-H6KKZPFp|GXgHBgX%npd7l_D+VftoZdh2T566wel`Te)%qy zXJ#PQkzk2;K$g*jV9@BBmA^ZPao%gI(>Y_Nk|)o{xAB_~NV@4h43zHwR%`GkxRS=`RIW$OB2z z=ySQ(qwX=-T03X*m%8<{mFA^(fPEs);DT`NL9d6XTT=i1?%p*6?#K}`p97+%;PeQf z-ktCiDZpw(J2*Ir3s|&(5T0=DV2w@-Pfy0*w_kNTk*^sV)5z-`lU zGuHs_VA7HGGkyxX;o(T-Nc)dO7=Hj+FLj*j#G^{*tm*J@8@_ z0<4hhqx|)Lty_I3J>jkik_#E|bi=ZoCV=@VN#Sb1yyonyVv=&!FS7QXEA8K@hh7v8 zBsH!%49e}j5MwQnezJ1+qIcn312o-~t^JwF!^F~Oo1UT33OTO>ZpzX@$F2_Ev$0Cs z=27>o+NeAZEV=izNux`>?~zZmookMNSuFPq_b=CeuPm!I&{_WH|0xgd-Bhf19T} zs!;Br;S-4z&YXTJx$$tdEQHwbBghMozSa-k(+VjrAI#t?idqnEmF;u0rY!9o6AdO~ zwEfp5Q@B;hmkH{_?MzS?6>n|2AX_us%9?Gq?E6>{gSoH$-i_RBjt|lp{@M1q54_8& z6mFWqu$+<=%DO_GRJ5(}!&Tp-qy@R`-3#0&Q>^@qY!;+6MMb?v5P= zVGfckJ!UW{;L@Of5*?_65C1j#i{)u@b$xA@6InTf`-4g3C4c_gxqLMyI4mavTy;8) zauP9^2&bl+vPL62SxekX%kv=AxaZ*<=B+>@M>(^u!&fECdkU(|)!ruIfM~)F&6#;I zHkq+0WMtou(k~E{lgqbUmZ+;|Ujm7;4-nZQ!PoJN0pyxGpTej{NVapEFe{JvKEU## zkour}kTbOj?ZG4L=0;R~-gf>yHif<+cT|00HMk_S%lBeIxZeM(u0BJi@nU*;*Wx(t zGg(loA!TKo*!OmY*x*kheUc9($Bkj_QNnB&ZwD2#aWL!X3 zMefato`C)Kd|AcGxI>=puP`ClBi3KMYeF>5@ixd#a2+rmfxbAr86)fcQ;>opeW@3& zb{}#Jpy+mn<|O)PwSapdQ&$Xf#lWln!}4Z(>`4dCpIsaX>Pr7zE@kh^IW19NTFu+> z0pIkdpS}S#tKOSc zt&t10%Smz5n|EmM9+u2y&DUP=`KLe<8`T$1BO5WPb<`%cynJPuI9yx5GH)sj=4~Dk zgaoTemE*meKcRB%VT;HF++%xsr?eYaax{i%By!awGMB82-OxG4X0Dw2?+x<6K1Q1m z;iX|rM<>Lw1eKnW)oA%$i~9-R{kw+MKLa$ZM!H%=kcuf~WDwGRQ114ERWBRA^2&Cj zS_l$y+jrUrAO;q%(Oz_}u1xQhlpyowbbL}{Jd)8>xL?*<59Gv2fAe^f-VBWNd5I(0 z1+XYyws^?i&-kM`xEJWoD%w;3enMndMw3vY30LrZzed}YY*`r`Rf-sNH*OoayM4Q)N0C{85-#qrDJo=O;vbMxqFBW+bBQ%C@x!yqE zk!v8Y^w0;i!ZfyU?U+4E}HbtsdY2$ko6JN#6O5n%dA^qqd! zJ173oJ3yBw?~K@c$6Y?6$hFD+pQnq^6Cqdo{mPwu#_F38?d#aaQ(EXl-u|wZ9muuy zqFZd4%9FF(vGVXo;NgJ&gs=2M8^p2>ttjIl^OYPZ**o7a8|LU=a;AW&CHoEizv+Sh z?Vp|?pK6m0$Q^130Bg|lrhM7#yS%c6KFa#G>nlh7W9Jh{J5amm z!|MHi*SL@Fe_54qc;-i?WgtW+b$L5pgh?mdl$}y$jaW&;x{D&B9&-+ERn4wKJMl1C zk)bq z0NlvKAXlYS;1OaHoH_RO{?IHz$#e)Tl8%Vc)g7vlX__Vb}~8Q0w=lu-Tjw4;5RLzWSFJpj3W`oM^b4g8J1S zNUy=l72*NB=>3ZM5wnM45pD%^h2bM5hg!Qe)aLdnktW!bFfWsB<&5WT!*y!1&-73LG0j5FN_VV(sbs&dp8 zJQ39{C)LeO_3E*0YKD=&h~*J*DL;mk)Kb$gs*VB@m7}@gy{^UVoBDvZk;2V@lngSR zQn-t=uGft*AY?L{nOwJB07_aamd_2Mk1W{y$7LA?iYT&H&t(JrU32HgO7~RmRyYRa zQ}^u&Cxf-%j7}z6#)?zKw^4 zAXJwV*lJqaKIob9u+4(slQe%Fwhr=2P*ex(%%>I_W&Nv{wWqY9lxDxV`SSI7t*yj{rW=b>K(^xImM+8?{_J$jY5|C^{q??*6tkkcC;DCoO5|3*t@QwU9vS zdV|_kFM}God<6P^0R+Hm3?J0-%Ho`sJc=W>T9*b}2!|l|2@jccZvizKb#oFo!QMcuW70|wFw zm)x2R{YXGH+QkGOY|5pBW1nmo3qOP->a3~!kx@!-W5+uy$0;g~ucwaR=GC3Q{1B`2 zpv|e^1dgr4yna8e=(i`@pZLy+4-kch4d|9l>Sn~Z6;pXB+%Y(2PrQUUg^$5e5N-lp z7?AHUIs~;@^DSue6IA+Q2AL}$*F>5=nMIf0tJ15?prrC7>pFEjm<-`}Fa`jZ_W!I{-BtC&{$HcET5O1~GZUp1FoEqv}M zNa0Q%AjX5jOlaS~(mwc~WZj@fdT!Vi9C1ELu@b|yA}`q?W%=VrMqDQJVY4)@LD~0J z#Md7nQYv>kfBct-F0^US&+}Jfqi}32sM2S$Zw)ro%50q3{b;NrZI*NzNx-p0`Z1N+ z?+c)AOBUk^ro`7JrN_au8T6_ zi~Dw#hM1WxiI|mT?*tKch|Opp>573R-U%mqs~LZi^&S@Q?l$Wd+im!6I?EEz8Y+|b z-o}j?(hNZRIE(8y8*;-DZ1^LP!Ea9i1ao~MyS;j zgS`tQ<2;f%A6qJ%4)8Vb+6J9~D%AW7SgXUN1+v2t+UOM=C z!dGxH8mZZ~rY$0~oo&BsPmlz{CUW1yDmU3zB;6Kx@I~CEbVlvte$IKeh)*@bFtb1{ z`g;qlxY^)*)}NbT%y&5r4z1H`d!EA}btW`yFXinhhtb<{XryGx5*@E6-%c zEpm{7e0p(MjA?|=EP*H+RP4X!15o%amZZZsumkJ%>lDO{N-%q7t)E3Tz zU>>dYGj?z$7i1eb;}V?jOka$PY-$r-J8~M2iwy0S5hA15z zG@nJYubD0P$J^8+SZf1J4Cuiu8zhTLJ?Ptu+Bx-hWr3gYaAEzB0VR>bb!3YcSj~Ey z3AW+b;Yc!bsoxGaWsd{VVZP=-D;aXP;2Xmrv%nLcx51Mk>`ku3TkvY}6>ObH-Kbsm z>$`?|k^RG#PwY}q9LFQ;l}oghg7lnuO}?A{@B$3y!Z8Mw9@UjsAEy#hYDmX8F*jsRmvcjS-DBe7;dh=@k>&S;F<1}E zh;nwW!Z_ARW58^f1&afybqA0uS}%h)eU0^RSjc62Uou1|Jg?UJ%s!6}F6E1P_dmf; zmGJ}esGlGvfiI$;Z+9hge>@<{WUuq z1*f^C3~|xLNvv_E;d!mNu+xZvPutLD)Yz(vTEz8s zC6rHi9r8~(t~i2YlQ;SO5lcN{jMmKc9#2?d^COD!sPa>>f$P0C%&Iw1;a8#@ur|1Q z;XHxlcjG-ON&VMD-|K;c3{)yId+*GDRH@8dvdL-xpMhzq+oXApd)qAdtNx|epM|3L z<=Ke-g|X+P=TEHE>6w;9Pb8|?vu>j$5qwdycwZ9Ycf*ZB3uLG=b1x@?U!K?oNE`?wr3PP}7$-lM zli%|?q&cLOX60sSdg|GYD5Idl3ADMUPyZm0Adnz-WJBhuLI`8W(!l9;x4EowyUBHP ztSZj|pZZO8tzQ)5YA`14M~o*QR;bai+a=Nn(jVgub6^XG>Bp z?H7XY!KnRC&}Oq(8+0io3O}W@=r1jS*-&(6x`ebG;PgqhuoP@$};8E zXa|sfpI5$V*_ac!aE|SaJX`dz_Jh~i%ODuto40rdH4 zn96#22{3;REXH5*$xOc_QKv6i5!_2(%FO)=W1!vbaYD5SB67t>kEF%SQeU7$S-~Rpb&Q|0&3U!ePz}bdw!UUGNf$^Ls`<+S!br`I6zliP$LQyr7Iaei)9~ zwMPCu^NHt7JFG%)e&PDjxU2k!TioJmVXsno_vaCT^J}X}?np9No}{Q#<!h7@p2G5CDeGoZ9zW#qpvg>qXBN2;LQ!l!-c zns=8<4L^hP0x$BC`G%l9sdZuM}=5r{jFm&J*q51Oz=^O^&%b*HYvgU&cX zA=Ome_!G7I08ZqDkSy@z$5ouSy!>QGULvHLMOC!m*HI&zXN_=S7jU3pon*^3(jkJR z`#JV2=`-u=p3*)HZy#2q%P?FvH`UQ(&eKL*J6=|Fr*RZVT-Ng^oKXuzdCyx3ked6$8^(C~$kNFTnGx*acTjO^ z!OSbEP4g+7Nj8l(dy*0q(X(B&YfI;m zmVJ^(uhev($`o=%4P_^x*Q{E&1Tk)M4XEQ$ucHl->_+#$_@^ZYp|%Yv`XCbs%c zg_VT~KE;K#L8Mz;x3~mFYka!TW%pZL@TClQH+L_#QLAk>Wa^qmmb6YKZJKX|uq<|R zODSrR)Ytt+`|zAfMF#v{EOj|H5(IjB!Lr6D%h@x$=*Q)a1`hL$wgY>Qd6E022G2SlN%-2I!abs^P=rzCyXOTP~Uk_&E% z!?tg&YFHh&*ufT2HlyFSDR*|W@N7M$_q;$4wzdN1q$`$5L85JtgJmHnnhlU>J>VQ? zn2s^}%Ii`uIsa(g`b6tHPV%K(mtt#v4x~ECODGiQq7RM@F!Z=t5fS&se%<)QT4PH$ z>)Nk@ThvwSg^)7OU8gIKE4Gy#kj^%?@Vk0Ss@2DDr!%7ixkmPC3%N{G@yVUNSG?Cr(UxEK9}v+dWL8G09*S#qjK%I`va=e8DKH*Vw&cr6#+JI zZzXySmV}*M0BR!_LkmT`5M>J2l`R^XOR1tu%$SnYW}+oRSC8OFHltJxxqPlmw5T@V z7`Bk=8~JG^m6v*nkvlxnKRgAurcm=d8r`oY`f@gzc0f)FL4x-@@NzZS3 zvV;C}==<8+^kNt=)=%VvQii-lZWN-N#;u1qNBJyB)e1jaRfEXG>Zq3bz+##leX%wq2Q2RC>T~>Q3=F^E$W3vZS+iI z;*v8mB|q@Y2yx4?QAs0hANqLV4_ZngSr(CGJF3B zO17+}DTPBe`nl|yFvOr};o|bCJG!LYY z(V*^0e{(zqVkB{wsFAKX)4S9g&Ow>fMeyGkH8K#HkygWKos9WmZX8OO;ml zxt;js#SE{II&CV|!fERGC^-Z1W=xtzW4~tZPVM9Vg&a#<1LIMHO(H$xHM^M)dqvUyR$=s*aMd2cP?_od z^ew_(C;@mFuHEZU(XHRIB51~a55cLiVT*#{pe$}eX~_DP+3UJbi--FH_J|Y61CO_% zaHO0U*9E;oVyAqaKb6`nj9xY)jq3|ro8#?}{IZaJjF;UkvKXUAiy&Zuncq8sm8JJJ z|F$d|{mj;u!TQ6g%Jq^Mgi}nNP+NEmff^|9nB8;aXkBKvx_j19U`~jpT6%Y*Q!L0_ zS^l^{AXWN?8Is188!uo*&Z*&NWz=-E3HWxi&zI9T(Z4;Qe@F`}uDmvV`VnE}ckuJ@ zf#vK*^xtBS|LZSJzx=zYY_0xYre&G&_**2FSK|MPNO%JGIJPj4dcy`!hmNSx+>j>3 zC56iXWjyG`4o?RFQtymRTLB{API5*vx0xqy-ctFen9Q}rSYzFM>I7zC7_vEvpWNeG zTtF>DYVzok3pW-Lj^go1mJR;J7er8sWTsm9$Z=H04MB%qad~Tc?MD@tsgcJJU_->9 zFuoWD=F~mI5r#bi5NS1wANw&N_|O78aB3f^YvB(C68kpe2}|O93M6mOvI!@&(PdXOIu0GPpb$R* zoP$t7is{oSz=J$OR_ z)&22M@_^T#w%M9dwFp}r(Tq6*@aRHnB#uBLUM^qWW$+{R^YtNqhNMhxecoa_n>bz& zXa5<+p7l8#6Y*l{SI;Wq(5JA2UD{~dW`Xx5kbJK@qfSJR?LP(_PvT7XF>7T9>xMIA<_cPsQYcP3pM;Iyu7_$N7e- zSk!a_U4gG*oar}A4A}(Rbfur{ErA3_@h_EUI6IlWATFo&WNJOZl0QO?w8BkcCuHV^ z^Q~CpZd;sz6+brbz9K=;*d1{_j-0XYbWEeB7sjBR5&B~3_FRw5Z#&8AAcOGqI(b#s zOs+26YR-QMxjPOo36AnBAdcyWx33{pbAB&muV@x!iFDiJ3Vp4l14BK*XG=$cc(JCz z_=70kjJ(AGUY*B{_tUDKmF_dL@q;ic>kWCy6B+w@frD9ShpvPR&asKfyt+Vw>P_x_ z0Piq45DkBM0bm^sP&dV2?1BKJqlV64&=UanAF*G183q0F#~{N_~y*b_K#s5D@}j87&H=riv)R(X!Rg#;G-*HBggm6J~umDZq;?ZBH7 zNjolVC?gcz()veOn?1y?rMJURrVj4B)S5s3lV-+4o2b`117`1jfcz|3AQQHsAPN<8#%3fK6=+zrSeB~+%Qjv^;n zapZw0>R2bwER2#I;f=)Qj_XznU7Oau1$FHD<3<{BxWXA3WOo=W%Pp$W9_Htv z3dTXEvH*`q$I|QDDwm&kKLu#5hVG3h0uoAAHqHx9tnIx~_NP85XLLlK=Pg-@yDyV)Z9_yXOv+3s~e*9IM}H)WE^88y~2SB1$YTO8+c~3ZgtjU;ca*n!iVA&R{xFc1%hyC(?`M`ozs*YBf z!Y|pJ=TEeFPoI9^IJ{2n{6v24R_GM|@mFz+)%hu?#K^@!%&`08gy8xumDZ)4lf)o` zyH4W=f#P_7al{dHGj~8ktuJg1@}yB_mmm*B>3D+DaX_p^ops%>g_u97n96itkV}chf|~4Vbm#WusDwk!5|w2BMqOzR>l> z6lr(U5V(oBshz5s{&jwcprE96Ie6plKRpxah@2Qz4s}5~y3P>M!Oa(W){As;VIc_C znqPHjQPp&z+8yEKQL*NDJi)!Zc}t_>xOOwG(NmJ0KVHuZUqD5?r0}0rWmkB01=OO} zOq+)>y38vhDI>MLx+qr8Ab+BS1WF=geM;PLUcp9bF`)MnN(JLMRdwmIOrGdlHn+Ns5j|-MA#5|98t1i zWsUO!MmCXJZ>y;EO*?t@9S?2Jf()87B{9V?|CZq>Ix!Dbdz>-iLVB@;>D?MM4Uv+$ zfsX&oQQf;RIf@K;`!|aaKoWhL>@Y43pPC3Kc}3KwRZ&}84J&^a)|HsSp?b=*B|j;M z?A7}IsThQX{5Ji-SjY%iDn7= z_o>?962^E8CvS@9CZe8S--Jqt4WA2Pil3UG%_mMZ0(;}QQPeS2ozV|K&?+~M&0IY| z%s1@b=Xps+`}Nphap_k8&D9@zG6f?%5GW5iM`|3(1_*$shZ$|Ycj4cq)1y06{dN`E&Ieb;ubSJukgga zILb|K-H8@~O=(YAVN}XMbSOg_-iIsalQQ>~hz7PV?XHEZ+7JeWt}_T()-ftm*I%Fb;37_W&sJ`Q!K`ip%L#g^SI zQDuJhBJ23s%^=R0<|TGbW)wu#0|(I@-<}cWI8lo3kwxD_{Kom?#hW_Y3aGC-a^nHG zqh!SbfXuwwV%;`o&WX9JxUj5Y^(^I~ER)kQEbe9*p6zhmvtD>2G}BnoeUB;rvfd5w z2#Dr6UsLrq4RTMFY2?^;V8dt>+wdReEdrqZIL<&684y=XVF=kRS)06osMbyg3a0UKo#4x1xWCvCXaBM4l`Bv25PzX*h)`e z&z5T8dRPT~7t$?m5G-~E)g+>Ku8|)D$bA6&sP5>Njp`A2oT$(H`uft4c;PL$)kbQ_ z`fCNCD_Q>qhdP=UT=pPYIUg=D#7AuZa{Wdl_ry}?v8d`Vo+noEJFr-Z2=EvCw2Us z#U*C`_%7IO@97vv5C?RS@ai5=#pg>~cLAp;3Yh)LJ>4*Dok7)x`LBmbsFH~-3;-$- z?N835%<8*I8=IFWS`w`I^VI4$=Q&iPd(;>`rZHLBWUig$^Xl^aaLu2jb~mk%*uCWl zjwP|=FFpP+N)UAWE~KKpRctqqeys#}L1R1ujs?SR`&iKoNMeWE2!Zb?JpkXZD3y48 zuqQ8h6G)+#^y+}_24@_EbCpa^dq(H^0zEd+zIqx?dtm*YXmDr?Z&Wy$AK7t5JjFy5~= z2!I<4ifZ!2oleViFkn{7x=DJ$20D&}aaSsD@PP;Q7G!2;?o^Mgh93GXPzHYca`h|p z@A{+vT%HE{r_N^|^Oip+{c-Jw*grG2v%mgJ({KK6DqE|+muXpM>i-sr<(2qbB>r!S zLH|ZqZ%?v*hk&@xp;0x%GCH;_RaQJ& z)=>XOtZ{%X4w!7e9he!d7N+2u!@dVq0+ynYxTLo;({N@tJGaFcy)9)ebb_Ra&RJL7 z+#6bW6|p>&{U1OYhDw0!dP3X08CpfK%b^0z%@0ePP=N=NxYcn9yR7j+ph&=gCU8Eb zs7qY_IEGH|_ClkKvS-zg;Ny(*=UxLIVl-*YACpIY3gRwNm;15F+-)$h*Qcj>USwr5 z_p7*909cu270IIBXzOe7N&~6RI552R>ce_)j4?Cb&XD~({!uNA@1Rr*YakmcwG9&? z?mWW4;flw3#l?7;TiLT07v>?oa|ShQPDlCxgD<0(oz>ecyO_?d`iL-Mi|e)mrLOhP zM4mxNuEQ=zpoQTBGwZLsn!mUair9~=$INYmGXbN+z6^!k z)5}7p^pCoX}jmr0B9Qs*un4G zpMkpe+%mXGB^rRO#ROTM{1WYdh4`uC%H217{I)xFFQt!7s=U0QV2yu$dtqzYHOjzi zaqEGZI6Jxwi*tA!PX?S8QBFSP9#!H00Ef|KUX$Inq1FNr0ZV5JHew>iw~W%m5D|b@ z>B1ij8yHen(Z>QNW0YFNlY2Gl%-~|rYCm-v695_rJxp+h+~kTtY@!1kP_=sOcW&;}dh6*`lK1RhB_vs)L&(RaEM;Mf4<{l?R47 zHxG^p;frp;G3ORjJN5SAk7XH*epo|}_M;BoRB!T zbl~~5H-i-JK;GivUSg1J)>D%Mlk0TcaA9W=4#hw60D*Lhavyu)n7dKi5CDLyHJNkC zsefW)-=d?Pmwa`S7328N+wOiZ&-)W3>@6e4f8bFn;#SBe!$0O2pnpuopr3EBtfvew zMIdqN9MX2?bm5zUr#g$n`6*rpfm;hW)7-E$6po249K8osrbd&_ZE!Pojd#ZM22;%{ z>Dnn?OG2q4ibg$K=fNX=_&>O1rsLlNe?DJSA z%6j;syVy(g71cqchYBZDu@4vk+mHfD{ugedx#9H{QoUUNjmQx>h~WVCMz?{-_26~m zEahJnm+8h9`0)&{8y5IJqe9sfMlSdxsu|HFpABvXQ(-9rDZ-iYM%$84nH1Ny0)+D@ zUc5zy@9P+S%$vMJ1r(EmxoI&ubnU^|oXeiGaU+{uaJSZdRz(mTf_J5bVkaK%MQ5FU zj|$4-(oa}vzvbB!bj->tj$4dw9$>rTK)$MYPiT=jZfh#{C&MdSE0=Y&=HYtEosBj` zQY1k#x2jNg?Juf&qaT!f+enOVXyJKUI2vBAubXTu6Yfc}ffj1RGNLveW<-A#diLLt z%7WBbz?O*+t7i`Dc4D*ax(GrMM{_+$K*DE?Xxht3wQHf6S7vSOj&#f~7w5eZWqX_Pa z+`EQ?G8GH-h-;eHQ%uhbqDHr#z;QP3bsc0+XL!DKE(OB>K6M*NX&r=bP^j9L_>r}5 z(9S*j;sLd%mM)2m>)O2Pw}iCNrFCVa)8~r-gs3-#X1IIYlSb`(a%=y9c7SflGXyau zDzDDB)&QMfeFfodr$DiQ>Nd8MNtX{*u06`=S6s}{eEJu0qJwi5a*_B4fHi6i>G zI3Gb^gkHWA%*+It8-AAoOC-wg)m(?`u0J-b;+_88mCoM$SOX z2-y5fJ9M7yw9fs>_ExQ%fA}$cH z)%4hYF_&1C&LA0jY7M&wfy8G_^lOgY1CYbvYUQ@Kl!U$_8NHA8!^x7)E& z@*1udmO|5M(dZB-XZ|L<$W~JB|A%x8DYm#gdho-eKZ>_4y*93Jf|h)CUZE#`;Qte_ zX4!)iQoS;Xi@w1ZH%HIcw+y1v1_lXu?(6;rn9xo8e-BJU^+Qz0?lv=GS!MlNv#6mz zd}ukjp0)qxMX%t8=&1fCwV}%ZXc5PI00-D(3FHz0=UX4XVU9lys?S7&ZzLiwfjqpr z)&MswlT9Aj!z8HDG?}AFG`Jh8G6Pmb9rW`C*b#TB;~-BD=7W+0WG+2ijo#+auxTu2!SjBZ8AGP)MbdZ8|OMqGVHXn(Y4CB@N0ZYpMh>jF=#( zopR}zuw6>_>=Xyh;3s8rh?aMI8pYB`n$AO8Y23+3}xg+8cvx!WsU61`Fsg z#O`mq!8|25xqfA{@zjpuw7L*H9gWA`*`iF% z9|t7SI^tKju<6a+k#0!b{c(~N{uF@`RWfJ@$KY?4yPd?jq4t5Chh9&h*=CRa8J&hgJV2%WV9%cPd7H^ z-$yq*9hk-eW4sRF>KQfyg7~4h5&34F*>k-!oL5TKLae>R1Rv5?-dnusK5CoAszvL& z>7mA)^w4&7yz5F+I>~w$!MX!%)7<8&E+w*y5spKn2JLwx3vl*4TYlD#?L)1Ri;LR> zuV}JpQtn)Q-hB&lv`5mV>ZqQ|(s$mP{}+4j9uDRD_7C4uT1Bi?t1J~-bu+6Fu}b!< zT4AzVm9fcg%B~_rj6G$Q)gtPi?04-qLrfGgn31B1NV1DTHBpRF#9)kh&zpLl@ALli z{_*?0$9ufT@tZ$7I?O%y=DM%zyw3A;e$LN1e@l&x-;RHeA7All;|VvHTjG(W6OgOR z(QA(oe-Bnnzt9$<87Y7Tj6^T5%=IiU>s^2tst$|4wTh$fuRK0qoIsa=45v-6YRw=2kU{N663%9bdV1WvngcF=Zc zp7dI;etjAjDi`Oo_OV~azP}8}RQr)8uAoK40|#Hkz$)Qzf-JYoTvz^m(C(aw*~;;$ zu35;Q8@khue^|J-ujBV?8!Yb0upn^^q|35w#NE^Js7WiwzFCi>^=I_!YgMTst-C}Y z^cK`*SpQZY57+qi!ySq9oJz=vTTB|B690h#Q>@bFt}0tEZe{?7C&W*-OwK?tG}HjvDVPWt#~xl0yB_%GpEG{=9g$7 zd$^Aw99H`pW{p8qT1AW+M4_a-6#_7ZKB-NETDgH;EA>7PBDfdjn)Bx~FYa*L9(4%I ze4SiClix}yPh1$B*r*F&5X(C@o?wqYX6GzlrRl2Z5OYg0~LFr|Jy`;`aQf8s(*hM3Ey(7 zEYA>+$6=f7*qAF8&pN7G5+=c$v=G? zssD$R^)w(cV2auQ)jWU z@bOZ=$u&sqCE)-5_p3+#R|2wcQ7?WrE$X0BahE~ooBzsPlK1}anMASTyegq=+KBpa zow&-zdgUwg-R4&XuDdVwS|C6D{Aq*YQ~Sl!%gz+-OSo43!w)dRfvUdPK3_)|n{y&77}2^-n=GX1s)l*5VP4Eb!3j8k6_MH$ zJ5&~GDAPB5JMS9Rnw%9^X{9P*7Fgde5yS6L0y=#JE2-->_?<0;O38zA3zDd+PrjZ1 zDKWtNdT2Q2woWY~3{#^B+8DxH#I02B9MO91-4cJS%&zV9@Tvtzx*)^n-TZ4yxCqHt zQroY@Igf%V2y-bF!pr4n_`NNhQOm$?v~S(rh^MGcPWYAiqv@uF=jZn{Ugl!Tjx*k< z9+^9JotVpX_`o;TWBVtq7SDZNh>s9okMGCAB=Dl)kHT~K62xFo+6o!KuX5kCcPSe7 z`S05K6ULrDX|*1|2Km^^o{Wdxs(PomQ&Xt8ys@-M$)LJ#@w@rqjy?AMux0pRZVCp* zA$K#5n+_)_LgX}=^@rvBeQK@vc5QW-k0l}0`|oYk%MMfWFmA-Ay%CUgdb4Lf(vH3R zh~0Vr+fcZpk92%G))~ybS>6re)1wRS!j9$N-bm_(nw*Tgv?$CutYAv0#`CJ23$|1K zmfnp2c8-QkH93wIzSvs5xiGBNuCt!)ULSvN^TzqRN|*h9s>8wpNwP(E3~#EE&tE-x zlD{&l(1E0w%6++d2ZR5yhEhGA^YC2FW#_5utGpE#HGFQX(##G1LH$F%TTbv|`sSUQ zBTCt6A(BlNEW5zW@mJ>tD<2%z2zcRFQQMkk}ZFrR)M|ED2?!|xuB`P|l0AO$C&c?z3n4pWrxKQ@jg zur18~?QP`)C^QIn? zzJ4jW|31o2VcwxbEUDke2L{oxg3JruZlTPp`tw_Q<)=rgviJzmWxBl;5vMnL?)C3W zI@If@c)!1oDy*}hR-QO}V$x>Jg4kpYC8wj_!6lGC`Z%kG^{vSa6oq6CWo@6i}w@ubtW=GDXeRxG>p-&=XE!=3atQd?*Xg(1u@`DY1|orZLpXQz>mRBH_*ov)l% z#c%%{^+V^r$N>qbv&{x%wJ#aSMBl;$VE zt?#zL6JK?w1k?wOh>Dk)pCcW9Cmm z-~WBAz=$`#k*`nkXY`yS1(&1tikoM`u%dfL==_1{|7s>FG8V>F%M@0@WbXa<411DB z$%s*1l1UF|&~n3qEl8L8J}vQ=Bm5InPG0Y3#Lh|Un*8EkKbrgJAM+>FQu&WHrPIcN z*xRpQO3&hj1JnXp1jb*wmZusv>~VczIkUg7Q&`SjKjh|loKk2rP?@fMy2ZY2H8cPz znDVa>)=Rf7U?VHO8!;DrU{+{87C&|P;%3)okv}vRw1o8V9*v(?v$D`$@ovOEOy0`i zTiC7k?Z!i_&KRtFI!>+hF5pqHY+F*_Js{BN89~VC9Co7#8lLoUybCQZFN|Qw_vhFR zzuHY1H6Ocz`YT2FB%}5=fvxD$3ssbGEP^74u`*hC^7J3SU1v>MRJ#N#n_mqf7Hw#R zn47^>O|Ui61srZYhjaVh!BE!B)PC%GeUb#(?%SL}b|`c_Is7zIc~R-gyfBvC+i_WZ z-qb9&r8MhHIs8R((P7`ioPTAz5}QEf1r=|v{Jda!vd(;4G?M?f{kaq-*?)Y@|L1;JQD^MB)o{~jp;i?HS(NnjZ$MANJSO|fQ`FdK^4_txq8jbQ%y5ANp}4gZ34a%n@$ zp`zlzS167Qlb-+`(-ETIBUZPG`B)Z5q)ffA5=p&HE4(xvUz9Y;Pw-m55^=I6xe(mt zmQVzPUh7sbjAp?F@K$aW(xAPT&bfGRmGUE$yfSl6Ef%?r{g!y#!H`m%X#jOMB8JfD z;Idz0HDG^!F+vd}sSMd+w^gP^s99oVuou>$5*9+qGnoEOqH{UuUZT3|HqRWOycxQ|%M9ihWqTxAA!qh&$~Yb5n5c7lK~VFLow7 z*{#&smfzn=ky|7F8lWyRdGu$Xkct@wgzlU}+I#ed^@%_TlBLS6j@9UoR>-!|XLql$ z@Kc@{Zxq*M8pyrKFt8bcY9dlFhi@D+_7-l8z7|TDWbDpYI<5&lT28axH#URDa5&yY zL7~ty9#+m~5aDz-Vt>GRc^*ZmiAA6_b`XoyWy^yT8cTyox?p)drjQRDRRESzX`gg zHF0+A{#&gAEHd07WDxDv&bvJI4764r99c>pze^Kg*%>v{C{gJ(XVl>a|1bz66njez z<|-0TQ1gy>kTC7nw#I`iYpNpp^THW8brvV}q6lOUd)A zUvqSwt~6C)v%=4Gs73ahn3X*z{25D?+ZLM|SpA_-YOBFUyHgKte+0D^Z4iopIc~H6}gQ-+= zI2{>wJOuICPYTlMcu`JgGV(bx%)8 zt?Gu72k{7B*=FnRPSJcI;u{{M(;I^AWrnWs_nJL0pgC0Kd5NZM8Mte}n^SdiC4@Ew zPqv#*Han`9M}0h9dqQQJh!L7qK#G_mrjQhKxMypxb=$T5%88o!bCVQVhcWYPE_r?? zKD;CvO;p7X%-c_DZk!#x>tokOst`U|_H;R-^;2y|Vlvd0n}3m{RtCwxm?Q?a$rS!t zgzoPzq7CJ6q9&KuE>6FEo!awzTys&mkZkdyKNkf#wml?H!Q%>od5qGOEE9;aELkdS8fj zw23ymszc2+cEznaS9{B`+r%X0LR3yGh!lJqn#}Yc5<8F0^u%=q6$Rnti4DX#wYbqp zf{LDhLGRJ-27(?WU`mo=WPN|bZDDDG>7<}*Zr9H+wlP86mO`BwNJSQ+R8Lo{Vg)FqNV2XqZka?diyFS^A3_dyeSpMrzKR%af$Tf{T>WDI3ko zF}bbJW>5|F*})9qD^Aoye)Ta*-&KacwxRI`_Jqzv#ppZfG?vx#ItA~XD>&`Y|`jw8N~N@0ehBm*?Me{BN}&kt*lEa5pT74&9KJO z^C@bbf#9iVo#<2OV#2q#8BD!HS81}%8_oyt8@gh)whaEdNyx|ylSkHQ z>l*lZ2GkthMp5!JV1s;Ww&&z1WeuXXO^|h~c(|*5RKF(#v!MtIl_ohpE5RkOWbZMZ zw6PqkXgl?aqwIL?IS4Rb%CM1%Itteu9`&j{K?w7vC^Pe)vo*0E5GXg1O^_|3)iQ+f zt;<)ES5`z|%lHO&X?wJ%l%~xTocCm9eVFp64Y_cl>K@cdIhf-d#nWA3?Gv{{1QvGP zgP$4iMEOG?Kz;PaXgsOS?UbOSef>_J>AZ8cqpI0kYtvhp@S_@k4H6ZysROAB!k0&K zAhVSruE|6RR;rdr=|$y49?1S|-S$45biyXExiQb*xZ=;erOCWJM(Jmy^GLOBaf}1W z<;aKpx8+0Dj&plz(iFPHpRPeR((8RvhMS+rEj2X2|6cFT9y_et^5pv1r|WkVi{Gw( zVBp7_db#Y$B6{}_o};{pOEGjd4zA&)aX0Ho%XB`^HSB3pDPx9eutz{>_$krV@Ri_W zDBW{@lR0OzPdTk7t#IF13~i_j)KE!^wj`TP%UEja@R-1C?GGCVjJm__LPs4Br=KTt*zum-m?jG0*4H|H!HL)>0GpgdH<% zc`Hvlo`>46|1`>7_T&dJu%zI#GT85f)g6`o&-YZvc!)orRZ?A?UL0pSX+I|Pt>mky zenL9`J(oYytI1xLk=Hf#Q%T~o&hT^8n;etzjM$FLXqO_00#+!uRA!Trkoku8tivO98&F&?+`0z!v ziX)gfZCZLI5X}1Fd0nw6(fxK4;1zSA z9Hlwl!7SVnd2uDVsz-ZVP8*!OQ-UO-td{c#PbEWKz_7%eECXdaKjNz>m?OH1iZAA* zHQl|`;oNl_LaOt8rS$0!K9rQ#5(s0A)|eLuRCbV=_9s=TvD2u|C%7Wr6`HAA2exh! zg3RQQ?MB%BB8UUc1`(=Z&}lAzC=oNn+r*Lfs-?qq22=YH{(u^l9BZnM4e99WWX8D@&-Lf5K;z z%P9dQ*~6sH$84VrQPJDME|Sgr!}(>vz~g)mQEJf=@_6`3%wJYuz`m(%{zIjIi0h6i z9vV~nr<>gRPlFZ~Xsskm<&>Zst5h2&LhIvLnba%FQNK-PDWJ8Z&*KIvtj6y0`7R_W z#KC(hZaL%Cd?OA^<)6vT6L6gLNmQO0V}j>gD$WbHhMP**&Ex;bIuAgRMVPOOqz@ znM$<0QC(7^G~4F_Pm|DhOv4yled$E$tXzD4w`mbSd*=HJZ!C+KWUXoE5J+tosD^rR zj-8b7sV!{j3Za3;sqqKAO6}D6BE%tu56sg|`9uEN>1U&6E5DZVtB;=d%e}}gxb&W4 zv&jyL-JWi7ya-KmxxLM-zC0kOZZW*^I{T!h4w`1LBk%lhzq;(%Bl;&I4$+ntyj6ds z`AfCkdw*)>ksD0Sk!xEK^}7s{tQzck{xRV{a8roZG4CW^k^LFr$AVGsg4T3II?SD< zQL&}t@9q$an|q481aGS;(`L@YYd_-D0y}}Xbyz|9oR6<_=hyiFx8MNe7u#`lFqWUk zDKCbIHYCLnwH;ew2PH4X;*IYm3vNFj^6JUX$_c%BB4Rb1a0gy3V*h-0kdy57i!6PD zXH;x5vh;5A`Yz_{%k^hgcy`0SyYMOfyF8_NVC5zLjt^h>#v!vGHYYEor@Pk6v+M%; zWRwa3aqq z$6ubHAgM6gxOMmZ6;vUt%BPK@<)%_>b7ltD|MpJqd$Y;pQNFVEN%h#LuV0Z6heBF~ zE#~cY(fN=3#`>s#>EM8*EQ9L#IJ_E`|Hq^R;*v6n=#5rR3><_>62IJv537 zdOcNZZ^DDnR$(3D)bRNnN27RZPfgwkU)oFlSA_L1SO8@if&X75xlz8ZRrp0(xH+~- z$0WbkfM6uW((dtu8Se`PGd5V6O8E@^4%Kp&fg)NFZ70rdLE3FdM!&KXFkY5Llf$;~ z1BX6V1yK#}G2Ha3evs&dh-9ro<9bRxs{4X`to)>j#n?2eOdO-}jSq`9E+*&S0cR5w zHCJIhhHNFqo#_2i7FuFZI0e<;+sbfrL!`Ft)W}V7KCG0QxQMc0zQ1Ka;xIa0B%}0W z0SampMGU6VU3l>hCb*);QdJPBw$D_vhG;MUlt7{6-xZzVwBu$2LD@+|{P(wZwsWxc z28KL-Z<}aQr!CAKx*u&Qg{YJ^&7CNxzAQ}jT3^&kbmeet(j)&yeD~I->~+oL+Uvwr zJ2sWy)kzQL6YYMHARnNC_%bN31P1MGIJ$%4r?0|(Um@(o?M(VZ+RSZKuAx7|Qe`?C z1433B;iX^&5Y4cB*#v#IQ-$!Y&&WC?_9>~YgwV<9B~CVzA998X<<{6p*YqJrLfCE! zGyKf^Me4`YYeaHbq~E`_q63(`tU%>a$<2AAY1=jq;3IVelOwC7RsN;#+DnYaxQ98S znqyCwvD*Kd2LuX4SNpvwf;=0;KOo$^OKTuZ2TJJ_5aLF)p@w-J)%?WIE4L* z=HYFBHL5`L>){ZJw)+7hqnr9!ucgpz(yZug)g4Bj@!2m($T9A?-`4nJF6RJ0Dg6Zk zFiRH_X9HWF>YJsu45$JS2s@pUx|0DtHc>v+yO}YdQ-h>d1FM8x1 zZuuzbAn!?co`K2SK`b6zG|}8Zo-VhsHVH&_T&IN}!I;WQNxgRrOxWHfFuj?VYs!6R zulDzi@Y9Mcpc@-BH(+8l&yQa3xL^?1*XeHoZCYUstfI8kr|3)>pBhEwn))MNIh&+# z-=Tt0eoR)An*`m56x{RdEf6TAb)==p&+Aqi6AoWBJoCJNrjuGBoLIGXDS2<5(#MR~ z-o1sh8#7$b7&x6@0Ez(6h|UlP3eKUhj1%l%)|aA1)?*(pMfY}bR9+>ZkFThAnr_FFWlz9SJ!n^&(WyRNI%+|<8|S)whb z_nii+pkK)!-TTJIQJafXiyL1#jJ59PMD-L7N%ES`<%PAL3d9YFBLw-+-6hnI|Ep%l z3+x26IpI>jEX$SzQPM2R?ybF+OcCU?zw9&9HdnWl(os-)#gQ-2*oTy6;&hx6?U+^} z7nK|0+uXa7?Bu0&y=S#f-Ujh)PSjT}9$4qo00^@k(EKN6XIzG9v+FKp$oE8G*G*@_ zq9`VQX8?P$?D;I1aH2ZvSv1F%y9>I@39**P$sW6#f%JA_MEmVq`4Z@@VD*@ z9QYi(8?y-(e8ItjHc+H?6fYK_&>iE%n)i>@zkwrsqOq1CZ@!|x=ql5RF#W_lM!@6C z6)xQOOf=Tu9ncDG<8|F$$duJ8P+*fPIGMu50U*?U2{|aAHlmQ7FxlMiJZ7ShofcjF zZ}p_*SUIZu%Vcnfl-v@{hzWHh*6|K4jtYtzCyA4aYl^t41J196VG0F}lRf-7Hh1G< z2SwNw5Tu}~6i3i*>1J{T*B_$LH71}gr*+LIWhB*>q-z~`_U&Q9bZr~{1)ZbpIcGZa zAzmcO3gqlyOJumM;2z5-`q^NI8Mi&>Do?TKF-Yu+dyM9f{JsYA8iBX>XRYZZnd%Pp zi8tE{#0985pWjFA!80lJh;BR|-1${@ou5IR=V8KI;Us;;VSQ;e2j}$2~RMC@r=EQC3L_(g5}Codkqc@r&v$6HWFw?Kl%H zgZYZ4DOAgvkF}yE3e|u)QaMq4-;GjmW%63wJ3S$v$QxxGy_eGE?IHGFHMA=Bp8MCg z`KzF~_2H>@&LF968L`l$-2_pu{}}cug2Q3ZDlbEYpZ>P-WqhUOQb>qJ?TraJoU#Kr zAVSaT+A;q)*5GEcN%_aEi2T~g>pJUmOC4MghbK1y?#cTr@4DQn5hMH=*KSqn>I>Q( z#fQMyeRmXo3h){#Ac4$!5Ow0wh|J36%EfhaN?49}fOu%FP?9`6-4ftLEHu1oT=aXf z`2Dg8Fqc|0e|;v=7OrLQa%Ca^f^=#uz)*f1(M=lc2_Ll0J42&MirpMB<5e{dMCa!1 zDvngqyUAc0w!{JiTy0Vu(*?Dhl$h{`5ER|R*6SZQ^@_GhlB_l}`D_jZ2(!3~J|9P` ziLwqi=C9KEk~VaJ$WP;jC|GJeph!`7MyjzR7{UY{X<5WUw~bShBoPY>19YU5b@I}q z4`54A2?p(6)>~0$Ee5sdwQ$RqYas;@(7<%aFzKU>j?`D-Gw!r z5-jmqzA{$hI&Dkbx>ITFe!;8rIQUUw-_miD3Ya(PToiDh=^+x3X(p?}7AqxqfN}Xy zKId2`N$j}BlNIm?W`ugH`I!jMxwY@YKk|F4lio}4pft{i zouHlm&*7dWMAu7P8_>T$EZPU2dva61PEb>ix3{M^BnBv;GL4;-EHK4E4#`0F((t4a zzMT4BVisDozLdCiT0vLPC7_}}an`lk>iOx;`8F z^ks7!%DJ`nW~${u1K#TuqR7KbIHH)2O(DpRJX&~wRKD|z9I9#aHiFle@mEuN$M{$C z~+-ai#db_;W12% z%gz|V?gMEA-{z*geE$)Cyw!VuiOv+-n@wy3tcM^?pe4@@7^$!?aiYRWRomFLB~!JA z(i0$=)(uNe^(O<~R@}oZqz(N`1a5C{*97$+=27hfgGR*MP7c9Fb2n0o(ZZuJvjI&0 z$J7YFOatRv3}u}!h(srNm}S^(l$7oe_Eh|B;i=$)mV`vBIBG+?)tj2m4pS^?zZaH3!ObaUM*YNd9ZLZ1N}_8;4+HxS7ch#OS( z^x30{517BP0l!|_I@^uZk=hRGq*q1VzcJ}CxHQl;vu2PZZ}yymPXB?~z+b{a%CW9% zy5wssCn{_6>}L95i0xq254|BmNvt)|5A!HmLUT#4Iba0N{Sbd{vSP^(tknG^8|yJK z#-qBp#Xeg!nwQ6gYH_*Ngdbz?-JtoUa)T9mK3b%v&2FbO%>-f)LCfFzaV^67Gg0MH zk@w@<9yVmog{T3ejd9$Y!7Us@VTS_(Mbeb!4f}((o*aLT_XbH$ZiCwTGS%|Okf%ZI z8_A@{j1WP6>Mw&~#JNx~1-b1U&5W0M67(CiH@a*&jAvqhnfn#>XE(`xg<{LYwff$G z!efLLePUDGQtGZzc)yG2O7-Y#B(VDm7|h?#nk?Ia!aQw+mJcc1f6%4gpFfOdqu%KB zE{ZrZ^}YmsyDg-xXZ^5x&$*4Yg|k}hd}?Lm^Nollp!=KR;?Inxb3eP-iVnj%12rd; zM@si4kbCo`y)PEh#2z*E=umDOXAs ze~z~?*dOCEslE-7?*>dLf=#L0nkHquqD_uCK#U&!@y)fR4$zn6PbsGRVD(^>A-gD8 zkl{W7J8>aOQD`?ZiTit^1nUX7D{QPq1!ake~Scq8| zM+P6ky(wL92oRmDNG>V~*=dc>mLfdAI?Tu{CzYFrt#9SHx%S;bZtXc^Ku@u4tH*k_ z#x+;DGlZ@duVef%HzlPIDfZP-#{q{JDwkaw(#PWu7wHGYuBOpC(6GkOpR>^pKL4Qn z-3SNF-#g$$4F7ble6T<#Rj*y1+7sHzH>nWXxBqMiu<3k_M(hQTM>0KUENUcJ>N3<$ zm10RG>*;&Ua0@#}`%$^c;AfPX#}(ucsS#cCxKX&?j(S0t&pctn3c^fDTog{H>VM|7-T6pDN@TBB`5H7 z^ZW-_{|e?rK|@oEv23(YA^!jow5HAytKCSWcWFyWZLY)Xw;+gG&?m?iZM{AhnxkAq zE>OO}Q+_mmz4A*U8};jRg!&|A#hLr2!%7d%gwVUG-??iA`Fvv#D=uIZ<-i{2n!@G1 z?GDmm_&1a7nso_!4{5G;q%s%rQ3=H1oJc$U#ZF>$MdHk0qS7frvz=D^l1;*h!Yhg_ zG||{0XiR%3Pdg-XV0oRsyNCEyLi-sj^Y8RKEgk5L!jImKZNeb-jzPP&MKaD6#bJiO zvg>I>PNa!OTE%nqcS{g5(IB;OEWsl*mh%Fj4H*N9!bI~rqmK~JXtnR%Bpi$CIxrg# zC?3GMG?2BcdO$NKkqGu}dZgelTU_Nej5f}X8zYWC=SX3eGe&c``-pQ|Y0ec@pvMWl zajTt3(1HSL-sgtbZ^e&2SiAtR;k3Eg6PQ}#>K9wrBI)*|2o%)6vOEJMMJ!b4@nMk0 z=hxfpG(<{)i?<(hYw~Ea=tvKM*1Y@?mUkG>MZ?XNLr2F zJ{Y}x5b(7b6A=CM=GwO~9yID8^vz)Dsgc#RTtEph!|+EOo$CFy(^%MKEv@<*Qb;g``W^-jh4uQLrbOr z|1oyr^X%IYzEtgI;+#6$i6KnP*t>+4N+Q`?2l@`AZC7?td~zWGX(y35TiN;A=6-oj zBgePu4PQgO>j0oe-a|3?+~*~9gQ+42Q|L+j{Um$mYfTeoaUvo@yfg#`<+}ymOJnEF^B^v_J6gBIHHX;Q@@?OT}z?e+qj%x4J z6g3CjI)KD#6w$V@jdaotZc6nq|j=d-d0t@|*dr0TiC{7~?~Llfo=(R*^k|G~#_8xu-LjpTiDgAeo)zr67+u9R&Nu zz6Ve$InUkNEv#0d9PW9$nt%NpP8Q+n{_ zFWG{N__c+BpVZ3O^!Fy%~^0Xx#Dx@{9fnkG_Zc2)W@7E#LFv z>$zvBeU_S1e(5ImePR-EtdKux0OYsWj3K{ee7bDU?~-I%g%IoyMASBce_#d#J-=JK zBVq+L1stTUnv!%9JhEUAF2+MCSmho0^@;)dosTVHbzcxMK@aT1=Y>$A&!uTq}Yp zVnHG>K+{3v{Zfq}_e<9ssKK!!CVk>-7DSMdgIZ%5X{cFn8Sx6N=v18343%wjP}SuT z@YCo+Vl;!HnR^0K(InDD0cz$Q;5x(L&xyU({e(CZ@48_;gWL z227N8E0V|)GimJK-5WyyUQrAgP+>Y0QMnS0bGXlB{Bp&|Da;uBk13?Kb%3CYimY<3m13s#rr?p(x{^d`g#4;*r3AL?)nNEh zaBRcD6>_sN9*Gh%Qfo1=5V<(TQ5iN$d8!X!V$HkluD3;);irf zRj!mWJ$?X-RPiy;6n)xq1c8^o-PPW8f_~CSAzfk_pJiuHiYJ8al2VhmvlE1M5<@(+ z^qz3CeiQD*&|brb}nV5FEfgKm>QJzp-E!utb)nUhDSf@u0rTF zwrv9K>%-4ERan<2qhzV^rPsMz84V+Yfarmf ziwZ6;rZ_0C)I=QeCvs0NLQ>sT25&2M7d|jTENc%@t3!eh{)mvhDugtE0LZ4fTc($F zZkdlOvpo6^xAX+lT7;T|C{Q0WYDJRRdT7s1oLqNT_s!%OG3g#I3QD-W(h#BlioaHk z#t=!C>4R6?Q*0hkbjM|2vLj9q(;CNRbPHZIu|Gj`X&-nMc*jZ~`6y>ywg%p`w~Fe! z?voD_^)I4jg$RxvoZbZM8#h0+V8MB~FQjh05$uKJzd!WjT)ocYu2_va?>c*A)N*Vo zC+cyaK8Vzy)25g^$OYrg@1i$Ffp|(0)$qs>h)~z<3wFBu3w|%~lB#JHW6$2+MARyYlIMrd(P zYMVp_&5>i%9aKa2$F+v;o&MTW*3&H78~4ZVkXmFdP~~h%9X5fYS9j}QSfWFK*?%5t8C9VvCu8*58y#x)U!<5<9Dm2WXUK-TfJpXexy!i) z3zot5hnxAWIov`=?$v(2@yT;<@mImx$MFN>I;av>d$~?em7PH4>1Y=&rjXZcVPEJt zsVIp}gyuw*Pk24@1uez-gfM8@UCAI+sVg9WlRzIp0kub6T0PE{M8I24 zGWqX~`yjxT64Hxl_9%-E!0XbH){GszD=hwhCw5`W@-^NXxuA1zI!=^L_z z)b-lxYmEqPi#&_J3;iEE6LDz43-5YIX^4Crj?Es##N8Z1avO)h9#xrcZOn_Gv>5w{YPzNY(6}YZ zI((>vtdgRxu{r0wPO97D$ zPQXWI`!N4{THzAbU z-p?-@kN^hiLcon^%#i$i+afv`w|SBn^@sl=iJ@ux0w>U9o3RvL_H48Vbf~qjM11{7 z!5{Dy^*CH*+8pZ+7F^{-CE(2|+_uLBwW<}5hkYt0Dpgm5K|pYx+`arEXp0K_BcNR_ zB<6lnT1K!hvL^z#GTT1fZ(2y{E<(ImGT^T~)&Ne^7?YTL-xk7>GFrF=7B8FNcZk#t zkm2Pci^)D==2ANMn^hjg=&`FRgs<<1110PYEqo7VPYC0hXVs%&qpvqDA*+QRm0D%h z_~Q9oJ0$O4j^^>_TyY(LO_i`?1I-q4P!JtFKe6tD5F{)=_Ek`W9s`EV(AFVh<+;%aVFDNQMnEVUbz}~Rm zNWn02qKWT1CP4!NSsyxGf4Bt%96~ALfJ3_$(LH;PJ{m#&hxkEhUHsJ-+M2O16=J2XxZqcn!%Q%#o?w&YV0^@?n?^( zB(t*DtS=ugyRwy{nu|hjL>4mDRHkDN&Qamgx0>eXS!tu&PDW_?g^CEXHfzD^$#jpu z5Z_}sHwmk7q+$5uO@$uGbvdV@{cWF8s*76O za7NI1o=pS!z#R*@h7dea8e>rX#)HK9ot>vrE-)9?+qD6MI1y=Vxoy*TC3lU0btgkZGN2ThxI9a8u*DLNl5h0_83 zWw$OQvDkzENC?KO)m|0=4LCa0P*OC%1G zq25t-%WSw>y#1i#3 zuWUYj@9ptT!rM*i%R9MvE{mALJ)7^FMtU%^GYxKvkye{O^nAFjlwot|g9DtifOC42 zu+Q04vM($@oMNh)pF^5#(Zs@R(aAIcK@cEPPN(w@(5uT4nXA5;Ic zJ2*UxXhTy9D^3(|Fa3FbMH4T*T*|6@kUK~q#v|%a!xp+%hWOjR=nof%yTzwvJx#@3 zZrB_0oAiNS75l^(*|Bm^1s_YK)6nv`C!un?Q<*^eK50c9R z+nkm-TE(7J6Sa?*a5RE^MxR}ZQk1K$Eyir-1GZ*utxg$QH+NoK5I+UgmSmu99(joU zeD(EZBl*OScTf%|qTreaf>_+4fn~SF3_f6To0_6xg!}LiW1 z1^}BoK{Zrm$6@Ptsw>%qn5eOxu*$0pll#5f9`m923(4ORx$@+#3gHcS4J^JlukIC2 z2v|E);e@#l&IG;xA@(F`A{j^0OA}X((U!V#v>fC!tde++9TC66__rNm#`HV}51M73; zxCj;BX7uTPxX;hyj#AhE1oMw9nNKrAAz^sJ(QtniwelfDd57K-bJUjd6{17x-SL6aLdbcv*D-<3OZ2El=;*LFC|8-e!K;q_1^0%5k@3A854zJzN@ z^;m(}dG6DBL};=?)XBWcaT_8OTXrV-wViFo1FW5fbfa$8Gnz@cYBRttHYzUX$1l*cnpE@-02z6_S3>5Y} z{VYw`E`_lEuKGQ$uQjNojRXzsB6qN32zqMceLh>*t(f5s_RaVah~FB}v|+wah~NZ6 zxP}9Ck}Sfs;Ql1^--zq@}Ssyyy=hQ?TdxDC4IP!ACz7}KssAj{4yP^tWbi|D;vr_`6HA74W z^CH)nG%+NDy`y@J9*!wW|JnyPiZrz0Ej=h0NTK{ngdn6v!LYzcU{JnhRH9TCkIxTL zOhP^#Lg=3Wq8mX?vH?c&btq$#+gk=z%U{zAupSe(3vEa|%-7voRzjoU83h~QcjkB# zppXxIC~}wj_`;x{l3yN$GY{xeYop%VJm17?e{2Y3=m8Usq+= z4D6FqJ6%~#o4ZFVq}#fYf@`75X6%eis+!dRwL94=u$DjP1Q;VrDx?JGsva>ckFur2 z{Khsb8J7vESNFciH`Zh`6CW_x$IpPaR4noCX{a1AA?R&qn|OWxqts_cs}39$UMcN( za=D6+1bBan%tji%^Vq!#mRfc;-eYhbG}5h7`?xe#;}(ON!<8jXaM74c9?V9{@Jo$Tv)BI0e((+p-)o{U#u3Qbi_`xJkQsCcdaRTOvn>?S9bd>0WcXMKcxZjR?x74`RNWC(O8v|Gisrn$6WzM zU%i@09gf@7(r6<%X=EFbpHdU%vvS#a#CHY3^GncEl4-Aj27BMiRtl;It+er8^h>eI z+YC)t&uqjOh=9qYiC!76Ag2Ams!oB$*yFn}qJD=_RM8nh+8!P>s|#q&Cn#=~9_CZ2Jq(&s4nRHYe~EcfKO5<@CkFqG?{13R zZRSZY;6-52-!6U`Ye2hNWyq);}3Oohp>87Zwp(gYnoWsa${1OT4}=0qE<2(%}yO; ziB8`n_Uw{#2fY-2K%l6ITDdc>&(xqQWqN6}VBgqPXfBNnh6tM5w*#IIpAEnzna;ko z-^68;AQ3LvCe_*M0aFR2? zp}Gi4w|%IlMPPX&;Q?4@ZHLmYuC=tBnunF%Xt^6nvv{u2AK3R>L z*hFu;|KdropsV$x{Em&deN4cMlp4mtU3rL)U%A4vK`$TiQ_P4H^;-YjGS-^?B+7cd zS*TZic&=L3GLYMIk`i-DV<80&G7($jmd2RHtRrEXs$tHQ7-(d4k=sTr)Ek=%h9<5w zVA3X62z!EMl@aoRqykz(DorO`Yc~3KV~gJ6H;}ku{e8kBu`5>GcxXr^$(pjT(jC@t}U!DcqF&pLyJu!*#j zxw_NV)ExCTUyqpWy1HtGy6{&m33ovz^@GXZRd&%G#W#JODwZP!V7Z_kcpH!kDz|}p zB=1s=zk{t*!`Ime3~HP}=~tg!-(hkDDZN88a<-J;1J%3}h(exs@Vg!52aId|WchA5b;tluZ} zE6EMpN;crtl=k}o=Skidc%l5=+mPA1T5s@hV}dB+(40L>V)eEzMsSkzeZauEEME4N zXjjZzbvn!S$la&>Ie3QO*(E@I8Sj|f64&Q0pwS2+0>-T|FpQSH$D^}^Mo@6hQqTFB zX?1uApOs#uiK{5(d6Uk&M8d-uUABozm^&rLd(Fv3Ed79AC1b&j7Mlm!hU7*)z#@0D z{ehF&Fp|%R$>l;<+ex&@Dv)||T6GMYjr@RlQoXG<0O{;(G9UZMpG)D-^$|mQIBw1Tl+M;8+kaX(M@SGZ zYJp_c^;n+HsgblTQ?8zaIb{SyB(Tge#*7~&fZH?F)le`4po?f|t%mahVRkmF2y zg;UFCB*?>4X(*K8-nR0AKDel6AuYygjD}J&+wu4lK3Z1WAAvT1zCB)w0wSfEP`~`H zysKw$lFBVW{UK6q=*o; zRUAOD>aZvXC=e@~h9$BFORGf@bfO5#;=W8+BB&U``l4U}p)L^+0#YJ7p@I-0gq+_b zq~H6U^IhjU-#OR$rWk^fBUPa258@nAt()BaBslm9x!S=leS_T^34HkLdQRa`(VbNT#a5pF(yLwwgb7W*FxHQ_(Y!Od_TdT! zZh?$TKcMp^mqHQ3RGiD+1M356XU0>Ti-GwhpGBs|6MYYKNpl z*rI(#_lmIOq>R}oNzU7UjuJ4ZvRTw!ZwVoXV+D!R&M77C1ZmpE<=o&yh7BsSSOGE- zr#UfpuT5*UDfC2bc4JW8UU#q1Bqtb1Ka7hRE;_2=gN?na4h9gkc05SCJP(RVxE43n zN!oV~cOk(LG|qvm0yY9F-=ytsgv46b?snCHnJy&vJyQ~TtL->^7h%?cg|X>{wSg~C z)NOM;e}$j1p)6o|PyaUjZK zapH67Vk?Q-_x7?_3B#+EM@Uk^d4=SW>2M1C(2yYJK}9vB(VmfpXc#u9i1U=WJgvCr z{;BUuo#*DpzK67zvhkO|76Y^!;Pq+SkzGaS3l>uxwqo*qAdtWlt-wf%#-hVg1>VXy ze*7TV>UQ7E;3i-~%=tw?J6Zm18$6KlTbg)l*%k2zVAA7|yx8gu8wWHMgg59Ok((|) zFOqi`B+Y^_9*L3&LnYQO-+}2db#RUZ44b6$krrei-sk|u71lqRz=#dC5j9Xr(5U*g zv{eSQv$r#|5Zx5vV&-!@<_b*E9zBxy9z@ERXuC8w zc5fdu5{x#^|B8~mjj8xrFsHII25*I=km{)N(<&a<1#+JB`{Vsu_yJ9Zl~>I+L@bK6z(Ef^1zT) z!MCcPdM$)^9&(G%y@7{oS;{v_-<;JA5OIqWQxq=@G%_?{=6b(K0|JKX0B5C+7+08B zeT4<`yUGj?Xz;p)BbMGLA!AOq^3#DTiL(BIkLTsJ4tE=j5(gB= z0r*{>52z(gyhULe-`rv(XuzX=Ql{;|ay!*MU*1DP8y*sG3&FGtq?6TGG?Esitl3Bq*M@FTl;UP;afs{Q-C(WiX3}6%G^sa`T9P`Uf z2gvk&v;P43I;L`ow`PJp>`lh;;=yAy4j3il@t}{A7Sr|}#2#7=1n1Mr9J#whog^RD zCHG^+C!%QoY)-YvIR56y(@-qN3^?qQKQLLWGQ2~I}FpIpn871 z2F0r|pJQ?bE_cO|srXjVy`FVKkqpdR;YSQ>M28{%s}qiQ)-9b`zWDWOPcX@&SB`JR zZ@gK*XE7XP8d2FSq@{}$z8zp6L9ESZ6x7g6Ol~w#SB^(RQF$I3e!kTvbX0SGD{Vj4 z=+2fX9oRj;B`Z~&!gdWJmB>=>2I^%S zM)J?+zcTw|tr$gg6NP1=ICHPiBc(^Wd+r7KcLEDD*JB??&_$QG$R|)6@Fk6xMNUC{ zdiWSk@bxPB9<&q}Yt;7mQ?ZA^07I7PHyqk%F3>gmw4{pePy1TH=k#qcTBZY`gJ7AG zikN!B!iW3$z*!)|P7V@9yYV|9_RSP>i7`9a*lp>imG!NOJjlr@E+2SC2{>q*cYP=Q zXs2udp&E`yLmcz^Pvm~X{&*L0(UY)jAP5wFlW&C*M-+&*)9|FG-zulsg8pEFfQ>$l z-y@@=Z5dmxf3k(p;0Lh6cg!xh0nx+vr=CJ|%@_CFpWR6mZG}`>a^yC=tXGm}vI~?z z3U@MKfp6JX7jhsagB}64`WbdH1jN7Umpwxo9EQuiUo1xtcwnAAlA$$+*1*!JV?LP) z-U;{CUg1N0(gpvas%^pnZ!jDebsVF@woiwRbhd66xV`I2Pqnb|)?&U>R^&Ul6$l?6 z$HKZ1{R8iESWb*G$<+9YLBNW1qTA`tte=?*$%@h7b7EVOwN2&t!DGwP#Z7?oUsVdy zIDzLUoE(O=4Yt8%-2fO>8P)PJU-$ABh%21~#ivyhus()MnU{K`z39}Dn?0WVs24~K z^p>VvM2$J1hfJEy zB>K;hqvSnP!l^W;;jV?RS@Nb28B|?6T>R^K`4!3awpE9!lT-irBwcP5TWPnLDZRu_ z2fE8Ca|i&GpS({3KjDdfUfJBLztMfs=yp<<;2fgi%l)n|+3fKFp z!L017Q!EhoW89lf2F5k0yfAzT)pCvC761toZp)m7pi)0IV`$kGG0&jdgn)8{kMs+9r^7$UX0IIC7V*gObWrZ zlNXef^7RY;X;WYG^%iS19BFQwi%gJFAn@31S2iD7*kLGm&zEVOdGg@|VtaPs(2n5* zMBi@szNX=+@m_`ohnR~Gl+?KDLRDb>O%+qHlw6yR2xdUoLeIdYHf095AOvX7)dH3o z3xm4eo*30xcpn?RKx{nxW*uqnoY@$&FmO9Px;}b5M?a0#aJCxTRRAQUGGL~iDJPBF{V9#pK zj>`c(tW5D|dTSQO9tJj8G*xh4BtJ2$Pd`154(>aRowu4vCKg=#+K5|I8bu8DaypG)*k_rgc;GGUW1JRB}K4YtVSZ!m0s` z0d?YXd7B@CE|+z*{Aa9Wl|VmKs;zrB>JLVh$F+UnYg71hr|pS)z$!W_1GmOx&=CSS z2NxZ1`*05%{dcYj&|#A6CeOaLU$f07dI(-;u-`(Z?M@qGp_5)a$2_)Okyj-(=vhtC z&|GWAWF?Z^D^a)-okZlM-3)kBsetmh1bYqXXjxHtfom-bCLbZmWE8I`1PT-n$Upcf zvXF>pcAz}z6`}-i2bj}RA^II)jXku*3#mM(MUH#3jQDPN@?IfH5Wz1&Z9i_1cK_Li z9UG)=?lhJMmNg)0*f}vo&S>Yse9qyJwDa<1X#Mgi#kE7#Wo@D?_igP)FGX29hntax zJR(qUQz|P@6Mvn&^j_qTc%gP)$iP>tXl8IUz^h#s}#8{F1k|>6aXhRXW9T%4v z^15BGd|2o#1@f@d3P5*m&``1+_uDa94~bIXBFP|!?ktk`x>e6A@4_&dVT5CNrmq}0 z8R+ms@9|MG%j{h#)jyv>Kdy*WaWcO8QyX?epk<7|uMf6NUp8p3GZg}zj1%&H!aQ#C zS^0Gn%*9qybxj|>X|^2dzEZ1olgP~we^HxLHeV!9B7<)9qy_CZ0$CLi`@O(?d(zNl z@!40u&w*TjGAMzOX0bjn?#Y}=z(T1Lqx{*2YTTW}&w4E~0n|j8bZ8~ddA0?UU7;D6 zyhM_fAzpq4sF_fLDX?-P#H@rW$aDHDn0%6N{2CB#k1cZBR58LUPL^i&w6z!AxP1od!v-*mS1kCM8!5CI%_V9P;M~>3Zdj#r*-wR^c z(VOCta`07?orM{6Ku}+Kv-4DoBfxcS!tS3Ifml4#uiLGut>BmYQ-OdOYxF=#@3j22 z$6CP^&XIwFf2o=C34!mXrj%#~*sWd#_XxT+6UvY5 zBMompqE8U|hT{Ra4ynu5ZPd%>D?))g%(Zk6@=@s2-c<;YWRP3!`=V-bPShXD{5a(m za9cPCkBK`u3&8?6}_CQ9(`1@FqJlOtqS@7(Fd%jJ6c^%n)wR-)TB#o%}G5?aa z!4h~Hrk0gY24TN~I*{w6ni}?43h1wq9<(CC2^BZx!(2p&8b$+oj@8)kR8@I+@7I&Oc$+Hy`Ahx1m z=9&{)|7eYkmCTbG0cwhCX&>#uoLySFC}cZcEm_U8)|=Eqm+!{1?1x(i(#2)g0`rr3 z9^=PmCyc@3JU@s5HpYHz=O1n&HcdLzIZ(1dYGE4n3cGVpc9RNSWc9Ejb7dUDYA0t%GWG1i#B47qiAA8r%gAi|{85-TO$ z>2f|nyZ4BEpC;}>Dkq37-j2?5gbKNeox>dxn~;k!k}UB&G&fCLuIXnE0X8QsosP!E zAuD;|vkRVjT7vO2aK0j7x!3ZJ4|H{UVR)#)Qe~|woq`muhYx-J6#)5ZpYvutg+4Xw;`|ZF8F$YEngT!Ev zE$%F*C`zfu0`zta3bBOZi-RsH1M0eetw!Mmiyz67&I!x|uWrl@JNG zxJfcqK4VndVYtQ{pqOYv2o2DPVkk6w`{yTGb5~RZI-773bW6$|0c-KL)6UaAt zzUNY7OCUhVXyVqpfm)pyt(2CX7k>tDlWkSUcj1jlv&9HHY(dJ7b~w%O(g6U)*`=jr zeAeTWrAa#&$vlYo_(7gWd8g%(DuZVuHu^i@HDXVWCR4{B!b8b!`wV<%@!HCwZu&WH ztTVnOTq>|n9J#8AcXd~d7f50yKTiFFM85)3J4EoWD3gAP^_%72s0K1SYuY0ILb4H{ ziy$ZCvk6R&BH0}>seh;PdW_kQe?-3rx2SRq;@9sxz6VtF!{4;Z7dhLzr2Rb2#pjaT zTL?Y8_#gMKAIqiLUfC>CFCffiK0-<4)~!%o`bP*7Q@EBM>fPghXCA=7UKDAN$!dqn zo|*gcF4Z6?6*s}UxiJ&;uMTXN?*W6-y~33aqHU3|mU%56({H9RL9a+PWUEzE<3@=Y z&3}-A%j*AyMHhSMGgE(y<;}E101Z<%?w0AG6{Y+wCKLiOZ$vvHCh+f&9H9!!#;pPw zjWq>*uQ+{Q8ue}zl%jyFFhs|`N(sZY^N{VTlQsQAIS`cckJg4GW*n27CtISj^A)_Y zkVENgaVj=8{nD9{a3N^ntdImCy8ePB1HYl(6ihg>xh_<#5L}xhy{l`9f^%ospgRBw zWRPkpsUZz(XkNEfV=f|lWdEAi+Oq{K@tY<04C-A?Ima>HeE>~rnA98qL}$Xnj}V#X zq4gjt=&V0|kpNAh$i5LAoTjsTg-M$8XBmymiMQXdq}lVi_AR@YqLS*>ZvjSpHoXuR z-<8+|rF>9bw|tFqlWD4R#_vjcJt=wtr^EdeiV}&^bUF9Y=?yY6oM?=1LIfth=fqPP0KsOwd~$s{wMA*V zPVfQn4V#c7(FZD)Y2vF04cs3nROb+{inqfO2iGPEp9H80JUwpse8r;(KKlWnDo<)Z>gNb{<|;@*e>zq zi!v+=ywqQYhbVWtH(h$@BkH}54|B{Cr{4?+WIBsVLcv6%gadgDxRQzySX*@w%bWa$ zEVsYUz`sB3PQ&wD=F%LRg`A@De#SkW7`N&gTHDYA#ysU42Iuh_Ro+*CB~uYjGL=?zYW#NCBb!(BBFpX~qG%$jeaIuz zrhT%P;6tWX*}N3Waz*>G92=jfyr^FW%W&})QAvm)rhaSz-Ywl8@Z0jG#f)Vk8wCI! zWBbtYxqMlEnzMRTxle)1&z}zJD^L9F5eR(#OG}t8tEBp9?$&bk@WBUhzkN;440S8t z`fqBODEX1sH_9%qxj`&<$MWtGP`C=i!eX$&Y+{7y`wa^d7yExceQc8h!SD8fIaPj= zAoxfG1Mg(FZV-&3rRT)O5*ud12V2DQ&?YK+79)mt#kcN7DtO z&&6zGNepjSRF(9|XT*-s#JdX z4+Rzo3qr0>W=A9HE*Wo8b}5wT(?jcP+H~GPEsvX$(jy03z0tNb@t2+V8|e#Np>kyj zRM6%OgxGDrHf}8|CitG~*xKqb;m!)Y!X*D#^6q@6)Gpsh@XD}~Bw;lgMnvNN)gGt( z7C6%mJv=HqK4pp8Shi8o<&Rmu>O~e6W4!`2mRgFd_G;ETJ_1IU;g7epd4WJkK=yh#A4dCj!2+f@JLS)`Ii2C${ z@|HXs_4J1Hr6iLHNnMH=hVj{8iwdV!W7T?mJI&F(nHm55mL(r?wh4KmY zi|AFaoZZg}XMOd;U%ui?<#u|*rJk?u3WeORhRD2)x_#Z!MJ@qhqs>+(>)q;~93P7Bn5$pn4;hqQ<4*%06>6piG}wLWGV*>qR;+6{6Ve(Yr|Z zpj#ea`>o;&^^YIj4pg4i%kfA>qk2L#F_d?ZQ^TVF{Rq6sk0@gee~H7dsULBiT)Cof zSwYs1+sq4Bt9!oTGxCYV$wMaJP1NxIUgNlP0v&8bJ8k6uFXO4a5qRW4vg6O6IUcd_zKbN{{qKp=#+>c8N}<+EEh45_CO zdGOcDS)@7*tbtqpLk&FczbT)P`rH4bm*jt8qflSxf8(;{iGX{7x`>UpMsn5e+&f#S zo~S-2{6F`R`VPDT&+0#ddgYvIcZ?~H5qhwciRl6T)mJRKR362q6S%N;pak@^D; zaPn}dr)x&M*Fqg@+sax(IDO2bDCq+KO{}9Ly$o(yGWh1=VD{vvCpk;l0}hO*k7Its zt-87zzMP(X@8Wb|@sBgUPGnxVl2sSuww=n$dL?R4|BB@RDX{TEy^OvR+#Uzt(wZ!b z*0?kKp)s&eijNkzEiZG!hI%EeeFvWx;L(SpAuH0UAzfau)z~HX=+GgwEmItW+K5CJ z4zGFE0-#iUFX)_II8{uv0m#M8d(gaBVnp<%BMnQLqE&)J>|&8{C%5CwFllarxi-}LOtcxr-_FH*4GrpTNKo4Y0Ajcg%b7RG;pIR zs*TJmE(wUfEM18vEe&Ov3LvA+d1I=Opt=2$ytT)Mo`7R=dSB+n7puCWfK!t7s3v{H z?2AlD0r1}xwI81{CT%wTjDz*HY)z+2ib_eWV0Fma=ihQO5i7o|zBWfdlq`UZj zG>Eg#G^>mRa`c|~Txt^QS1u69*9%s~=hm_(N7r{I>4laA=5&l5i>W=?q8^zIIJt}k zFv!whpjark7nS%gA5GMnDQN*>?}6X4|76X}O}@kjt{`q=LJ8$p(qO;i}14yO5-lj6* z$VJPBtiy_@>pLNJD2pG{*)VY-dio@BZsf`s_k74(XHXjO1aygWh~;kB9T%bE9+82C zfu7A?%o>m+15ZBQu(*EPw{O#9BGVOPIb-^Fi9BbaIrcCrVPkvYPhsIwA=x3~qPPUvtl55)Z zH?&&_qS)@v*w9W!ES?-H6(^G>nzD6O31YzK9babtqBJ_?jEnGRFrG)1Yf$svf(IY& zy{ALYAe+{jS@*bJGUbZT)$jn(CGm(ICR#0crQzXX7}2uYALcM5Z&`o7NkSSNp*+qd zsLMd~4ScvarjgfqNPV%oMADM*8nFtvE*H5Oy8|y__+^5mpACs)nlgq=<$WWYox?;d zqnyLCD{4XG;QG+zM8|cCZp0I1VBqzSS9sOU0ll?&|EQgKA|B`6&#tz1jTs??krh?xbpw_C(WUZpPvE$VF$I zg~s?~#gBkAn}WnE{UT4Ax=jm;%K+oX=Q?nb(%*=TPC~7Pt6D|@c@`@zt)pfR-0AB2 zOuC2qmYyBE8o!7jc}0C`98b54}{!gVz&=QH53k>T6w zy2BzJvyBNc$sv4M1n0Mw>ZHp*Y55=9jqjiLHm_fDDQ8iTe#>7QtHU&%3TU~+@}fIG zVbv=mp1qs0<;$*z4TShI%Wm;mJbrR*PkY54JRRUj2^|1IxZ}uI8wur8^Hno>L}yR~ zE_lk}fv5G;)=s~@mHQ^YeLem*VeDS5J5|u{cOOcP@cHd;M8Fw=dMTM-4f_`~sZZmz zn6&q}<1t6C%RlMm@DE*=H?QilVbqj_YcIjDJ$2US!gB4ItQ7)V4G*Ur0w}8IUv`ZxY4`(ssCZehI)iRf7%8_4TeB`K`=_Gl~vzcE`5T0DZXrw*a;maSbJ8hE8C z>ac6&cMa;*%xjyn--0kH0O%vH%gnJbj@*6Xiq0U5R~5lZ@!_#6E`>b(QP#Ao%h7`l z%1&1l&o{i?kGoqQ&e|BOm2tnqe5v(|Qik9snN6})u*0h9M_KNSkbcbm$}GS3UBgbm z2*Z}~QUq97GBJ^mAklVuz$zgOXTD_jPeM(oH~HPaIypVaTK}|Fu+bB?aQC3UzHg27 zn>Wxq*bA>gx_M8LCvL0xRySPwo4*@}Tx`lbF{W$(6gE17N;dXP0EHwtt)sI0SSXh9 z_zk?es^+{x*^SLimJ#4EK3U52_*N}Aw*v)5gCcecj65QujR=(K!q%Qz*;Y8 zcM%>Uh}r#nF?j%%aY<}ZCDL^o|FZtd;j&_aEGCmpurMrnd9j4HZfqHvyX?WxC9xc6 zP90Z?w~&vqAJ#@QAJ%V_Hu}3fws_t<2;4gqhf;YWY_u4}mHy%l{Djfq4l-WM8TJD}jOuX(3a;kX^k_6NpFPh4gv+;r1X0YZ_5J!6#RaJIru(dbr)7{w zRkreT%H?e?06bE}tI*uk$C%!%0{wI1Qn!sCi(f}}`-HBRiB0IiWGz$)JEn3FFqAzX zWDhda#QzMdvu7%PO0iiMV@pcQrwuF#QtSn=wA-Gm(N!tLh_Sy`Vcwrygy}SVH8FE^ zcf)uvzA2V>l!RI>gmOsYVZGOCH~g<3l+*nw6susjt`ugM_7=SRkhSvN;i8J=uWJR=)Ky%O(ds|5b9O#-DYyJq`3YY z>5$}sWTB+UM&Ja)Ji<{2v)+|As~pTv*XZ=%$JS^Yq7=L)Pam+-QF%B8;;jN|zQsF8 zCqg;<=Xq)`KW?VKOle#-ohJHTbk+h0)=I#7R(hu}%i!P7Vy-+(YCN&8x3)=$CV^$R z?C#%A`JxKd7E*2lNL!x{b)e46NM$upo@t@shQPh+6~**M*Q%G<)Z{)%MC0@zDF2(j z4fRL=pZLk@+xgF(VfDBFc^p^$?SIYj{hx=<{_jQw)II)x@@}VSr+ literal 0 HcmV?d00001 diff --git a/experiments/multitask/figures/yield_distribution_different_catalyst_base.png b/experiments/multitask/figures/yield_distribution_different_catalyst_base.png new file mode 100644 index 0000000000000000000000000000000000000000..b5ca593848e807e6eef067e4e1d297e8723b04b1 GIT binary patch literal 101527 zcmeFZ2T)X5yETkDj-w)sg9s=|1yqD4DjAGG6O|}gBsLkEoYfIVLBN(ENDydp63H1Q zDgsKAn;a!HNY3y-2XNkb-+Sw?`s>zT^?g;htr?{`VV`~WexCKLwf25?S3&B;u`|cW z$jDBhrEe>dksU82BRkyl+pqA=d&MeK_)EzC&V74jYh!ySeLEvEd3}2u3u}7|%tK~J zBRed{+KLawhvMg8Hnq36!3uM6S^j+h%G%C^>vxqe#c+|MHqshcGBVT!mdV?qDo>RzB7HDf=aMW~Hqzy;E1-K0bB$M)m`m zxA4-|M>&IT9t|RUWY{NheyS;v#P(*I&0V6S#;D1#NvJtA-KO~y zT@}AP+~?mv0~qmW)W3g){PgVb%zyck>%&2(|NPQh{lO!V|NOG@%DYO2|NL@*`u+gL ze}4Jn7>CV~|NPSV@ae)s|M_LmFKHIl<=k@-&Vr;e%_yR1B?f7shxQ{{PKK#$~BcjKKi*~i@8cPdFo9=_JJHW0_5?}@vOKA zp)OW!B|QRv;Ha)@(*>&ixqU3%{f*xSJW%EF-sD!lll%8OmRXMT{9%8xUg-+j$+`G1 ze_Ee=x-By3s|@81H(G9>#c`>!>=r9!r*Ud$e7-gDHx`Os=EoWi?VVnkcdmbA=%3Mx z`D~M0F&P?bsMF(luZ0TtIU=#^D}UoU?z4>RWdE#=s#c4MiwZ>D-OtFC>3;>J(q19- zAnqfJ<>pF7TS&26u@tS3Z5p1@(HA8Uc=$*psQu(d?MlB_mS&!rOX}(UUs=8L+VSl5+#oIc1{m6~mo_M&udtA= z$@A50pY_pKS&>6u;}XhE5<*!Om_&@l_~^@p@i)!8X zK9%1~Q{%j9`n6IyZ~q?k3}}s*gNl6e3*JfQ(t-N4FIe*OMS__pu3juIXP-c$Z|vm5 z$hg74S`bPc#(vL9{Q(w2c`5Uns4(ltC*7OwpGnsMww|UF_kBIMW?kbe4UifuI z-PduJzWw0-F^7-+BUnco()yfB$*vmALy>3K#`cc%^ZX3t&|mv!ka=H8MIXyGzxX=Q zrL(Ik5yOZJHg&ortwb%*hNNHQv&Q((tE$(viX;B6r?{b{0BShY`<9WkjIze?NE+s69Gm0?W@%JN6H!y zt*iM?lfzT{l%w`brWC8Z4dMR&eFskd+bCqZJpEPSb1iKcefORB8prn!Iwkne#zhYY zkPdXw#@{_{u-~A{s}0SB!}|x5k&Rp!XXp+PDHf@+t#hp7$(iy%_ZN01CE{7FBAE7% zvh)8(`fI{!`!fc=;Gy3rGgA+<* z>hw7K8%i&|h&Nzx!+;Fpi#k!2%y#+f%-zTM3p1QZ0O<3VqbDO9=)QxRq2J5*_1Hwr zyQ5U6)iqXLp6&392ndz04mFXh77u-d4;5agGbE$_9<0zQK z<$@^TC%GsQCk0;$hN0OPKa3>=b7!xS$D67}kyl+}o3Qe&lI>BWhLcK zLEQcRvuDquQ8ng!pz3;b;hB*)i4)Mx&;Uy9Vte$XEeSJjhRVs!}>~ z1oFl>q8~1lm{)hkXYLIqB8~U;uq4`mo+1#Nau+T(a(uT9^?zX^irv@VH^oR~<(M>U z&Mae>W?x=4Z!aC&$*kW4a78oF7>v~i&Gh>`hmRc5TiCe-u&}UwZDS+NX7D4sYHBbJ zhqE84Kgr6<+EpGC6!aEeXG4E~{}a`ZugI%Rxl*Ks`^|>FqAX}@8|lcYMrWd0nCo1W;CU=>u5hVbNv&4V}Gv(5?4wO?Y;}%Vd$I6 z%IhIl)D`Li7zjn!af|*EcmR}6G5+Jz<8JS6HXH0lGjDB^oj{(;OHAg!tiky@MCGGHGH7%*LttQ_de?g+vHNtQ)3WHcNWrYfcs;(=K5cYWuWC?KEUq1$x@}$Z z4qw1h_K>#r2HFRIW{0uBi8*W%Mw~azZZh!ZBd@w^WAl!JUhu)%;ZM+mx(mm9Jod-j z<7S>OT)L%#H^iX)-!$-Tfk!cO212@Wr6(sNQ#{6JE1^gO z_aS@xKo*TgW52+QI}`#xGgsJbZp2|Cc;#O)P-fjr#Q2PSpcit*h9`!zOsH0I8%vv= zOL>N$-|-ZYOex9Vv5YY8_F{%xyuE%7$&}t{o0~1DaRoH`WmZYg{YjtJvXSxd zG#kjP4ei`qwHGw>6s-n!Vc4&_wM+eUb26--(TC14RuF`x};DP zWI|Q@b?kgByi$jWmYVixZvDq>3Xzx45fWbIZ1NF!F}Gzru|WRKwFn*qA7T6NK@;?l z3{rK=iZjG4I=LIe`RXRlh&aupOYCeC+M#5aDEFmgYHv+Z&U2o7SW{hX=&YNfl+c=E zqA0fb_10u(c06HNf+r^V@Y2)+5*-o3Qwq-v)9$%kt;DX2!JhpM;#tqk@XBQWHu+5h*UAojT$LrQ# zqGe%`uIn;N&3XUb^}0YN#g#~JZ!(A3J{_*IMcf$ytH>)3`yD8K2NnHXThw4=Naz-d zqVmnE^Zq0lV1yWRM%4M;uP4p~>;J`tK6}mL?s!v_&au&j=a`5Hehkj6BQqmVeEkyP zcRid!jCclD#imk}u!Ef&Cvt3WvBOd|m7*c-kZj6T>+W2%$Hua1jJQW|P|(04J&Xk9 zG_{Pyik&U4s^9fwPHc2!=^>q!40r+oG_rxCsQ?yw9XfPee|$JXI5Ee1Sx86&5|(<7 zaU;Lm^0YZM5OyNAh?o@PnHq7`e6mrX z{|k3@m{LqLljrJ<#)zwgkx#D{-rd~qhd+u6OJ4fDfnY5R5U|d~vC3*T$tx(dZ>{uay?gggG?UjLj7v`q#`0C$p=$mQ*4M9lo3*E> zv}b6g-FWgVhB2^&Q>R!(r`Z19?c28_geO~5;*sB3^%l=BEXWeF%sVoRVR(gN;n&G9 z>en}BD>&;s+}%~;B~Rp8bSbr^s>%|q*XBnjTN3=Bt4Z_2t|Kp{7JHrgySi)qXw+d2 zw!PD@;x9N=2Eb;fV#l+=?X$+<;Nax9cwf%QmASd>GS58oj!=Et(1ogxANk!^ZNkPs zofxhQ?10CJ8GDGH8>(r0d*cv{O5sM5zp|1Nzy8NxUYxngPI+Y?WnV|lh>r{*f5=Lo z>9r>zU00tOl-(ez^SJKt+F93ZWei%0G@o+rTR^fiop^aPM?>741FM+M!61W$u|~p& zCr4P(5N$gCJWAD?D1TP#K}2L^dV*}&-nf5YLLa=9X_Q zYc*si%D*w&T%DVQPK(fTnCY+3YY62egz0%sv>*RN#Buto_klz9fVPO)0SqE$UtaSR zPb9ukDYVfi&SA%!FdrTtJ|p2-8W$hWiask~)%r?NJcUwxmAOhNQ@be6ZKg;H=6F8C z!omW9uURy{j?qmHU`sxOgw23A+&WQFe68A%LsV2dP;~yU(;W8)7Ke|WIFUzEP|h)y zFPp19JK2?!M0$8zNeNfJv+X9f)T%7(IQ<&m>b?Hq2on--ISL#aWng@S0OV>(kTvfq zv^^tipA2EoV8c^IC0N&a@Nk0_S~d*THb2_X7B5AaG;Ukam18nB8m5<@ccSWR(79WS zod$s^E(>Gxb8FUFeln`)5J=1ic@=@sTUM+a^`a-irTbeqTEW{DWFN8ysqHllvuxZQGAv$hW zQA)IqHNN4CG=UHqdi>IX0|zvV?NgBW1;;1&%rJRvWyCwW1)ApLWg@ zM${4z2Wg5i;-OKF2M-=>t?=@)>?_si(DN!IIYSvC89+a=D5^BM!NbB*?Rc+BygCg3 zIpm7@@^qK$z@sA^bqq`fy28#s-j3RyzN~Z`8B{$**tYjZvdE3aeNvQ@CJXvKm0zB} zV^PQCHqDdd$i82F2Js>DK;s-uGkuXDnRV@c>N)mTxyOdt{K%*9XzbQf$5eJ5V-CGm zxx0&1=x8wd6`Mx)lV4A?d_&4}#v9Su>BoFOLPyRbwecC_oh zH+%;55+QP>fve(s{mTpaj(KKn{AR6}lEz;18a+2kimljQmxXy`S6sWZQL&>8!!1WN zOTWqonMI?WCNUmki=s|_E=ijC7U82V2{Iuq83lc2<`>!6%vNT4;R#Vm3Q;ZNFBC?SUH%$-OZC0sC(*27NGaWgw(%Jd%=vVzJ zTLRe#)i~%(?1HBiY0Hue=QZnm7fV>kg^q){nZF#$sbvq9cG7zBd{5WxkMk~LTi;h1 zzf72WEl+DOh&Xc8IY7yPeCla`wyeYlY1vQy>ae!~ZA1uA6U2^X5qsy4j}9H-AWi?7 zJTpLB9LOl9>7!q`n53Si8_J^)B^+WL4RA=K`^8xS$CM^Oare6+UOT47Tsc=B?D_#- ztZ@D^BoW9TqbhppeSyofcRumWO4W6gJ505sDwea#mLrV(7j@nC8bvm9YxfPqNJcW* zk$sZv5*aWak)-nFk{sv99s?L!pUSx8ncw#S6k+PiyB z*EK-z7->gbEE6|rinLAD^K_FKYcmJt0{K*W%xh6#0wM19Fv4WP*X&Q0fqQ_Xay%Gl zX)iG`HCIzN`Lt$ABNg5B=GsDj)}cd(bQlS?CNvx4TzoUH8_Jg-vt<3<_@Me49RR(a zNYkTYlJ?oMj(ou4U5;94IXM-;no=L#>)viWyBIBvHCI({gNfFd9e2mC+mQzjuy^_L z=byjGBC}Fq30tQPVaCD5f3tEfFGkEQA7FMd{fi0b2JO9vAS-;X-E(zhXa*p5B{6$n zr@}XI`_nHuT@!?IK9{pzKwjC_)|Oqb+&y5diK0#`QY}>l4PZBiIDQ#e2hMs$H2NC^ z9o1Bo%Sjt`H8lxzTq0YMgU)^}fToH?B|QgLy8!^|L7rK@dv*WLqEDggBDLwsN}rg_ zSndVhQr*FiPdQ1)X;6i&64$P^rz`*pwZs6v{FLC*li<2E8M?f^wShH?1`a`^TdTmz zA*Et?EnwKlaATQ-YQ)08C3WT0wWFZU0QzaVg?8UoR92Jd~bVd zF5RA%fPetUVry;f$nzI2LSYxayno{CwcI>Pdcn7&4Phl7(Pyno zzqM>bytW_xOr5kIE$*S|N5hp*Kh>J@ih%XnUK>}4f$BzEmY6;Bcx3F2b!bdXOh(y* z50Ci^V)s$r-5&@JCIU(zYX*5^w`1z>LbA2g1N5#5k=Q)cV`zBzs>iy0*x2{4u}?BQ zVBT-_?`*}GKP~>0(=2X|k(jHddL9_)G(}&~=bDzPmSJWtb^G>rz^e|av#WE%A+KMX znma)?2Q$>cb!Mf{O;IX<{?mLZgb)1Dt=W=U@ucxj)=&(-g~-?04K*O68|8lP{lQ^p zYd4ox550!{NjUQ&C7G-nV82l2u6s9cKK_-Qc0lF6h4sfjkMfdNwQowF^g&pd+9b?rheiK|GPZM5owHKu9w)^KTq%goJt3}%GjBws-r_4P|bV#vm%Zb zp@D<&Xas=f) z_A)p3*LK}Pn^;EI@8=pwra5+#t(VI-=Nka#V61|F+Z%h#ltIw%vLi!H=V^`vX>Gn2 z-+Lk2X)|Rjx?(Fm*!&-!Q|%eWYh!Pg`rKwyG;)md7f`yT$uXYmXea;(nK~s1c?KzM z>if5Ng+}Z`qrg;3QgjPMdMlA@*fBZCHZpLea)DLvsZ*y6Cvre#feKv?-mbECOD6tZYj!-hTLKIz^t7Fn)90st^T41f0#H0o3 z-v0a7b5DJJ)8MIGq1^}uCUQ!@!r^iaKmCC~>d=l1m>3GP_*XFy&~Cv)r_2UP_aera+FTe|mK>&7$jl>iz7v$B!S|!vw3TsksaR zFF^?2&{CVaUJ6tT!tSf@@U0A1i3(Av7(!wSggsXT#KXr=e_x-<>VR?L0KuBL z0-R&6b$|J^#BVe}>fF)S*DoHAb~|?DI#yY3LKM|t=K7t_Ye;m5RHS7mIu+uzWKy&zkMy4 zEl-QR_|%W_V$)*UIB@Rm~VO2W!{hk z1u+miN}*V7r(TC+$Bz>(#<<4;Z)4~j4MY?n@kJ)S=wbRag^{}{MYwzW(|7!UHQ`o&Ga4ygdg)(4(Y+5-c%G~LA) z$iAO1g3cl-EDIn4S?LS?h{PmwveM`Jv?o|BE4urjAWifNhqzrYSKnzAjruVBc=JSA zXG$(hisM=wj-_8I#Bg=h^*x7QZAZwW{n6{?aD{8ued*AmD=3sgA|_QPgdI|R6x@Gi zc@4^hJlkPO20@$a+1c4LfOfvc-JynB37$3?_!JGF^cmdi*U11~ry%MGyUgQJ+J$eC z_9L@NIVk{$w4}Fh-_keQuKv&mrr`#NGQw`l>2Mn;8`x9eMWALq|DdD8xX43TOBBM6 zb#}ubIz~xZP!@XU`Kfy#BOv7wh-+itZBOw-JG$TLKT(JjjD2-ck)4(G4noN6v#3zv zYC+PEMp0e53uFV%*!O*Ro_Rwv*MGds(qO|hA5Lidg0%sq(GVo)t zN=!#7;8bqiE8=ua8c5)7#gU@enI0j?&rQpnUaNyg_5^Vdps&_fmobGqFH`4|7rhmW z?vZ3uU<)YyDH+%_y3N(lP@g?}1&wg}kVi)cpOZP~KvgxdHXc)u2hkG)s;SGn^LuTt zbTJ$v)4st*p}0Tvne|rTK+cl$v_7$beVmIqPLTm)(Q<^z{eih+IB(69HnMsyMvujN zAkE6+mS_93fcPO+QST04@5g`2(HA|HqrdJL^z1^`ewh`-1x(S!#%!PtltBdlyz%hv zTe;WVH`Ft=U$W#uISy!f(dLeeIi%oFKf~DA*l5&I7eh#Cp&jC7%^HU3cVlm!xoQ@i zAqHSQO2Vt}$-mz&Qf^c84qG&z;ZVJ~=f15mvTeNgYBVbL`m@MTFDn5$P-<9ZL-9gZ z5s70>QE4=K?%xin#xi&2TfRZqSuMB4@81~Hf4%Ox0BL*z_{w(REvac}l90!RF_w|S9;1%JKl$noysPnI3)Sk+QzTfp$r!0N}cV1Pk%U7tu&O}=}M zQhhI^&GYfvHv4;UGE+4dJq|rbgN&BUrSa#`f=_k(29hA^4Xt0!_{4&!MeGKA^cAv% z*j?)R65z+D06pjDN%_;B17eg??H6W=VyGW1_3EmtO@Ud4N8f$IQ@=nbo`7fTc?4H} zy6+3g%6FR8&CsjpYq#nzFRKk;Fc&hJ=_zv2Iep9&s-zkfk*a@_a|CYFaK-5(vaL z`W$=@s*KjyTSq`|tk1x@_<{5Yw3Ft^lP3`a1CT0d>q}EpK4-0L8Zu;FK|%*{5rHs3 zH6pGIAZU}I`_n)!a#=3*@%1%_{FLw5U+#ewHI|d}Z_m_81GV-$XmYz+B$S9Ca3(|U z7GmuG25%6#UX-BiO~|{TIkuk==y@9y^m{>bNElE#DUc0eh8sWz4@R1T=rDksHI{oT zyeis3f&yNh&LxrF%dXCGLoOt=zay&Bn6Mh^KU^}ffU5wi^ijs@7}!|y6~ruPb$`EkN8`PP7!m)xo15H5aL06cyOCU~s0)BE- z_`-z?OD(co6Hq9304dxec9EMK8P$m1rdsCe5H@a817wLQhA82ixek^1Rm*OEfVbb4 z8SPqusS?{-B%I+j{L9@vvLqJpYkrn>>73+KA0HW9`NoXM3nmF&pfKbL6d}4UcAICV z0MwxiAgz{XhqYk`S83t?oLL8Jv1zp}H^T-v&}X9j427U_Tlb*8p?3LUf6RvSAX`1qTd;`WA@M`B__ATYz>& z!s`A4!wynJ)G;`jf;LO{>l$tmbZ%29Z;A(f&O!k(XVGR6k;n*wO0Ua!)WolA>djEZ zzkn`z8>Z`eS!==hBfPBEQWvZTlqz)FJxCcX(B~Wv5{HG5IHrZA*Pb8`=P6BM=RrP7 zhFPfb>rmeakPWK92QSW)%nGZnw5{BSS8$4o>eUfy<9?6^RVq9^#5SgLkR~Av*%pjG zB;CW|;yUH-LRt%u;xRu4KAhnjNu%nHjt;w%%pd{+(b;u**M~!< zT~%Mb@N2kWcwy4ZXGwPeQBVl(Q{0tTbjoTbRas?%??U+E9PgY}04^gA`ax6*3qdUn z=52muS6!VHC^9NQ>!_AES~g^o|wPAKEQhg1*tSkvEx!SIf#m)z=1f+`Wb6;qj7E9*PE_J>K z#dE$ROh#3_^vSSVK?s7NwWotC1iz*W#VI0v?Xty9{BWchq%6xiX7y5_s$5rkoh(UU z=mHDvb?9zY2mqYpiFo{XWNPJN2-?vXvobVtBq3WAKz612;lTl37-i3<~!h_wY??Bu|QC!xa-@R4)}8c+(7L?#5>mMxYh2p6mT z#KP(R8znz_%;X~IYDgcA@_p2R?EB6m3SJUWoDHLUCgsXJKRHqBpl7e1xt$4jUazmt z03YK%tx?(vWS8a9c)%toB-hymY|UK7@dJ3FZ|njol9h!e*?yu0VK`t6#zV)L!*u8_ zamor{6pLUh)dP_;luIu<-bIX6TwM2-5BWViyZ4CA#bde41SwrXr;G0cgC#ha@D)(v;X zjDL>56$mcpA=Ech@Y;5O-A-sYZ0YiD#2*o>d(g*I7={N@Aq~hYM0{jH1YhX)sBS>$ z8A6ndqR9Y%fX%TE)hg3fEwVF$M1YVI>#M_omUSlJSpr(j&|EV4_b%>j6=PaEORY1qc~@ zaPTP|u)QL-iF~Wxh$m9v?cg`#AVD@MZ1n=>Ml;v+G2}KjQO( z@}a~sDHyp^lvCd~Dn-%3)<}3cuUNo1CJ$*Gol_OK&tE}6nrPRuZUa_}C81nxcT`&v zjf?Iof#B2&@edblEcN0vr)DyMI)%1T3dHmUWY9Kr0e?v_lx&F43K^bYj!Fj*gvKFi zI;c?yp97>?So!+o74Xq&t)B)L9r8fWPhF0Kgx?w91@(sObatJccEJ|*yFZ+~+myA1 zamzZy2BOb-LDK&#pjD_;=H%*503?0QW591Sa2;VY0Ttu$0Eg~VvB}*9RhV;}2BqDp zRxr$&4x@9n#lWr&x<0GEURtZ<_Om|_QwBU_=vWVk>*iqDLCjoW7<(wPjX)u%4E*L<*ZFn?Q5|bW`Movp7FUS2#^o5-0 ze;ILA6no3tvak>sWGn9{$WS9dW+Hm3iNPEpq`_W=KRZHvBkoZQGOC4n)}FVZE4t&= za~iJ9+42okFY^w&o?buy2M;xoMY(9vuI0$p)m2kSB#@7nk@5n(THWn^Fl@noQoylM zG-TH4(gp^waitvywY@EjLUxA5H_FSR#oQ(n!gSx$yG>;jXm@8L)HMJF%wu;qa2KpY zI!DNDVm3sj@y{r}nIZ5ZL-vHsX`_os7+MF{AaBBN6+w7tf!R#>Wo;Rfy>Zcl9ET}2 z1_{p|u^N$2{PIX@1((`;hBU2$OdwHl#x$8}$e=X}vPKrHg!=iz>v~6O89IUR$cTBu zZW>ULyg+@y3ZNn_R4Am#Lie;Wu!ST-|CDU6PZ6~5+d5q2ty_7w^>k0Z_5Kp{Y@C7D zme*GC0y59Z!v%jZ{me3OVJrs;2xtw*?soz(Y#K69aMNS}XU67zfG-Itl|_&zi@}#; zNvf{CP3kKX(ZafR129SlENkSV3op10vaFUH6j7l%0@EOi$X0C5`(=nds3e04)-(}O z>rZFkBG2ID^C{(mRKWdia4*;u&jO{wSs-xY*fANZ7LyT>l9b?k3lh{c7$7(mnmsyn zoKj#qYDBAp$ED%$Ni^oBinSeJ1+6|UIuLvnBMcygs6Ke`AaRSlN}AvVNg|Uv{1%c| zewl)-`4!YEL=`S*!V=^KH2Rv0Y(<8rA)aPghDAZA}c287%!f>=ey8_uSH+N%cDhU9ra9c-zzeFQezrqcz z=0m|S*;2GjQ%OIy%;wbZQJ_42)uQuj%Qf;_fXA?@)}Wqokg9wsMbsnDx`X4<6+|9O z5_lxGAV?iMdh}Ds+H_sxl;7!aTX)JnxPrn8#HY;B#}B}F29@iqN5b7tcT10NRZ%SzP~<$yKbYyT>NWWkJ~mGmiKQ9vdjN9+tZv*-CM z9iMJJee(tUo3$;O;K(JElnE|FQJs#h8U2b>j72p`5bqHK-hA_ILqoi-$C7HV$4W1P z5D~z4^XV~Il)&#b?W7Dq1WPpdbXjq0x^P~50|Gay$!Hwg>$$>0;71l_gw^dPP_mBG zymO_u*rK1y_2ldpSAgNAar@>*vLGk=C#zo^Q;Q}ceX2vkvMe|P@k7r6M36A6oXZI( z()bK2EQ3(6!2|O$k+`RXh`MzQBxgb&6!V592&+SMB1!;igENvV zz?PotLO@A|VNzhhFC_uTj21lZC*O^=XbvYzWJysnwHRFZb#mzGj-%w6?fT(KiA67k zz`5ozo2A+IdsoyqgGsJXr@e1$?gc$C1UKK$MQ1p^HNBcMHr=eC>y=5=BjYBoO6YyJ zJA5khe4#wpg=Z`2)8&+9YvWe|E0?*gZPH`!3Uw$~pX z+4XLD(}0$54Tk6k<^YeE0K}q;4QRqM;D9BX-)^_Nz@JZf5c_%C(GLeJ z285C}bbC)uu-7rTzqh;EQ?f4ZVgzk(<1Jl++2i zc~x8BK4?kaIiXa&U6yaqs8!G=Yh604l)N!V%$oW#p`7ms8E^>-*JQxV8q1AMPh)yQ z`*!CF99x1rMCX=qHk&efl__S%b>rN_gaKU`;v=HZ=tOalMzB(WgNakkG=q&?d} z3RyFdAm`l~*rG}Q8{H){D?CDUD2{i_2BjzKO_KTz0f3V8b*VWZ6_cb?h zzG3kCHFB%#lkB~F_aLI1>@C&t7K5jHA}4BKICL1f0~E??S-O@YYEZgyYP`SwRQpRc z;0@D_VjF#4+h=n0K`cLYLGR!*rLeNDooBo`#=1+0%mooncKugkD(H29rWTl4@LElj zBYw?X;DjIn1dNLWgh8mvz{QPy_C^%byC1bS3Ef{TmRN56}8638*2B<(T&)7#S{tQ$Jd@wq=!|8jlx zaSGl!|Ci5bv<+(gvpM9l?#4cbYI|n><}@T(tCLXw zteRgw%n^%J(ySaA5Zir9CTYdno$GsP+A_FxnTPmw$}ss<2;qrPgiK=uv&(uQI~!!%zK0g&#y(? z6dWYbxkvE)hPS{9#YqA-uILo^SUxP&)3PFzxUE=$(+NOW?OE>pFm1R#%;q)^*F> zH2^|2*q440)cs*M+5=t|BWJ6Z=O2YG*BoyWqmiawpR$vW;cjnVURr8PoApXvfAPlH zT(s``mK|s+d@7V`rg z<;A`(6Zl5NDKi1!uQz|mCBZbk3eRJ|{q`;o9C9YG$Y&&3yf6{?s89y;0D7S~c+W2H z;&OrUG~QT;SA!JS%3HvyCP5tO>W0COENFYh?DtqPa`t?NYbQQs6tSzHh{$w6GWF}761`8KKII!2=((y!Sxttb zv%Z9I>h-ns(dYN2cuH(7zJmNQ)S?Ym*Zf@Uf?6h6!U9K!K0rg3fd3F_TLIoSKX+qg zHVbBbVNNN%tb#(mwhgRKeG2es`~$KO7X&4N3shY9>#GUl8R5>lV{wNYfmuV!QCYTa z$jOM$ql*y{K0}uwDUGT~?2RAYeVwy19xBKspf)rEPS6W-6NeF>^B=9q@>V_fxjXrF zx0Xv6TVz9z^CHq6n_~2I3yBdty{TZ*Zcia2ss`v!L2IIBrf4}pKO}0*uq+_9Z_p;* z(YwJ)ChcNVqlm zU(lL%&3RVG$G3V(*U~6N-n(4*{Ihzxh52mfdckRw_G?TG@S6p&a33aV-EMlYkjB>PGB>h=)9bG&~#+yacbh*_UVFXV-#NNqKo#yBmAH%~KXI z_Nc-OLj+8Q0*bx^^pDJ(&^&$eWNcrVo0g*(6Q8j^c=HG8Ux2ku6$D>mH}I(l;0Z?L>d%rj4dXe=yd0=AaT&COGEbSaRZru?|dzk-j&vLA8o!osdNFnwz}et}&z zVD%MFpO!8_r$FBzgk7h$y)So$t5@P}V0rXPxY|zk%_((X&28qk+_~mS!)Y%O{kGEb z%d%wMYS;G8dpoI#5t5inVQB0%IYpw0SQA-fZS%vy>~mm9#_XUcGAcq$c$oLVB_Bm@gk8;lRc zS9w_;^;`v#6#{NDdST=s!UHBcD}7tA+yviB-jgkl)DH9=yg#+m!u$lMEA5d8L_k*0 zlt^0uCgKR3VkrIs>Qh~yPy@Kh@ zmqcJn<3MS-hs!mnqagK`s3YrIlsyo_4&jo4_{1q4+JXgm(o7zUFK^zwsgkKJ1k2uJ zpnyPDPA`J$TD;3!t*;B~m;=08{82?|4zv&~*K9`?6v2;aFoIz1y1JpEVKI#~OxJW! zP)&sMVR8Np-CR(gmq#k;erI>vF|88e-h~22v`BN__s3OkOO<`SuB&~XsKA9EuM8IJ zl?^!Se8d)Cdv03A#swzL$bsh>59=*-xyo1LkOgm0$kx=>vh(t`yg$?mLw|R*Akc6M z%{ySG)j~1;>Faw%R8+JVdjWEM@%;g0AA)u0D0|>|y8E)gHi_6Uk#&x{Hb>pkLU7|{ z0+Em~(GP%|f3UpZJ{T!UQ!rnIwlwy zUXalCPz|UDyuFttE&%`b6?`Y0bCRiUITPUI!ZnZ znkjwY*;A+R$aD|LHh5uD3d_JEAg4e;!3afzh=4G5HqNjD%KphF1k;3xDHI|!09|iM z0*Y0rw*U$jWL*>jf!1#=WAf^0SAf-xh`tS{ z^WP|kVS_{mm^VUKm$w4N5_GrLOSGx%q@F1y@Gs=7u`6emj;;c+featSJ_y4ipSd3t zC(u)U7@Y?WgpDIQt7IT!)I@;fOe<(VFh*oRO?XF-EKx_;Y#>$>&W=z54ThKx!Nod{ zS5V)CY|~wYP0HB%9v|qsZzULL1jr@MJGc4r8Q4`8kd>niSI;>iRWWiZIJqAPDIlI3 z^RxT#m~jDUW-Uie)30wI0qXo7n$5s<%pF({#3rCs>tha-Nh)+>8Ke^h(!gDW$^|lT z9i#w=aU9wnEO9tNIGmo*8H3f|kc8R)GwGkB-u*zU6X0S=pNB?`Mmen`NPD>-N6ph_7f$%biAdHMt!~g-FCEcgT zX_}UuH88M(#&M=6r9;<^Q$E?cxw%;pVL||CXMkHq3svp{#QIwGGB{pGd+qM+72K!f z42L>?-R;t57?6kv4a+3A6@m6qgPK?MFS#BA$Q_BWk`82)*K&~vHmB>kdFUN4dHf?h zNu3ChP#uID(fcQPsdyd3lVrVLoljbtw?9fYaB{Ok=GeTz;=`mC9KL(hPX^~MtBM;O z-n9G;t2I0&<68X7K!n|NC(qNTPmxvF$c`N_}wq1iS%H_b)S0}L{#ISEb z&T`a20^yX9sIUkug85Q+=g+};qVsvG6(z%=qKgIF6yY&g+wJAO+Hqb55-T)BOvi^M1tx3pRA$K{ zu;tP?kosSexGR9Q>Y91O04r^kfC8Mi5O-GCUmfOF?5_=0eVw)ptqy{bVS^NthvD)0 z2B04A#Y?&r?mN+(&+^)?FjG~4am)>AOG4>d8`oZfQ`3?sTL$2gIXlUMqk-qfM9blT+n-(nMz9c=K`|AMC3gqYDdP_$KzbiFxA&;z|i&< zqAnVTEOAES(!Pa_j7$UeuL@#7yktLjP3R~^eC)6x01gjVGKWFSnE9Kx0Qff|!Ln{< zUI9@PS@3`4%3io8i^=3~|Np;iw6_WSfb>*x`$yn3Ws4P*yzvB_qpYTR#Mm9mc2y+d4;TV@RY0`uu)b>Y07`@^5-ou4;v5FGgfgQqw|@2im&DcYmc6dNT6~FL^3iYoOj`fhmY;t+bDb_6zvZL9 zDy?~GLf6-tRrYyM?j5Dls+G@ZO)FYSqIP;(A)XrNnz%r^kM@#17G{4wYPKLKw}sn3 zs3&!QCEL%dk$F2AJaXG!Ovjf~)QJbHwDC8dNyJ=xrJ|`Mf%YXe9SvU0)2C&%OUX=; zDS5L=iHmrXsL{vYcsdc2&o7^Y!>{AY?FCna(K&W0*Z#if{y%gB4$rLl>(d&slnvOd z3K963c;xveCl3(#mE{Q994S$F=@M+#t3?%5tEz5G6@{+^w|q_(CgKf4vw%DnsEa48 zW#4~fXxU-IT>kUgeXvo}TC*v-X1Y6#MZWpFA?&z@F76-v@oEPZ?3C1pb0>9Y6GE~Z54Y`n$ay}02y`L(?F#8T%K(pT}J zoBdT3B%ILC759Iib=|Z2;L2t~*sYC@bVus~iH_J_*p-J_pw(Wr^j67V$2}ODUo_}* z{(b!ZKjzQD+vk#J=r)fcnMN1~Ll53MfSVjIWqHF%K~h64T9Ur@z0N^)M*6qUh!i}l z-lR~jQ*meioO|7z-H;Ues3U0^wy|qWeWg#E$I^>&`W}bR>bbvXh56U%-tLc~um9Ai zy~CpFAn0CQqfg(Q^=j)mC=j9-FsW68cYO2>3tyG!(=M@W;ahu0vd)-982gt@{+FKe zLblEl%t&Xc%Jk5{r5*neD3seUo*b8(h&E%!e61kK;M(bsiEs?<%My-z%<2%*s)(!b z@FMW*Ibr4h)ug?D%^!u%V7kN5{R}q3LIu1Gs(CH+Fv1wtDm-D$2;sk>B!n)^;NHcdO{$Ag{jzq2w64Z7WO z1m|k<&FBTbgEhn6iF3zQCB={Q)29BjSn zWuIMP&gX?KM&TKJ^m_(oTz{VT^Y7j9C_(RJL0Ml*`}936AB@dp4$Le3#ijnCH8Gjq zJ7t+lPX3g^D#|T3=t0NcDH%;m+FH^~`W}t+^EzZ?*S7~@OPYb)1q#bLhTf>bLW7dw z*ImZ6lKSW?!NqsCQWaUYVlWW_C5=qM_FuXEn_0_PCZ2i)ZlEKqX(h1)ey5_8+!a=j z;fFC1xX?n3=f5t!_b-Kq5Hto0X~n(*cg`Njdg2B z|Cl54wc=$iUrkYxdE(kXGGRB60GrR4t_l5i;>40Y8ixm8m)0aumW%dim&rk2rhKtw z;51x{k=>)IkMoLlnp+wZo+7#?8|3v7lD64`fsR^xvbo8Ys!d6*HP8UR4M{` z&CR&>JbgF3nB9hXyQ9`uc|7K4-sCSQkFz1^I@1+w?TFb6-2!&PB}muKKXF5)8-tju z3Y6S=c}enb#=wAFh=^eK2cj!1Y)uQW`SJR+AuLZj8HzbDCQY(97HT_Fy-%=9A47L} zS30uz=eqdmKmK^wb(lF`0#=ofz;gw z5X0thc%ccTRN^Xvd{j(2%={&d41%;w?UI3I%dGY5-CY(8nCZE>Hs ziJ9k8a_}Jvi(4_b+@5WGR>I#ZN!6#lDo+p{kTa>`evUR9wdqVLhl>{G^KauLl4LL4 zXRCE9K3G6}Z{&x_GEfqj*9V=8Mji2vqU?KZOl*r&cp_=$bU~zzYzP&fm4Xg#T3Y_e7RDvHy1Cd)oo!8j2rApNTg4q9Qw-Z`^5Gb5?fyz) zp?+_EQATq%aUQwVhykDRm%AVUx6muXW;oF1Jd_#l_$KG=EeSgY{0trk^f`S5e%z$H$q}}km&NkBv3@Y*MSIOLBswXEMIo{!^#u&)sG$z0*RV$Gz6SI*iD0c zuN(}bg4gqbac%8O#c@KCFui9DxBm+41L?lxtxqcsSpbE}!2e!?jb|x~KAupGuNvyr+ zKG}{h4dU|8`kb_+l`Pb!eM4UL7cN(^MOvf($z|NH;fXHwy-P@zytIle>_w_J*ntb# zFKgw&9Ws{7i(xUrHrtUI9?F44Q4j%~ia;>tAOShqvd`$*Se~akQc3{p1*oK6;m#GF zTe}DTKkU7CSd-b-HqIPp^o(_87)1rd5-YWj{e3vs%;g-(ljqsb-fORQulv3? zqR|t;>($>ywA}}rBr176?k~9{+wtykFBTh|kWnTl!NIwK>mjM?!O7-Ny+gvK=!YIy zJ|uWnejVtgJ$43vAS>t_B6&gYtFEptpZnmzl?F;f#RCT{ks1+;g|IdRem}nb=WEu1 z2WOy7Hz^GuBX9T^lIohaorGUNr80yeQ!u#*R1Vex(jC$kK-XggU`%6UV@qH}odP-y zP$P^xUT7~z?_(p`BQSrZ^+JwA?+#T=;Dv+)Psl4EK}3=OVv!002~p__auCF0gW1O# zoeBpLEs_BspBvE1g6>MEpqK!OV3=kLK4J_mwF9#TaBFz82C*=49C zV9XW~4_@vGtfKk4$V6&ACl>oyHr;Md$pVNyEo@!V^P^lHzof&)5klVuUDFdr8x)mw za5M$li_i#%{t!HW@50e-U77m2C7fxRR*GS;^;?rzOTp@m9XY4$9_>EWKnX0bLAaK8 zr!r8l>|uE!s6g%F$Z=rYxp%RFzS;v?N$CCkE+eCYMG9wB*+Y~15$|e!8AKhVv8E zb@>&?E5Wc^0wbpg4~B@XHck=gpqS`Za{0Ey<~&41t;w-6Yt>2UZ#2vXg4b7hFkQze zhyii92na$Iu2NNMD1gY2h66PriHJqnX_)y!kVdSsUK>!$3~mB-J@MAUk0e> zVVV#dcFeMWZ~33b^MAJ9%7a@kBoRAjR!Oq+aSibO|OGy8n83d0i@A6vq;(t00VGAZGlpHGI2rz$eBP+>p*NvK=U)}nvQ`RO4Z!pn#!pbU6An7U)I6A z_5@~zS5J{eBD*<7*`eb3eIg|v2+^LouU~J^T;O~3o<3m|b&Ryf$>vC7r*AaoI%UDc z-y$i;mv}S1H_v?O##ZgHWS#!@=B!YI5SK)QOZali60Osu4!3;m#xQY0z zG=2o^w+mnE@BdU`K%Pk@%mr0NN}CIh1_DvYi&0Klo)~4fSC~=PdatqL$0bf%5IYw@ zJm@-KD&-`ES7Ac_SzOKo)O|>DWH9$}Ma1+6BUlSYi5F0F=h0rO545x|+8 zhb;w`O`Yav)wPF_ofm++6f|%VKls8`kZB*KGGNF!5J)8bcxl5GT*F47IX{tb40#jq zq!ZxK88v7#^#>*4gEwt9xKuhc`!~SGTUJhN(Pxs>h|8DE64kJvHo}(p!{SnNsaqR3 z^8QU$`54lGp!Zk^;Pl06CUBXM!9_8>YK%~f&6;?VeTMMopMN0;6yQ>-{Wsb2yKM(1 zlOZ_UA8M)vePd#F!W_Kv8Bh-O_8^e+_=Bm0kYmSgDfv^ZDT&~`BAb5hK3$)m3?Yl` zR}IOJ2hc76*^0B8a*e4@h2BSA1yA(8K>)V1S!#>Yc|+oI1@wgin^Sac;88|XkrNiO ziG$^U`rkK-w1-~+UBK$$Z9BvkDC2wH*E^Fqyt7R$3Hw6H^Cg(G)|rHvwl*VsbOA9} z*-z7~?fjhhmp_=`3|r-vcupVt2s86=`ehm*2+`Be({yD|shSm(dnQ_)?nBtl_DmGN z{h0=huYho)-NA>Yju^x3(Aq-0RiM9Gelb@9>@*knn(08LcB2kJyxKG^@cegB(IeyF=7D8NdL?YMOx|I&9G5#V88u#!UO7yd_Dg)rO%P0# zkUO#u<0HP-6{6qIBHJc0mePL>o@r&hvKWEE>wck{i3}%Usf@rQSZKbppab!!1M-{* zU}Go1czW%tKvEeHJtDvrc}_;=ryK~I_JBsKQVqzQmTX7bGNT;BM$`4OK;Dl9yAa0X zL)Q+h<;i-2Oap<%HzZECxg=(Qi(D3vmE1SOKuP3+?jQ)+S>(o~=6Pl<50Qm(xPODA(_8T@vLIc1IMyvV!1!_#WB0$!aGth-| z*A-_%?hj-+g*B0+}sH4uy<|?CW3F$p<;q~;RS9SNa5h{Vg|YM!L;(>?mTj5HwN=3v`sod0Eo;Q zwS}Lf46T7&4DKuzWol8>G>ID$$Os(VQ9#&(_Eu>5eE}baSUg(!Xw|`?~zU)>!0Az0rK60%`qxpU`Ee&qlp244m$sRJRO*Tu1sRRiq6 zlu|9u*_muSGGsyg4G_{Q<*|#aYt#xSDD#(Ss~;&x7o-HVPVwskV}q9Jngi4ZT92%m z9*+6BI0z_LFD^Np+W7O@_S?^0bhs~13wu?D!APZ2i>nkjto>`?$!9W^7MX*~)b}T< z&bmEPvT^+RXLjIV*N2M>5eq|7W)YvZ$jU==T0;4^=M9~wPBlLc5l zxQIT5QH~v6nu7qL0IDKI>zsET4kV1{Sl6pCZc(QX7n+e-5M~hPZ@sim%Z41lD_&kmm+Whd}vs#uJG04KBhw5xn;i2VC25Alk|sx(V9z-OEEZsQK-b+8TJ7lTQBxNx5)KGm3#Y-m?hd*iaJ#Vs z_h&GlNdvK<87x{adaAzYZefH$f%Y7fdYX(M_3GzFDA_~09VPp8q9 zU~B08S1o9$?@Q}4(nFCc3V8aSzS@T5DiBnV#0XXIa7_=;@*uVc&~u(c7qh2DKVbJC zDh4wi#leBJrd(q2>7Jr5?TxdiVcLG zc33P(EPQz*^=?&iHkmlrl3q5DeBe;#;8_$2mJg4&wVwJkukLemSXgLjxVRT?b?$!CsZVHUdVY4U*hxw(I4wA0Y5x#ci!u|6!KY+6&vK|1%n(!xybl=#Mzh4I|J zM~Z~ju??-`$tN=%5BJi!z@XU6Oxo{qG{cZ>3p;{^&!J^#?Bzhz-VN3@NC5_Q6cULc z+3@Iqbs1RDgh2uaj=l#F7XliU$h;O3q9V7(O=#3XpMjDnWL;}l4Y~$>o8VhO@)&}~ zvWameWfanEq+Rm`7z+4AXzsz{KLss9lWKtW^lXCHAqN8|*OWAl;vI1Uza(rppfO)KyV9TGW6wF_k$k`cYz73BegfC4;{cA}yfa(P5?N~Z%`Fc&RF(rso? zuP-!?QRRg86*QUPLr_a~Km~m&r;C^{2N=LK5$5}4l3^yw>Sb^<;`W2ht{#& z0WWz_xa1WMGZ(UXMZI0FKC}MB>lGWdDRHQu7xhti%JM<=6A9f%v6v2J@_dy3H>aX< zJ?qaFFUpFFy$5Owb$8B3B zHc;W}R(}VwKIE3Lh0*now?NRjga+UxQ6LO=^+46$3JzmwaD{VS?qG79c)-m#@$+|T zjp|q@BxsFFzkpTxA>>^Qyd$_Jm>*EFt56)MjG(dmwo@0aq6W6i(jx6}>c;_P=nq+3 zT-sPH{L6$IGcBsjDAes6RZduvBdDfDoD3ns7$)?H(L|fS;gYkib%uTDQmKypl|!RW zFXunr_niOQJR0jlAP^E~$K}h@ZJ2vGdXh4Ey5+?u>`e>P+WF&m+uXlIUb&{q4R)UJ zTgnsq7N@Y6R{U#vs@!*vUDeg03b3Y%0j9Hgq8cse5@5+FH;kQe*tm7;3*>UAy^L%W zVC7#7ONQ(c`SQg+Fi-{c_6I~DrpjIb#1@K|A$Htkv#djC4iXMEH&C&%m;;oS$u;QQP6Ittt?6 zdm??i^JV*mGR9dY7m;!X*_7#OgnV^|qDQlaTmlOkWsbnvaZj8mOOz<_`0xi&xKu)s z2AdY}xGPmV8U`sMX;_1U)L_#Q(T@Pd&~iNK1}>plqV)|Bzm&yi~vTgyFN*S-h-q)$DdTF9Ejea=KGQji^!c$-c(Wb#auwgAw5 z4-&de2u8<@BPL*jtS^Tpb%0v}5Diqa-LnR3!LkkLglO7ke!-xnZZ0=|2c7+NO=MvC z+FO6BNws_^)~C9i{J#6wbvH2XH1hcnge`*r(;fkm;jkD?&=}{OdjxmfFS`1*5ryfzf2tD zX|Uv(zwJcwfFT`evbzy-yAuq>Db)kIDvJfOnBNU3%fdMCU<$MbG&#`o($wCJ0PXX@ zI-ab^NC$CDU@?fm8yK^_y0?hSlT_vAlt+zNEKucD?DyJK zUA6Ojqy4EPVT-a~oTdLE-N0d^7xw8dxLvfa%}diuCCbgJ(@!3nEBVEx`B%*~6_+}Y zjz(^a8yXD4BEYV4x-PtUb|?*_6hHOKBybqnm)lqUbRH75l=VE>ELi@rDIsXDhm5LJ zEi)U*?P1Eh%?qzW7U~HpO{~lKqSP@92+6AGNnrCU;Wk}7buJJ=6fopK6Q2jppXySm zB9L?-KZ+T0zpg43Y=E!$>6>)#{5CLE&`Jmy4oJM+JFy+G%{;1Fur<`ad)M4lJoSPV zYq|)vN6SU|5HRJ5fF4)uk$Nz4L%KoxL^j~^7rdZ-inPeZZ@HFVI4K?I@tmrwhTL~S zu{Tl08SoajMSB=s0g$%uHc$tz9M3eD)}Q-$4N@**IkiSh6vTo4ZWj(k5X=l4pb@vs z7I`Kj&&IY0NMW*nlg%Fp9R(uTs~^W^sXw@OqGasn4rH$aw|K6!_m3dt0tcbHxQH8k z^hze=|A&Y|`bRbT9=6uy` zkGFC&gnob99x(FGu$mw$%xF{vuU(v&O||=5W5m_xp2?KE+`SU8yOif4J#dnsx%g=X3fS(pmdHx#@fWIfQ%v2_RmE~8MO5+Kq&+S z+OiyrlU{Pm@b_Ik5LY@tf6JY=ht%ODq!>QF3n}a=U^XR$m?P}=JNtU|UnsRef>v1C zDXY1J`B8b3aOk;hNlvJOT-DAmp)_p9D|3F!jfZl24Y#2FMACfkdZ=e1EGTz)PC&v{ zICl9XCd)ydL)j@DC~Zk!PS6IIj&$kG zzsG#u?@#qU$dF&+45vo?zImF-wF&m?&8e;ZF>^kseAIfQl67AeoX8t`$_Z9kiD6$4kjfM3jV! zx?7L8?-ZwRO(@-%P};h<^K!w2i@VnF*~l{6ptaIE?W6b!KrS1T5jOwFReVAS00Ac} zO7RJEkgzK0c2Id?PHsY-v4KiE@Uu{!p@Uuy{x`Y!KbBfW0AK>pJWd8HjIB?bl zP}hxvM>fP0L}44KF%C%g8WgTwz1kAs35VP~aEB_+%Ntm!rU-^ch#J_2*BV%p&%cARDP_fux5DW{@yXxkDLKOn^2EI=BX0(LFx= zJ&Knm(*f?+?Vux@m^UARi@Jq8b`^pJt_Nz;pseZwHZp>UgEb`+O~)D~b+jUoe8%fNtJ=XCfrj3_n=T0p?oZCx^bS?%WG=lIeCYynJ4 zmWzbR&CT0;9+6KFiNr>>)zLt1cYzU9SOrDEQ6F!m1VGv1TjudVIpTIQmbuNuTTU{vq1TcWcDU7Bd@9IC;p*65V-T*v8m&k=Rq zwg(b!yk{gtHATSI00IlnB3C9a`+VcNupivkjWX>kt8yJ|sg5eBkxnShuD;a@;5ry( zv@#-Z-GcopC4Y=F@!C$m|h4Sr6+KUqfZNLQqamjx`tR^YI;a|^qr%)Ndac8`5+*h5)`n}+x!cQ*!y z+T16l8{74;TXgvNtx!j|;cLl3LY1GAgFkZ~Y;pJ3=8QljJqZ|gfi%k`H)31qo=kE< znXG)E+q8f+7itAg4srECvy9Fy7b@O=4EgmNH<|_NzGUzNi-Oios?~aL!CuhH* zGnu2>$qs50cYfEbTAwf({ON)tN<9(Z9Xi7K($LO94H3x2(4s+T5fIDG#T~)jr7Pgf zuiEU86PWGWUk~kvR5a${ihE@&>1s}DlYyZOj1j56}CzxN+B2ORp<*_Mfa z`w@HlnzX8-Kv1y_0Lut-`Y!A$7s?L%veg?MzK|1EZ&ZXcczdtsmd1-~Z=E=+;TIkH z>5r$d6P{EvQcue~e}?n-!U?+B@uj0?c(rrQ90w}b#}Vv%a%2xeVqXO16Q`XLkWzW; z-)!xb>=wtD`N6Y3E#sSi0r=X}24F#>&)-Ig{qVN%rfDCZXC*iO9P(K0Fa9c8T3w{u zGKK^_qt8%for@r?sAuPUoZy4zD-U%(P!2A2zZsTsPN>)^n3)5V_eC!!p@VhOmm zNjwp7QZ;tWURz5jK~Wbkt=*1>9BD$WT^u)qOl;_1N1$v*)Dk45OTPg22F{*v7~yGX z{(x6LL_Yh(?8oQ((q)yEThjM2yL-a{Z`5e6$gPShk=Fm*D#-o1;ory0RzLb3zf*nW z?%mtg(DJ-==~BM>fB^44BZLFellxDl7%q3x(%zGf|M6gxPOIyY-yLGk#+|aZ`A{^7 zdr5S=@al)F$~g^m6{m}Vhk^sS)YHcgop>p>^YP{F+gsPR-kpB%$1&Y%!*is*vILCP zIBTG6>XN}W{(gSMxHfyL>hQ5pCO?@Dt=*eJq^4a<#C00vJL>H5L%tMl}D?{+;ve)?l+Sy-tyHRm4(_kj+nlekCMqZxI+~JUCHwIifHsYNP@HV} z_Vp06w9?dxi=Sl{-ZnD}tT(R_O5={0RZKm<9i_4r87GhILHdpA5LmY>TEfTiF$(fX1YJRggfJ~?D$m9TvdH?@`wmWaQM7|ICmJNQ&$Ks z$ddLl-ib$wo4#B9^}5PEoFk_JlFx;T*`mB=s1a=LMSNQ0^v=X-zV!^Z(|)&)Uiw*I zb6sxX8HWN%DR6jM8dPo3a(QGGW6e(V&ZU8+zy9+wfNEN%Qu!4dC&43Qsw0mO_|h|1 z+@d#6IC@l5O)YsteN?qDrO4vTR3kYx<)@o<7s+<;Ogp)GYa7dAM zY4Wa<)Q2Kyqc;#H!4h8UDPqE1esV(GMttH&uR%rW^RItc8XTVQJ|6K|lDT=h4>AhX zsbNaaZ8)@}D!V<#?hL3iIl*@XPy~`Wc{1IfG_s$`wH$1(t>3T?xkz2Sj`KE{eHAq$ znY8cBAM3SQ4}M@*4{ppG;fpWFIRtgbD{G*7IJCRbk&#!*|FnUqH4)ZHy-~?Nm*g7@ zJ%`*|L_U={qg#0{FcZftCU*n;kxKxXvf(Ha=BlFEYch);ALMrE3I7r| zKRr~N5!Ay^Sa1jU)ah5J(C+kIJrfq4_K%#FFLE=z^nf%W_l@v`dg%_U_Ou-fbh_tisNqf^^K-Z*%7Rna)$88Xv1Pp<9% z)kx}tiUF8tOi`IjeiV+uR06$l@y9HQ>bbYOdJrLRv!40|^-1$5a#gJ`!0})wV=G=g z^7QV}Lgq#r`-d=|c*+zKEsL9LJz;j)G3Ob-I)n#8b{|7rW)mHM?Zi#B1Xo#^Ra{A& z8?h9ZF;qjRh3*>$z{${`xX_D-2sPdT|X$$|M6pJG9SouTm49p=zTaFsS*CP{Tff79N0 zvcHfY$GfIlRo0^o(13e&$UYgL!d7sOO@eJB?-udvH5pc`N$29>HHHG31@Fp+OU{K> zlAWoGEP3{Q|4X0mgaG|6bkxMDyvOb%_-yXYOb#%P)EGS z&B{@;rNn9wA|`ZJFVE~MA5WADWj*XZdsoT27F53%&<+ONsky{C6bL}}Hz8=Ssmkxs z_8MIKr`e^&_|jSA0r-BK4H)KmSs2;AbUw5^-&s8jL>xK*U}VpU`^Ufrk))b{RPw65dq1F&8c z#XCE>=ld?y&nOP~l?}y))<_OKa9a9ebGS#e4TF#C2mdi(G0?DKanj~E#yuG$u| zU1t9M%>(%1h8qKbi0wn003PK1AmP?lNOy&PX)~bXYE8lF#g!;x+Eno#E%M^3O-Xui zc2FqI#F69@sVz4VN)OKmI3+JW92nee$lRSy#3NEL9_+x^&EuGJb(*~COhbJ*WyPJu z%1H8SK<|22q}ERV&_=s_WKwOJ6AlwU01llS=D06zuU_o#E}KZDPEEV(hyOJZ=1k=C zYIsRbOM2M+kPlDo1Ky}i{T)|z>D_{9ih+J$cfOtm`$L65#*xI27%5#`I+NFY)GCt_ zk8gey#}=kczp@7c_5x+;{m+)MUAhE0(#+R$_V3J#=V_ zPnTpak5`PisnBB~FKPgiMVTUTvF4GsumT_OL51F2QHGz&eP%6u(qOPK77c6=796`W zR#^w{4u-mkkm55OjTcF0lYe)biiQy+Vw|RM*PtT9J8z!OUt7y=UP}8YJ zwxOX4Ve&2>*e2)T`)uI^Yd;V5Zgr8_bP=&FR-0`kzy zni~YMMz9x21|V(dq0u%PfPrMo=`w{nyirqn~9)V5Q$3#wx0-{$#zNsY?_ikj?hE5IEPr7r4b{+WE3$O zg|0`@Y{{(K1v*}XpRcV%j!Zg?4@NTjIf1=C1!nN@PB{SpFkM=nBGY$8>5(P~e5zty z3&@+3fe4iVysF|}KdKKLHVUV z?X-ZaepOO2q_pIhe%iZPAv2j|WudQ59m_Y-0Dg)doP<*bfujI6;*A^w2q(iJV%}Er zb`c}^VpE;S)?;f!Qalh{3uJ_tC`jY9N7JJ7Yu4+!g2`+PBz#GbmUzES1O|o<%2KC# zI;(=-cP41#&!MclVme*L;lz6<2o(nWGWrmnykMVUK~6=#4*j9#iqI(@tYbEK%=&VZ z9ImmeSn1u)HTUzKmn$%|Ji_efPwJ%>DY1O12-C;~cCh<$MVYo>ZUeiWsB6&M)MEg; zQo=ZuKd!g?&(l0xw^jWrt#9@G!(>7;p^CaNi*vX4>CBtqP3S>GGCQ5(y^njoxco>?6y199q z`sAAv;uEG`gO!excWhjr-PdTS2(46~gk)n?jn{cNSt$(NmlUWM5}?O}@?|z;BF;e& zL497nSt(ivz?{j;ANTbS@73|F(EoUO1rPR~U80C}{*1rbBE0q%n2IUSq6~DPhwFxx zD?AQ5+Mx`X{5FC&$weo`-2)-1y7@EL9Bxbu2iE%vp=@1d0#qc*P}%f8W}v}i!jJ^; zX!7n5KPUJ-P@)Hb;{fZ9V(vSc<*zsUAk|v2iRa!F|Ei(KZ@*`2T5=%6wj0*U{C%`% zgG}8@873%NdgJLZJ1@rty>e<(5wE$z!O`is!1iAr_79-R#<{|4lWFe* zzLXY9|L<(*Aq{M3Udcfr>JEFA^u_mkGE)$q@XW%jVy3W6L4p6DGp5a;HB3&ruI9T%)t=}Ulue#CF z_RcMnL+OMc1e_m|dZ7f%@36L`Om6iW%!y14;kSJRvgzx1wNM_*2bh1|P+d>m(5%>z znG%G9hUd5_wYS`VwroShh$zh9fs3-?#dATLyuJctK9W-~O}7ITz{OP9AmkqUUb z(S{W<5$;sotE3UmC`f&TRth9U4SPz2Qh7l=o|*RH+#!kPV~_gQE= z2*^SK`OHKhyf^mMHOlWG4Jzr;wg_#o3INA&cB9iWPbW`Qhm}FgbP9zOdKjaCffFYK z5d*49_K*aD_!&kBejX6?09yDj&754=8YZQQL&3vB$1!Usy7B~{Ow6${^K zbIq?DD(AMT_y(^Q^Zi7B;aY>0t(PhFB)P^VR2p^<6wqQ7#8(ojc^``T8j>ZtKk2+j z1vnUau%QxwyVoN@(RL2b=1YJ>$B_M%4^)U;^H)mHGKoX4BSAkr2=InzD1{7RNA*pe z$#K8m<0;>N7C3MM$Q4qm7l%|rf&N?oMr-GwNTi|43G$EP#V`PLT7YVk3Yo4t7(YA1 zIecXFHbig$0I0AxY%7ZxFV9}H)Tql$c3Peu!_cDnU5ZTo2~BSY{5$4&O8EGf%C}?I zy*^3grP&@r9`gdnDS#`J`wlj#BunFSO?^A56Em9K0vfesdEMH!zWQNSPd0(PYB|hl zTLkOLUfT*SNgp-!BtMN^x?>e4#mozFrnWUVU9s*$?LavCcv!PqU*-&webEurm(!t zV=;Us<0tjWD_OTUILR|=Z%);0uL(qx8IzQ06TF@;eDET~avl`A$`CdzwgITI7fz8tsRWcR1@Pe^ngxNk zm3Tg_E$eoa?`Mi!>OF3GX|+DotFOfnSTj~J)xtG@_SvWK!%@F%EmO3H);P`m9T-#z z#I2!jIw2@^Y0N#3(AsCzX=^Z{^QA`6K_?{Ry#30T%k5#77YGm0B|oGV1a<9)e_kEg z5*e8V*?0FU!|Hy|dx^lIIFJ|G?A?>HvgYEOpCod21A^BE+fGp~xcG$gxc>G`>O!&J1hXB7>jAOQQ@RK>^3^0gj&93&QEPC?h<%GM(?72E zn4<^kU_l?-AWl>S;8UlP^%lD6EwD}=qPh{;G{gDb4^T*TPYJX}rSGgA6$0qmFEvG| zauEzlRBPeYMt?i5OaH^<` zXM|aPbNINpRef?i{f$Wc?|iSPMMegolbtM{I^*nxI1vb|>z>T!9G9-eD zk%+M@mZ2=7F%zrXBLWg(PRTDglj1b*N9?EN;5d;*j0loXBI^-$+#|l=5NRUTG9${; zk!;E<%y?B0tw&+#6fnyDDKn!*45jF?hpb*RdP)ycc^31hwv zQ?FS${r3kwH_@Ry&U;%?S_VHCUu=*~==sGdhQ;bI%Pks6VR6lBjAqmuN?IF9(`vOF zFxp|iaF&&5>&#qk7Vkmej@V_t$KR%&*oano%+J_?R<*@RoVP<;IgXP@TFf}(;YI2! z)T)%%e9P{@N#yvRpaj~IWHi=I^yTNE3y76p{x-M79*c9yu2VPWRItiYte!lzw|O3i z4DM_A-kFg4yGJ*1@V-$jg0sX927mbHhM&f1ysbXnJIcL}Pa3>tq99qkJ#%PS?JZ}+ z8Q-bCRYvh5_xgi2q7U4Ak=|%+kT=RXvgM)$T|2ud9nub$>Zw$yBHZF6u{9?&e>21$sNO*cQW)~@ zEPfu7k0;rvuT?VT87eic5xcA*Il@$4u_OtFT&$J2Q^y>E4}to5Hg;GEj@@-^*x zx7W+%D7>t4Xy5Yh$^(IY+#-96zp(;GKA}VH68o1D&r~7nlY6@pW#$8h?6cLNASS;j zy3a&`DlhO1vxs&YFU4_|C=Kv+vx@0ynVFf)F5rO;WcWbw2vW(@?^VV}N4N0RCvS`D zwh;o65OQHQv^A!Qcoxebw?~(IoXHurt<{r_rPPQU}O_ejVBrsp0@Ft!}1>VTDVE04wcW zvre-Kg}|MuP?kcr9<6ciM_56?`*5s2{cWIMuJ8N$@#(-y{t=S{yR0nZ_L@4BW76vl zvG8*I;pB1X+MKC=1r)#{1<9W00`cUZiWoYz`oo%Um6lFEXO!o}@aiyea@sp+!`Lv= zVg%DAP#GKW2W7^F(j<>HR#08wZN8I&OIZakSQ98wgmvREB=4Y)dH|{x^_+i+IqQLD zeBaJpbbOwb6v)(1yQKi~P|(yASTH50KTR zx-ck-pb=82uuF7v*H^UQ3hF!a*|%oY`-MgdLphjC`Ot1$tUZYpgOMoIi8GkM`WNVn ziTM^nUO9W$n}Uk-0!Z-P2LGh!h>1<(0N4SgWs4e_`(cq!n|#Mi{6XyU3H}@@kt1_D zSznW!94_M!@2lZp7@dzXk*QR1P%Vpt^X+pmzWBme{DG^Ng;JW9%aJgHXBzbtAW z(F9_!E%2-oVTPfz0JD?(QZayHS$MWF#XYlU5(kgebbY>^5wdh-4-+M32q8g5w3~%3Te15FH zQCdv?DUy?HH|5M+28L`BKp;^`drk7)NGnK-WX!^BbFUH&)>K|@(em?0q3|qQiu(c@ z_u>k7Tj;&wv6T@*4oIIG$b38&ep?~-*aZ&AlSM!XwQc0zXzzv`2M0j1H zsfC4KxW^#|S#L)hBPnJ^o}ZQ(V|xC8yqH)75WHdmi)a|-e(tQuC>8w4f8$|rqB4|z zMln4nj>R5j_AL)#CMZQ3WDQ{)hNzH!X;)=trA)7;!G4-B)-u%^;`))Slvq~yVfz9r zQUUH_gqYYo^hR6(f^POL=^q}4wVeY-rP29-y699^MxmJNoDw>A+fBebg`eVE3~ZI-iB_+<3%kKgh&I~9|5uORjvwBICe>3rz?{Q-V zSYm(aYuGoY?wb6B3D>A)%ZIvC0=vD2GgbJXjTH(=6Nr67nH&UAC5|j5)kKW>(u&4m<@7S*jVA&_!!r7r0Vr& zq9{p&JJbnz<_hWZw1vbQQFd1N@MxFliXF7Ss^(@ zfaf1@Dp#)dr%~TB<%3k|S!jQOUgD}@=Eym?1RRulSU3B5k%6Oe*)Cepx|)Img)8~C zW|Q}Kndfv4V9&vxD<|l8mgvMy>`k|ib|qImA+fZv%OytyFeR^`h8y7Tu5dI;R#65c z(XDaif+`92hPy-R7Xl~MMR?1_zmAwhA2I30pKY$az3lnpJ&P#`T?L=LU)jI!i|mhI zUN;_&DLeabPOyw~wRP7Mg(}MWrMYIig8Vo7wljs`Q&!%^yO9AZ@0^GO&`dhKoUs<| z!eSSnW+x3Ut)jk+fmOqmys=5XjKETm#b&6zHM#MselVldJ-+PQZ%Y49GBl61TD*E- zZeh0SxkA-rhECp3+Oo96W|P)6UC+Q=a@CE5Z##D9f3|p&XuYmqCgNEi59LPKSzWSL z{Ot?g&Pp#kCcn*DBF-{HF7#;ISEXHMqTJxI-M3l<-k>>3H1gEfkzW>D!RAM|2sl{t zz7NCnJ>#e;Uj}K>$PS;$D;TS-gFj&jnynS0TP?r-PcmYalI-eu_|kFGhCIIj1vd`H z$#3hjJ!R(2m0``CY_q6qoutl^#KGWL%k@r;i7}Sz%>wM(zHTXE$TNyJp=&t<7wmgp zl~z?ZZK1J__#!3%r{I=7v;s1v^cWjVnHp_&9ex5E(6BpgRwx@+ zd*J#xBQQ!n)C>{;Yx$Gj5os~J4Ol{|t8tBqFos1oR^ZE*DPqka0xGTQI%iAj?8N!| z2Yxffa!C;Xb~^Rt$Wz`9v8)bki$_?NJS`GCOMB7G-5@KV;yAL;;yaIE9Ur(pUOAJ1 zO^tPBuI=kv?!??=;OJZbe<`q0c9C*UQI#_73^v!Xrd@zFH_11m%={hrpz|#@mBf0E z(OiF)=8KIq$#G$MT^k0|PKl%UsXXHPr@3+7G?|+I4 zHql^+UHS2lrK}mN)Pq@=N2!oANrBM zKO-jJmgJIj!w~1abn){+5hfRFscaE&fy7;K?2)6bA|>xL7F6!1C2hSijtw|Qnd!MQ z%pVGMVSdJ^$Cw@6rShLkKAzHk6EP+@9%iBMH2xGL4+%46W*p=1zt!MH-ifMoKvhV| zJ^R$;X@|1C{bb-;53SkAp7Z<9y>(mr>K|A({DtxN+`1e>Da!S906+#yXxpczPV>ek zJGO@BFW$Q`7mwqNohbd5REs|Q{<>Oel+uEHcg2on6VjShWwVNAlZvK zs@I47uMiPHUIO=`__BFF9-SG$&(qJ9~Lw( z+^XWPH-SS!y=5D8Iq**&}0xw&<~*eT9XLuy6&pdJNN;SF&PnQmQK(lV=`a zsW7ywh~ZznQ|3Q6|zvTOe?tmiEW`7+|I@V@@v=~5?-DstnO%bJza0b+gusr!IW zHio%7{Zjc6!GAt0=JG(iuRijA;^21-Ezgbqsi#yS7fT=wSoK7^9wG^`0VhZ|Nj|Zx z$Cx~ed_qn6hB(Xd+#*8NkPr5rXJuO=KJA+gxug`n zzO&A3QZ6D2Q+9x+2<5k0v*4TphJFDi1_Yz<9+q z3^1o!ZEo{hm^SH6`PV%Kn7xsqW*4Szk6-(6>1_B^YK{7PgAMZ9_y?ToXciuu!GFt< z?N*`X8KvUPO?Z_%a=R61wo0Y{%U^uokLV)9a=dlM3h4~o&6o8zyu0zGD|^@_MU1!C zZ0)@rP8*l$(bh=bAg69pD}}1YB0zYY5o38Y%=Vw5g_?7-T%qm{E4gnl_nXI}Nlj9N z+w3&o9`;&vyjHz_U(nPq{L(CiZC}Dsx9j^)oz}W>mp>^plbB$&b@Z)+8qHJwQiP*R zeI(ZtZCx&h`<{g^%hg!?X8^=D-<2!Yz4Bytx)gI<%8MfGscU4$yHan2L}6^!o>>}S zF{XL8h>@NilN3GHu}{zKR&P${?<$*ZtwrDHLN3=5{o!+Syw`aP-Xx}|S-Y^{0Wpvy zp;@~iFPL}U6l+;*njcZ~eh|}HvgZ}XCY^X~VbfuI!vY0@hwG^5(-*HtxnJshE1D0R z-QlUP1U}9g-rru9ZC9YYl%_y9q~P{4wDNyY2BqL2tBQ$VIyLFloSLvlGp#nE-v^@nJB=r zpS|(vGpQo-vz#?LG*aVJ%V8D4gf+S30$rdprZ#)djPDy4tU^Twn-C)f7G)-`Rb;q)SfvxIOTP%Y` zv7*`kbZ6f_VIPij-J8Z0#}351R#we@wQR`qrU)xy(=>q^G`9t*ntf{6q^M&D!8?sz=r&Leruay zx7uQsWrJsW3?+6$jHO%*Y8|#t6E?r<)5n@`N$(ps_FqAGrUF6qxN&#!g_ki0vSR|m zNGfX0LMDzA`s|@73?3}`GW^eonAm8PW|sVLDSLXrcxF`*+8OL#Bgmoo4- zL0(InW|3G2eXmH%2Bq|v?AGw4ZW+0Rj(zM&OkP%zfzF+>l&%;%EN=i)!XF9>RTzrJ zlw|TT^R4^%FEA6E-+tR?%TJa3GZEy=bKg|PKps&edE>^ZS{dgEEN|Gd;l{2$|5`6f zBdJ1%w#7_k2GhNtW`Nc33*$b)5N*6GU1RWeiL93xC;zal>7m(sRe8-V<^jhkfdd}H zq8a<%x9+fm6dK*jlg~I?`=X^DxEhC9WR+zy!fK9bWEVM-S-Dl`jY%tvVjaEPaS{xi zQ{2EgUUuicKmw_aGX{nA^s0>s3pR0eVWF!=C)*l#YtvNQ!W+A2*llJ3he;-0lr=YB z`FkGnW6Nom#N-E(s?G8pNHZio(!j(h%(exiFi}Nx`GOyqnu}KPh+lu#$AOUS_WO2) z?w<{$LlqgY-D3)RQ|b?TQG(?K1nQLNwni*J=PQenfP=w_@5g^U`sP}MlL<*0(u||| zw#<3y)^P96x+T#?AB#V~D++e+)yrSKSyG8`@+PHXCboVeOkgLl{B+N6JN?Ly-yihi zeLtV`!a&l^h157qJz#rVTaKp3T#J^9ew5j+*IHsIx`T_W122gFP=2&i9b$1DMvynX zY0{gdfF;2CWm_84oo9EaPsdnB8uQvP(OYNd=~drvXxBeCWQL;X3Epi?o^ifa*qW~# zS%5-U87sJB%J$I$vD=LEx6@W)&tbY1X@{_mNv@ony&vUiO4#MVl*(`Md$Zm@xA6ze z>`t6StfgZzYZ23%Ub5K`EA~ovHl(W#aWC>R*|w)%01DjIM20zAM;J3m6=sE zkmxGJu-%4kt2SDsD0qjYc@C&V>t!gnK z{)%O6N zlK>Mz^pS7>+P=kI9yN{N$Hhs(EfcdK+bu_9VWQIbY4axDlr_BxcBB}~Fw$6(YZOK` z+SK@f3e5rQcPs#sY}nuN~6(GB^M-BU19ajdvkvVrZ`(5VT=3xhN+@2k@T$#gx$kwu|k=ctNCiDn)Li=@=VXId^e?Q3l zgczJT+V`XYbW<6^n{<49;Z@)zj0Dq(HRhWkE9NePJcAk1;gB}?NR*a&@y6c0;4*EX@e9N&q*umSabs|Z&qjNDuNtu1 zokjeV_gpR`qyX9@*uq9PVu zsOh^|l;bhsk|AlRM-8@UXjV53Sdj9XH7hyo{P{cxUthJMBrYlY)3II8bv%Cux-#)K zFR3=c;ELB!_7i13Yz@dh$GJxEZe#8*z(Ly@$C`oZezv@KmQ9RudV9srqBu)8<(`PE z%^{wh=sECG_V*^Xh#qVVJdc`0S#2{rt3yIXqR@mn{lZwqL4;!LKY~iz`Q+WX*L8F< zWieMo34ec|{`G#ZdB+h|Vs!~U>{v&dUxKB%ae%e;0uDyn<1E|q$_M)I_YV+RzsXOc zqW@BCtbfefn#}4NQ!Bc<9&@XeBVT^Ac<`{FI zE=%bnLgn;6MBj);kZG_&wleNlqkXITscYYpM9YB`)*G-{T~1W4+(qM+c%F{>uAEMJ zy(nK0#cbLt-cPYr`MU=q&InkiKWMs&qPOu`z6%KGwbk;=4Uq0+MH0+?U_Zg6+b=%y8+S3!(+%W59y72*hbMKwcmw_UsP^+#OqDEn zXG`c(9OXXD^YNh)&zT>tc0%Tlrko@J_eJ~Ji)M!)A5rh46Oy`t6F{qV8}`@@wjU~e zj&YhjlX`hHHO?}GTt2Yp{s(lFcgw2^b`SLbOg*HM^~PSh<8E#L{}5!cx^|f5)5D^G zAeLmul`DKeg}2x|n6VlNFAa7|j>o(aj(!Qe*nmJ}rOXt2M>m?gl(HwAObp6qFM3S> zrwHu5y<^wg3|0@k?>MKxia6jSH&_?IE zKsMyGifc2}r?XbgJYfD0EBklk?9l7q7m|9`8}0q|lvtjOb@q7~z4{mtaDBEv|6Sz| zTIjFSAAmNDJbrfulmTEB?`MDh)qbK{o>kW0V>U%Se2S^RnEee4H3cuRB6n?pTBJmy z?_lJ|0UyC`%z&SLLE^75>^IczrNzih-GtXEuzD-BpSzd;aBtP9vK>ekI~w=6YODca zk8)3q$LFW=!{V)DB=~HM-~*70c*~G2?;_RBIXn-3u7*vl|I!>~73NEbdV1pmUe~wnDLInX_d}e-w%JE??hnBGEUT+eF&^clzIV4(HdW(}mx&&tt>YrIkD<vz14RvXiS#j>`LN2Ie<-~DwA;tD4 zIX?w6E}x#g^z>KY=|rONfyW01%-)&RZ)sflBkeF8nRL#&A?*dR8pL|NqTdi#_9uKKZOA>e2dH1XzZxd9Dq}TDx~=MU=*I?^`yx z5v&q7AmPB>H&$r}){w|bfE1gWI($8m9bN^2U1M9srtr}Fk*ZMU>KOoy9qlkNfJ016 zERY+iPT@Og%uajtO~d^O%DTH~U8zn#5-JTcIbNlu#H}a2(sfb*xdQx)Jt7Kv&gYhA zoD{`3@5a=g@gO{bnRx;ZU`w4HbFe`G$$Or@Gh3|pJ4BNY=(JFgYF301?E;)pm6AK% z(dWGYSg!LEJ1a1V&`M=EmfD|DQ4lr?1?r>Y zr0hp~s~-!0OF8RVfVt%cXdU3+%O4yafjP)XX0=d{F1RcA91uCR%9Y>KlnAXK4>KzG z0?oAkHnRX<5oIAN^&AD7P{KpB8bW0OF*{t;MD(Nlye<6#UxzRNXIDcnF!)#F*|P+n zU9--&S!c`XCdYJ4MAu23zcFPAp4Dc)hr+!wn>W~DIDtH7ol>ZjGF+zz}0~Fg>#lj2s6WXxG?~>5(D@N~IYJVBT zF%3APGTda@q-UaH)t9~=y)5=y$pFfHef`y8&xUCNl9s>%&Z3R6N>tzD7I8OcmRj35 zT~%H`?E&iguzjh}TLe)(qR&Mk z-tnwf;CU_n8aX#;fTX3c*p^Kd#wyYU)926?bNNluae2ockpu;wE|^Izr^gUKBml0Y z?77YkFS-f03K~tc^aWM{>;cu=bWsak=P#LbdT?+|c&7bCYdKw383cr0h)`eEqQFDH z#w`)TU@C!u0gmr=I=)0aSwBhek0V3b^#lNdA@&nIuL5-#__#!*KOJjP1gI!jQPf{q z9v9#Z$UToCakio1ff%Exv)#kq+`pyMp7XF=fpks)T~XH6qrJYYlEr!Ch(wtMH~`kC zWmB`U%Fvwnbh^6k%q4gu$12ub1POW>fJppzs1yOVPQBT=t*OIHSs8DKl)iR&W0W1Y zCsRg6JkVl^0Oam{q64D(L>3w9+FSdEcRcL+Tpy&XNh`>Tvq-R{JLAN!pFZd%fg|9( zPk1U>-dJN@kVs2}j7+${=kMyrsQNYA&kYXeba^MS8sG&0dY)ytiV0v1IZNHdZ0-^{ z^nlWI*hIx0Q>jM7Al{_-=X1lC1bxJ>SqSFkx~#ZKVl_xyDfI;K{jCRl%OSf27Dg0pR@+Z-t-RPK0f(IH7amf<8Q5Nr z-(SDwuz`aPUTT#D5qor|KkcoPak8y3K3HXV6n4Y#&xcuLsNCp4`iTQ_UXKA!{&2xe z|K%SRzAC3*@ho_ugbzbrlyFx>A3nw}K$pJGULrH{!Sf=I&yl$G4(lVNl^~n5m~q|%5d950`% z91|`RUdW?|3BKHo$2LsM94$r-tJKC$uZ7 zW_jCzc^_PluH9W%$=WrGvLdfe8td+%6?Hf~Q#4){RT*VbQsy^V_9-JsEEC({rPX*; z=p_nd{mcS95m=_dgm?7E4@u{!~o7W_M}CK0Zmy3$1ooyLl{!~fJ8b@T335~PE%d-*lT@Yfpj+Phg2 z;a2`{W2(mrv`F;gmuDnH5W&6wUBvXA%v?0Vn0iYE|I6Cj6ML4X6$2)kwRSgHRdMokE5m~J&z zq1^DV-H^i*oSYj}J^BPy9jP*8$u>A<{)do5>Cdi-@o6Pp)f!B59K-<`U#+wnV--b{ z5)QY37*VPOqfW@d>ymxIOq8)`uT{2-8yFO@piw|C*X@3e!bCYp1lTRB@q1~b4yoeT z$&~#j>C!!5uDl8=FuE!=n9es)DyH&D9Jdv0rp79%GiGW8=l>TD`;t#~*TK{qSd1)C z;-=y{3SG&m_?k%sH6*u=D$y!e#Af+9!U3KIGY*+ayV2#0y(+PpcU3L?{XWtmjN9v?C>=#_VHVtUiv7)@+#OCb_iHdYoRf*zY5a<7dtRRYffxC9Dp4Mt2SGdl8 zf|i-8gg&9{^3oH|iZ-d@-EZvG&A0%w^@Z2L0S6HV(L3SX5VS^Qcj>^&w-=Nr zA9haiu)M}2F@gYqZWH^HSZ_i`#ok}0nM4EKKt3CNn)oC7XY@ob$#1s(^v_=p{f}Qy zgObIKGFfq1Y6Afth%Vt)A5myXQ-a%a%OB6#qit$H5+%6qYfxWP_E}St<_3bK0DmNt zDAb^(XT_a0Rxy}(Pe8{}cTl2W=iWqIY7v(Z=G4b^(C z9x#VN_-T<_`#o)-oQ|X0M_G9h&fL`opqN)dj#3YXrb%c3)Pf5@O2Gk7UIp%*_CRnL zcKBvG!t(K@iObdWB&sC?ymA03@Zg)qei!E3AZb8Q*!*G6exk&FB8M39(C=0&oPhUj06#NDcR4?wj~8NU!eWo!=&0@&MW_VnWGa0fbs_guC6 z^`~#5C=GP>-!m+az;%aerMJX0GtW zoI?0oo;V=YI4KbiA^-s_xSyy++B6?PM%dBMXS(9|+P6QQxGL0E_Iwmx zlmAfhkmCjLzRni>-FN&l`BP%yUS+Z*?}e`b&}1?PjAE&MvGb5Zp5BZb+%SD4FIl`b zWghzLg}lA`q!Y$He!mH}^?no%bhh-Az2m2S<0ST)F8}n`Yi&Le3JA^?3T%+N8&$?% zU^;2jhVzoEjx}ieDY9qK9=mLmi1TK!UpN6eIBT3*4Cxlfamy{6p56P zPH14-wSIEf(XTzdvkO&)=sOZal`5K0(yi=@&(!KK7qg)*kTF!vGIi>B3Mc|uaqY@{ zGwXpf<;s;Ht4drp;+M?QwZrde%TmLmIKGrdsAQ5aeV;zC$NG(ZyJ{8)vkdI)T9|4z znAR5ctW)s=a;_tgT^vXlIf#U=jnKC@^6QVkAQc580i32L#r3uzuWnr{-Xv`0BzkfL zKqwfH;3j0nAtIst-4ynFwGd4`Rytg9s=&_f*`gN$DogyFTC=j1_+iZHaFAxL*iI0y zs3ZWaI@Bd@1_YAM%KV=YwM5w>5183CymB7E{G;|04PH+gPwX%k2afg$Ijcl%(`+_$N+$JPKk5(b@ zZJ%QSx<5b_;y_`8ej4kt{Y0jZu~?GqC5!&Z^Areo$mMiMXI3nack_VvzKt`~(U)G| zJv*g4*(Q3<-7FD127RLVHYpC`G^g6>;oPU|2z^kxn|3nDc9&HcGD9pTE+5s z^WKu9p(DyR9zCq$N`f$172q7Pb18mGco<>4uGLt)Ono#j3Sy#&yF8Nu!CA4QN|6`A zw++!pt-U7MMDIIT_%EKHV}{LuFxhW+)T6ja>2_f`JuHwp%~awWtGK!$>JUKA*f2Gf z1-M~bj_Qfi;Tu;;WbaRh?Pb1x)<|sQ4+}1!qP(b_s!YRl2rkxvYEXOQW=%?OZKnRl=8X2u&oWH5 zWccl4#iCts`6Sr@P!2){0HE{T+DKb6I67AiaNeQRbAN0?r=jk>WCKD+MiSY^zBo(z z7MC_{nZR{Bv+@hyk^qDB_2P<)0te(@TocqOTufu#p^hrim}@mg(?k|~4mMXfpJ~~Y z4O3t0_*FLB6aUq56VXS!z&3D6=J1uZ8k0|epbhI&8vJ>1W z)C1VvYtiCu1Jz``$zrr6Rst!aTP(BhV}x&?7^R9176Bh`7u`7n4L-F^b1$Qq>8sLR0b@A7o^xu288+`TS@fs*@{g-c!S*i`5_(DJK z%3Yej*B6g(%ThPxd-q89dwtx7 z{x%_bsZ(qG>{hVV({aoC3drU#w;1BVB^X*F67eH#m_caP_d>69B^G($=+3W?IKId=HAq@7x zlKJW@#BZn@IobIRJ2L`p7_ECZ3+aNYeBvoP?5*B}!F6n5zb^WAShTC)C9!X*SIM3> z2-BSVq22*NLOl>DVLbhDUEq^`fv*rPAV`8%5$rL$CGD!Y_) zb14>Vwlt{S)T{Qwjfad_o=Km+OjYGvbcNcC+ytiqpwt zM1Mam*RJxNusi=ZVN@QaDC4ZhmZ|&D3)5JmB-XDh)YxqGlbwOY>ZmhwE3q@AD#6^Q z&QNLWOdX`2oD>Fla}`59Xq$RH$R{y_s{2sL&vi9qsv6Bg8E=ea@=955^lgup}dT?UvI0d0>{Djk$jG?Ag)}F7H0p8grXEwH>j3Y123M zxkI{qE!8D2ITI#WjPy;{DIbB;~b@=T2Zk=?-l+<8)Z3tsCvtYqsTHA zuQcgiQqn6u+MMNXS>&6hTxmOxLBFz#wIhIV<`x{Kgr9x$Reu_0T_Z>D&EzD}OL|Bv zZ~URko1lZ(-~c4i%(UhKr6_$^3$?W&WTnX^J!shFQ)fVnYNe(&5aS!?pTlh+B=}HU z870k_$K{37!HbMn`aT_tnHrv8JlVXfHtY--V8>&p*N5iAkR71Y`}+dVqAFBpULLz7 zx*D?~!(n02*p&bme$ zU;jmL>WbcePNsv(`-9~1N|@>u9O{554%GQfql@ZY_bqQ}QBNn#tm2WJ=bhk%1GHqK znNTKWZM0&7-j$Y$BiLvv(j39si@&X<r;DG~|w0O$8kux(FtoHk9 z-BgIJr86e@J9}WAZG$apd1N3KUT4OSQ3MGdM(#D_@!viOIKDOJ$w$=Cach<2OXl^i z>)Iz#9pgOn04z@SFe7y;{#uun?4_cPkCmybZ!jaSYE?WSv+uAHG1&tz8HuLTn^Hek zL*TUN>Pui;G*-MYuU=?cX5-UxLayk__fwMrUG<;oW@%G1^`Ebr(F3*@ z!2wUlCngZ#o49t={d(J$P`+er*OkRC{{j9B)^`E{iOozbOK>ANGG?0K{kU4oWpC9_MScQK@u674a;ZpVOv2>XwM=cxvHWOh7@ zS(woYFBDV!dIIjGmg)!=w3KL$NLq2dmig9Lo%O;261mEmz45$J1*K?Uyb^6Tzx_{% zzL>E4Ep@!BlzSo{<~}6P_1sYS1^WWxr$dYWgZW*iSyg85*{Q@+T1kc;QC_lVo-A0U z7QN?eOC>}R5LPF)^U9oY0Q+s4;>LVFcfBVnk=-f@g-eUoR+hhv*QHz;HWRGG=K6q#yC8q>7|9kZ3kNJh%y?GZHQtXjrZS%Xc;QNSttz4) zc_!j0qEp~LH2$J#0C#5mael-(v52qny(SR*86PxEHUTakd%+nCD$4!96N~^H!&SGb zrJqDd8)JzCGvO8_jlm$Ld(=-%7eeY88;u^5$&~PI;fgvNonJF_% zXA#RxWp&C8^*y#k1K>LI(gzZ4O3IP}0XVLzpaSD$v5ymehAjtY z&>2yN6ZTzWTqvBlwc-F^SR}){?OqHhZjNPY-uTt}Fqgx8PbG&va~Z$RsCgHNPFT15 z>OaRq8F8%359VQzv+NQSy6Y4K-7@i^D#tmmM}p&HnqWLQD=G-_US!Wt;k zc3`rpDXjZr)~LGFZQNzGWK`1KbN&3CI~dGAntZhV3dj@;{%6FB*uR6uKqAysbuy#& z(Ucg3$uwifTWb(uDs-&qreZqlIqXzf`y3m524QYAb?#<_%g){=kJrD!h48Yr6r!A> zXrGF6k~z7(?Hhm68%9(ri)URcZ;s;>kP|U@{Z z{D^Kw=%h*Qb9updOI=$fm?ejWAvzF#xjh~ zd=49`7Q1>I^IU7{=V6gEYl5AjL$#fZsJ){pZucq74AvwzcoCAd2smTyo5v48ER-v~ zwJJJ;aAu`#^J!5|$g~?D4H}}ioy!#rVuM4GE)0J5`viq_79U=4#ilbDifQ-@(zr;( zYUC8E%XL55(W3<^6bv|`Nf$da3W_^et&I6gmDbuT7zC`fZ$3JiE~EBU)KKiCF}DxS z*b_Rj1uldE-(R4l8!}ikL=;A14IWdBs?{#7JK5QQ2tVs*paEO)A0n%^i3}M`%`Jn0 z8$V7C^TQJSu-h~%#>Mkq1?=`hM`hrX`C!<5oK2(%>g`s~8fmLu&2vTC{(;OLwS`u>-3Fz2(=~)EbI9pa>y(82SK)w#MD*efm5FlC>wyUxI4) zT@kOO{A)D2h+)hZ5hJV+js=(cfl}_qolQB52we~p^0*c@*cY2#J-JdmpYppdI17*1 z<>FhViKqPUJ_mCNwQn=6bpbEmQzMUGgq`+i&IloAM&T%W!>%fkPm=&V76`D0qjJgN z?pe8u^RT&tL&;nX(yv1Uj_oCK)h<;XMs)#2JAIjyOHVrPL$#_)O&jI(00<*vd-u#d z&-1jge)^f%Ho+cX&S^8|FOuheL5>xgZzHlc!I8mp*nwA`twk0k?jYb~FEGdl2=sPz z_qLTc!N&*|f_UW&!Xcay@LtWhs&HZZHY2ij-VoKY?I2pHDUXfd_qYE05%zM6mq*HnuNp{#{X7{pJ zkjX@1wfC8EktNziLi23Ju_5Q`2xhoNN8F+l&Pa_`g9!Ves5m{HPpYbBi==@Cu_16d zAfK-uIp-3=57Q}J)m)U3)JtTQ6(k1zQk%j0qq9rVoSUZ=iAI%mmc6f*@nFV$7JH$c zF+XYN5m38_Hrh3i;p~d`PlK@LagR8yVR+i)yKUWG#D1Td znH*x8QRXOm<%ciz4Bt9ouPEVvvQFVy7?-$D7IboeCiYGipo=4w?R98w@R)3)GZ31$ zoBqXX4ENP}Yty+JzR7(1*vjpM*cQ7@b_1u@V83dsz}?Nc6jy?;9Z7&{Q(0#4K&_*g z8(p_o&DJ?$<58yRdEv<6v`QsW5Lc_OIdhp!J(tqn{oAOLF0M_i#@@7>Up=t_esqMh zNVn?B$2vLbgo@WE5u+C4>4p33h4FofXgWp8;c*>din6Y;!gnyXNVf5qcS*tuK+Tu4 zc6Lr=oaAw`jvQNu+3s1T^t@ixpEv%>&SL;bm!?-o9ut$w(^2N9=kMh#x=<$2YLRFU z+Y;*M|3!zgSOvHvMdWs6T@Rlpa|Et+iaFN^IB9u{1(e#ylSjn8j01KHOr%kX$PZcJ zzBTx&md-?c53lRr9Ln*R*U>INeg(`GF~Y<;WrnuRFN;5&AMs|~FPP`tmMh-Lk{-KG zT<5e>7q`LzfcgaSCuGtt47ya`d&^rm**PEZ;-H|CL71^_M@c3wBw%HWav^7PZXd7$ zowr&l!~k_tZr1zjI9@9@*v$G@ftPtx<8n4erjgVeaGLh0XG0aJda&ut)49+ld$Lp3 zG}iAuo8ptZN7Th=rANSJ>?2lVR29qT!Wr{3x?N)RC@qU6Oj!)yT*m7_B7#;3EEw%# zS24D~WL3Y#2lkErL3CcEu6u714B9|=V18orzxXVhD^eh;9C&waWq|!9bi>ln0~750 zR2h{DsjV-O+2_D@d@eWi!WtWlD>};=S~X-+C1?bZEEeGmJfn_6{Do^%;Y1M7Mf6$! zjy}j%88m|WOH%R!!|<%Ku5WNe0HQ@aRdTb&Xz#|_vzu2ITxKzAUlFh~SL@$wpoBLp z>E0K>MMGCas_qvY*t&1Tj0NVA*F7#GD-c{0$v5>p#yiZ{$lCmrAJlUX*cAC zj$!aq7v*g_ufdULH3+A19E0w|WU{ogyKjk;c$GzQVE1n9%q=AC4y)ddzrO=iRYkFa5}Bq5dLa=ck&(uF3SrFhYxdF9eQj#c zR=pXo0nRWEYT1-&4UfZ4A_HMZ&_95=?A}njUG>mB#;hfs$T~(I4-}P5)q=UlFw$6? z81utE;>|W%#jY0^h;0e1E=2gY_vEbhpx2qPg_P+lVd6B^QCB;`AcFvGhyiU2q8~U| z(14^xMEi7MbSV_|)L;VoMAI%&71u9bTf#5*b{ykFzXNkho2yk>=5RgYRl6o>ao}xZX)+n$ z@Qp4xul8=sV6<%w$3L-M04s1ZLJ1wq=n>iiL-NdT!D;+Nxgy2lN zdT{2IwC(ipwJv5rv^G(B@c_doW(K{oZr9inva~lr^DT9DDleX(*nHqq?zJviqwdq# zU|Ynmwdoi|nbuWtQVg=1CN52h$=OXS*rcRT0*Bno^wGA-2f)CshvaZYR&~^!_$_{P z!>XC<4uxN%56V8a6l`QY3Ia$g^#IM;%+w&rs5uhngGU%}WH~uRb_2E(L@F&*2Tz1m zlDl5KL0R2hnx#EbEk4(uKrLLf$Ll5Zq$MOm+kH34Yo$WVZ66j?5cc32HiCcQ>&|q8v}$)6`9OsB_Q(tCw)$EChAk+pbC+(hTzfk-fy zoc~3?tUUM&2uW;_TQ;2*SZwQkajcFu<#OT6C+c@a*mwm|Kl~$I2Z`86`wsTqSdEK7 zm__8MeK80dVZDjZrR zQvClpMW4ytZNmKwJxAX$LweLnRDOf_m3NnxnhHPn>xjj2HMluv}nN~ z{seMXxlz$Hp#Gvfj<*5P$7#&}+Id%422M=^0Nqt~q#urVZ(k5E5lM?@WnUYkDB*k8 zPly2mv>ExU(SqfY{QJPY<--6Jg%neg4k**KvavQeW-mh&_=9AhhsONpv6Cp`A)cyT zo0svP188^%(@25?#t!hPks5|xU(J{{Tv;_l9I^b%r5d>9?CZnVVx|P^g2M%@-ulli zYAU+RQ z)>Q^EOrZt$5v0gr_f=4Ki|&j*vg0jvKl{K&X4N$P9=1>|+2gADyLk`_D> z&LrE<8)tw%W>><0L6*@QvS%lY12-#S7 zX1dunA44LPX?Z2z`WwB;+Veu04@OZ$CXvZ0M|{w(U2l_NUmt3$4-L%}gsn}TXwY(> zEVrwqxq-Ow9XoO~mc)N7!v-e=>AC$P4vtcb!!9=YVen0F3;du;Wtt4kPK^JWpE4xL z!srkGX%HZ1(-Ixp37AdNbFweR(DH01<{znaq2gQo@r(WqFaDCT9{<|C%@kYn1MSwj z?5Gk7Q=@q_gcl4K_WhxdID&RIw#{O+?cHpb65bByoGK)Ixu60&5m^s9#nwaN4MV4; znA#4GaslUO^3UU#k7tjH@NN&d&4Q~Y7oK5*C4FE!C!ZEu$u;hxbRJ{YZMbn-8wV%> ztJ?Qp&=~mTV|Xcf+#M0NxXdweJawNJVp@^yslTv+N<}vF-%>ay2V7wV5-W}!>49@L z+~n(AFfqc83`C?c{P!-4&E#>m78y-UxqJ`Q>nfY7tEyNE-WfSxU~u)_oP`hd{!A_z zz!|^Sf4amVu=7di#dVgU|Irw6!VG=NDYbE|d`QR4l&Pj#K|w>`V&gi(qqQr>a(w(3 zbFb|8Ba_E<;Yhs3d@Ae&CKxqW#al)6Dn+1HxQ7SvxTx*4E6Uk7VQ#EPXQv49q3Ar~ z^g@1{O^qTCU{U?wB`vZ~&s`!K!*r|xdfqR}dP6q8H4j!8ay;x-mv%k-bOeqJHP8`< z_y?`$-oCJiH6pTJ2eS$DE)n$gwRX90aJ@8ex&DOwvVl`#nxD6#YK~o13HpCO~Kr2mxvFi$f&q% zR1x(OkJQKw5s7J)Z4$^-1`AL*Q0tj-ZOlZJa<6C|Oh#|mRnQ?l)Z9gRL;)>5+GLVx~y#Stx81eFyCF`Wv9i3ulDyA$7x-gX9C6G{3dk z>L1uO0tcfcVVa@c@t48||BMhp{_XFpa*(`6p*Uhb0AD(!5%PL+MkSl?e3dOKClCv zve_|;<8@_!j+H~U*4F#vm`?D~!F2$tVDx`ZwSRT_^e2aX7aCiy><@IvU)9b`i8owG z0Wev-iqSZLRMWX)ap?0D*$0rVO<+e_Bc;Ss7j9?iDB*pOjw-=xpPi^~N@c$*jF~C` z26`f9>YLPj*ADXdM`#0vKXPrXNSQytUT6#v=NB|We1SX1n4g9GipT;CJ`|B7et@~d z5Xm&a4(IpTI+a~0lV7u!Rwcf^?!emczHrdZcc7cuA`R8S=$<_@w*}5%Fl>C>)zBed z|EZ1u=kI%}-GC~lt-Q{<#)d77uCpMy^s&V*+{fDRTJVxBUrXZsvn{X7{!(&S+1|C8 zigwseM$JX7n+KjHYgu87j&n0(#(=%lX&Fyu5FC+-eI+?f(q*X07%K4^SaL!>yco#u z52cRmhRwU*ZURibEnh|XS!3r-5z;2pMFD#uYcf=v8~Z_S2|+uWL-8{YXmy!;Afupl zYB9Ifrpyov4n%a)OrjQ3+S6xB(ZM8Kj20JUYFIZMobv#uos56qmP#gvnIq1?y>LS| zv~VlYS!k9(bsO_kR}E>=DUbe=k(p51_7QK7g4mFND z#!Q{fBhON}Z3=&~ZS-=<7;q>T(x99THfaG6EIWO)1jNN|wPfCc{};?lv*{8lxG}4< zubm0_F}zzzEUohZ zx{v-Owf{DIzyYgn!R1~XvpLxb!)+Yk5I!J>DB%N;HN>>Nk7j$J+WoC5AeE&c z*8wCSi(F9{{FSda#^zZR9T2q?{aktJWh1eSm2lf}?t^QUfr#)pmarRj3|PJ~1RV_i zC@u=$G^4+rRwEq<*vrkz?R~aCD2N(xxhC>*L_bMMNp~<|0&5M{uXC(R__CVV*eFgH@=uc9` zPXC?KF-xumdadwMH!E4H&dMh(NnEjim4FP{v{EFAYG4V(t)ZWPL&Hmx@i&+!k&6F) zVBX(}2JsyKADZFQ5~I0pPz0ndn+P6|nJyG}$>m+;KfRgfZwPTo9sU(U{BsgTf45!F zn@`5IQ+~S?Jflk5&-qp=dga@t_g{(c|39?Uf2U}~)Bpc3tNxc{iAXr@N4M#5zLM|5 z>$FgoKTiHTS@O3^{;#C(MV8Lxz<){RepG18y$xQps(U(ku81hKLyX4Q8CGI{b=OV< zw45+{Sm`bGEqOd2G9txa<}duCw(dqSLy2|^!@mY$6kK|otvkICVGcmEQ;o$4!=bTj z=nuPU0d*(3HJ99wHx5oVYrD9G58gt7jAANF$O`3V<%B?F5zsw#{dXAIRoaajDf9iY z+q}h02fd^WwC=I4?RyYO|4&7Cv0i%M>_1pRKXhUQA|2<_poUvl<}vW@T=I~c9a=&r zb^VwH%GPsn2axQ4D#dfR?b||3+oMTUQdOjdox&MCq*#~)oI*B?+%%i_GvlUeiDA*` z=MONbQ(hbc5)(<}s$&QV(3>An+Q-;lUCJOxV^jCjHo=7%w&A4wy|3L*^bH~Ur$zYG zEe;#tt6p;Dj5iE`lr5feEFB3akL$Ug_?P~Ug8u5O8wa#J`y2!B-v1I1mVZJ<*JV2w z&&jULo^*|wQl$uDr0x3|QMdKFA{XA|p+T|BiKQj@ps}32Mifl(>+3(^84T&ZE(Rdp z-@BFzLcOz1o0#xvIY=<#M=Iya^8dUEL7Zkjr>4W)9 zT0PdrQTv8v(jAAzk-+KQ7lY@Xy<;ZfR_DLK7;199avA&VSiVu1VZS}nrv4<~VCiRz z8@-Wp5#b{zq$jd5)YV~w(?ji8hoN>o2Uh#`mOG>QA?GH_Q39`<=pG&T?Cl z^9*x+u@--<;-Ii_dB}DnzWi0D)%B57qHwJG`rGKnew;#}PuSotsP<6BAEZMrr}}d`{)051?Rt7{P(%!!2>GXixIKGEdQmB`)j!MDyH$x!d-Np? znC;6tb>1Uqm#;GtckjQrssdEI75k#F(;52N&=oBoTUs{<`V^UQMPSnb+F{XYkTS3# zsg+T;B7Z-~Bq%ppz}yXi{{u0 zAzr#WS14Q&@`I5eI=!jgXvE{RU=W~*XS@3i|H?}C3T^wSJE2MJtrAp0T|Q?f7E>Ch zFFqh&wu%Bo_@rZMQW`AYda1J`y!9>5NNpgoWM&Z|_vxA4-i7KFA5KOtEYrI~BGj1= zk1FmczD<}Cnb6?A)N>^lq5wGN}hXY8v#Ia`Qkz}m#Oz+oBQDxpz!zq z71RonUSzrmTLq56{tX5lOTxKQBAkJu1l#EtK^ZuLVCL&lANnZLudiuHCR1H&Qf;~v zbTxymkamkD-n2Y%Ne9-6tU}?&*mhe^qX?cAn42;ZSWN|qaX~l?zuP5@QLepxXq zsd|+C7w&PKmjI-j%}uwZvyM!3gIBQ}GmABP&9LGp*`hKgpD59JFy7GJ$M^6x$+yh8 zgDcbu$#O(tqs!b=P;Xv4BPR&^7(8;oQvm8$-9gcfG`?}cbFng5UreJ-KeV(3T>&Ot zBhTz}qO1tI%mO4I?|J>OpwJBSWudO%=}Hr zN$mX32rs|TZkkCEtSEhm!oL5oG1Fid%3gz1duiaz5ijz%I(ggzIYnX(is;Ri;PoU` zf@Uziy0D?1Ce;h+f_faVAO&Xu^`x>At(gwf8{mb`wc@<7i>71)*$$@ep=jzpL4Mn+ z0lAb&1V!YGRUAhWi-hC3Y86g`dLVbiXiGJ~|D~06)o|W}7?78zmQoho5|+$tsKm@B zfEu6Z)-kpNqMt{O#L(K6bmyf+Wn%kg`pMJiOUd=dn8tFrHs+2B-a z*xXcfk^nJc56w02#v;BGq%MtMt`BT(n@-)Ws`Exj8*dfEyT!gsn^3dKKhq{f`~_4R z#2?!wa4q`P1^T}V7;#~f$BW5f0oeHpJUAb#rTtHQ5{#y<4U5gefHE6U)cJ&Oy+W!b z6#$Wag=COS{Kk%-`dVFyKLl~Wrr%z!u{0wt4ktUOV5+)m{cKeAzM8q3QOosp^4QKt zFx5xSq3Auk$dsaBdvZBj%G+Lq5>LrlErLXg|Lqw-lf@zW=Z*ZL9+5Np7@XvQWT|2m zY_Rd{e6uZSj9r@=2us}tJbmeNAJt`WJjM2kA4Lz{Uq%L+!2zWB5=5svop5jVoKm+F zZeX>BB6fxVn;&S=~-eY?ZZJ@PVtP75}yWM7R5D_^CRfewh)CN z^|g2Y$7S8u$m71S0;ptjXAtHO(G?Tpna3=;+xu)Feivij-D($FdY65ltdJ6)+Dl4i zu|?H0S9&h0gOWaqb1~t&<^6V`j)=CHkpvE?m1VPQ_5a9t0pXd-3b=42s+SQ}b*-j2 zC}dmMYEZplRl@PpSe&@{bTV(@?Ci>wn8lGGuAeP1xQjg$j=xu1iEnr91pL!+i!YVl zeElHtw;yWcR$RTiQz<%Vz0)@=!jX@q(a+4~9^L)+;Frg-zyJDG{V!RtP1x$ytB&tn z{rz{y=-fh5dG|z5PfdYi+w^|ArYj?`edczIftOokV0&}k_*cuKwSU1{fRxOu(Lr+6 z!Vjt7wUQtsrLFZM*Eqmd^e(N;%r4jEb@rhFm#_C@F#OTA8;V9xVx^Vw&X@heTc;|I zAUvB+A9|&mXen(G@`3y03~MYXS8Na!dwy&=)sfP&4xs7JAl@GuPcr=ViZ=-l&9>+m zgxvEN?5b(8xG^hz?#pkN*OlBjy1Dw0oB96HZNW97GaHIqgc~Uu-~r@TYmaZwkjm$5SsAla>IZ3-&qBGyt4A%Ofe-JAGT-MXN~ zmi|A&593HR2m6egT6DWVbnU%$%Rw5#AI36@De9*L0V0>t1yJoP*LKx_lF}UHLwseC zD=2J5s+9ozU!6%&?wX$K zq*&O`*x+Y-N2+=H?W-W6&V*faKNShWDVDorlJk^69SA|IpBQ=a)Q~jbom+czUv%kE z1Om`K&iP*0P(Q z1Um#1#LI#$u@wqFQE%T1oZ%nduB-Fx-`nsWOY;}vnah0?Q&<6VKBDqzy@e98Qyl9s zT$uXqSAOQuppKNrN^G!;TVw@9lcfl%SN1Z$r{!4}=gCzGzEka9=VFHKY^E1e6qR({ zKY=&Q$%gQ{=*3ad+BR4l3+^AUM(2h)Gsjq|U#ikPV8c7_GFo09e6p>(UqK@!1i|5W zFX(46jQJbnuwdlH&Dmh)lSWx!(ek^$JJw;&P3LdE;d@?q&TV;2QEJYZ9`RHhi<>!| zNfa&aW+P3_C?_1L>R_Mr&FpwqIGmvm*fB6}(FU7-n}yHB;vSM4C<2O?y{42NEm(P^ zmcd{;-JNVVYl*_|>Cb=|gb?h!uUlJ1p#%0<2+zaoq^eZiee(Ei$k{C5{j+hPTOG?& zClgt{$*T?3Is?h$W`MM@r}+z8uUl;`2E|~E?hq)(iRxlZ58PVOeLS;baN(!RwHI;i zEnEDF&6j)I&AGQ=r%nbZk9<}O>~7upWKRyH)Bf$i)2gEjDu?R;wW69ln^Ns8qxY)N zV}n#(Liyq|A%9I7#q6>)xe-&gXlRqkra}#^w;t`V#%_~>Y!uD(Xp3!K56M3^tn8jT z($y8jyA-(BKqY)2zv}ts&ee5oLBp@gz$uK*ndDv_kzl8#aAba1L{690K1wa3{wx*k ziuXhs_Q<)-^|76H_8U5=PZ8IyC>GB4#>o`tzR7Rb7M0BwS$8(%*lj$BW#p30O~LD> zicAB%FYBzgc8koxB8tlRvzNaXe#4mmjqUV)@{&~Qs~g~@SIN~KwT06Qh8mhtd`QP( zbiO_t1EkH^agSy#bNM7&Uo*-V7v*{JF)?#;YuSCWluP3>x#=}G-iLIw^haAD6|J4; z_x|*HOfIib%SKPi_CD>(<*4F=6jDpZhF7EE=Re>7z<>F%bJSB>s#xJ@W~iZ(R(*Dn z62De;%yTtq>gwIvlUPB1wr{j{NnEX?$$YGtVYd~$&XoH*Ic#=rF;HsuB)0t_SzQTl zarxCH*|v-wk8joJ(1x^r>s9P#__5iFD_y**-aQk7y6WdM{dTx0qlOhfpJg8@9hx+l zTrSmJLN!XUM!a^vWOu(RD;@2)9GJYeDZF)^RGv1TTG|DM2!`%~@YG+<=0nGBj>y^p zGSY2`f*IjC-esgKkEomeKTLgjToY&a{eV@pqSV@|h(N7@R8de+5ZPX}f>D;L3?OS< zSQG>ehJX-~R)x9%I#dA>(4wNls%(Y;K~XWvB0|^$q7jrOXb@ruNq%?meLvsd{AWuh zlbL7kbMLw5o+D|V-IZy!VeIAsgt|&-VaBuD!q;DCR=;s!K_BySgvCxtdA1BVrFMLs ztM~QUr4f&pPts+YtlfpzMTV4utp17t(cR~~J!saLnCDlkP+vQ6rr!Fv*}WMm7*<)q zQ9s6 z9aGjZ2V-wuj!>hnewN+u7U!PQG#HwFge-GqWR*WrX1J&oEq@oD`QmYQe&3;uqa=N? z_^jTX>K@OZ<{(AtbuRT;U@m6#@fNqQcxSTIRj>-{IZ-lw30~HHt-@gK<9*vv-OT>6 z;V}QrVJqTy`+=;KSX|s5+=q-W>yxVNA$gX?@92HAu;_~JmTM7lTVGv$S3+v?dt^%< z+c*CqJc4TxYDma_{igMA-+U!awhsi2-_oqR_BpvnwZShCrT-CN+-Si67`)FAvFflO z4;1c4Q?yT1;gim^!ul1gUhdAU--=7ZDZ@4VM_dk9~SKRh4E~8 z>s+MhE?#j8Gx8s>c*)BjH}13Dz`DZG`{}z5XZx`0l`L$Znb~0S{r zl4GiITW{0_$Bmrs8?z_Y$Nn97zx-_BZN4J%@4t0jYINCx$jP8B)v1%wlb^E7rMTIqrg0xi|)bK;=!QWpH_2Fm35_&7Co0;B%Pw0NyD zq6CF3)4!=47lznKHHx$$3{sTq%?4u}67<%qcg$_#e`@RDs|`OJw@X{8bKD+P1fw<~ z8-JKp<0j2NCo^&rR1b5C_o&=o)Z3_?&cFYTcsC9T75bpfWVUkh@WAg8G+{hedHAwe zFE!1*!}zBzg#A8}5|Bu7cb444PkEtLmi!#Ei>9VZr65~p$2dp+WZHmYTWtLEtfJ)U zsDQ-na*|9=8gvzOQhG5_&ABnZlAV6i%v3u&{$N{$2f~hWOl*@0VQhWYq>Q(CJU*;O ziI|^eHP%;^kT`;$g4H4}iIpnM+o*OTr`>=P>6ZLr{Z}EVLYeZ@VBQuLhFho3s#)?y za86d0+!K`{Wz=a(=RIRt@GAb})v<`kZmx)9X_(!MAHJkBX`U2kXGyV;`7wrh(caM7 zR7d)~7ZQ=Ulq7o$NrSg7Y$$RA%ai{KITR)Ja<$&(=BAt_^J-_+{97Sk08#^KKSUc? z{>ER~IexR>U#mB$wYf6J#9(P8-A*Wnst!k5^?wa}En-J%K$)&7RX~ik%Uz@O z9`S0(!KQyRWA%w4Z!BHkse&8KX_TLKB32+eEDk)pOik);RvA0;6a*JVi9%*!^X&4o zJyx|^wJ!e4oTORpg`P+RkuAk7+Fp&>oc@dNc`fa^EgN2hPCVAkE^4xM zuDZ!J*?%h?M3a!W@GYI>DuY zp2-Ga_8wN9NNz5{de(3MCDt0*gCF%<=}cW5&BVBYU%7N@oW);uCv+#r<=~gqz`)w` zYi+47SBDwRfg;2M6|U!3zk4rMw*K@IvU|2uHXggW*2^YYR4KNNyg3-!2--9i>8P9Av>nWYY33{wZdhQ;%->zC4wM;kL|XOo1vJT)gQ6!fBYuIXjAMDF)JQgM`TE)`--pHRW-_Ib*vSqto*uhAv5;m z`BG#pg~2N2W_1c33^)#$yCLTnGggzKLpao4hmtE-@j-;|Dm+*L4#3c#xD{pgs=@j*a#ZLOQTuqx6B@c{CtFV^iJ>GbvhW#KN# zX;NU|vOR;_Vb=a5`i+a_35k-S?3|{>v?_<2tBw{j~6;bfPWT4@uvF`q=VS zB+E6meV!~88x-Ld?v&ghCGDc6jA);93D6UL6!#h-``l1>{tvc1=Ky=JrXXddrrOt} zfJkJzn^K(x1M3d%p370w*ZbR7G z=)`prZ-eIuDd~gQy|6Ym(M58t{<|BQeL@$%VFeOmNbHpsBu-NhN|x1%l~o_n*+u5~ z&~p+Xl7DMHYCdc@vii-!kmV>nffQE%!``eI`R@+~w{N)+u_-ux7fcRleGs>}dyzxP z#KoS&PsKnxuG7xU?%A_}Q(dPd-0@`VQm%_P?|U`sAE+JZ+?iVIvM!M1jm;x(N%}65 zOcKZj?XxJ@hD6{*(q4;M+w${G$B(||cw+~CPhCom0v(#;3Zw6kR4>%Wf2$ux-_Njs6LWTAyg9nq(Jt!sV>*-;*X~eGqP;*yO1`h zw=Mb5sQRUr3bj_voxLb*Q^h3S7SGZ@^o|;bm$LR?evAZtV?gWJXfD99*5=`M{+qKn znE^3J7Bu zLtMFN0$^3@YJ5l^v)*X7Dm2!Huc(l>1iz9xB~OQA!AWj(teq~cb?dgMIqE7fYcJx0 z#5HUq$rjGE)1>IYrtw;5$yagg$K~Rs)P34joVR~c^g4xgPFy{9CqA@<5^GjF%krJZ ziK{<8(Nz_2H-gbm6jT}^qef>&f%d^h@8KW>+@1aObHW9ZtdBHC3~TlA*YA?6Q3_IF zN{jJweb?d!lq$PojRMTmns6`3k&{x!zmjp zezTDI?C9_uj|99cr}Zm0zXnzGzyx!5!V%Q3LzEVX>@DzHhmCi9!q=GFOOq9sB_8hwop zTlWqwP8I1=CUx?!#r!giX%_yGrC8s#02?uLkk7|fK=0C9^+K&<9zJxAqC8r%S=;mB zdcK31YJ06+T7QSR9B_?MF;95utr`+=56|L%T2jIfewNW6GX+V(RZ;eQ;dA}j-^H5p znV^JP8+PM_-IW8kxPBkRto>Q6*)^}7zUxVmEGf91I^65&znL7fm%%%jFgXjUS)Pk4 z%rqZHoF!=($hO99ZLMw>E_Ez6?>J9nF86V8WtImH9P9?|i~_ESkG(z@tK7)XHk^vu z$FMuTVE1flJdV#IFpNUT|dNq=^yz*d4iIdHNB>`Wul$2NS!TM zezv^&l8wVEg9rdq@q#%r8R>!%3^%QYk{CF?akO6lzX(!0{Mkl!^ z+)1`DXlnTML!Z=a{FlC!;GXPcR#$dKA?(#Z5@|m^B+7%kF*pB(4skqv}O1D2O3t zUQW~L46brQ(>pDT>poQltNOuC;#uV>_riF*A9?4yJ+?d zzwmXzv#Ejih-jU@u>N?6EK9TQo__v~LM8@glTP-`jP(AS{RTXr`3N+UWX@F3{p9I^U5`g8rd{H4)9`S`(QKs} z^|ttu=tg~|uIQf8ymB%>h?^5Iu$lhqE(>Ab`zS8v%G*sZzE#$1Y9)>}eoFVh-z456 z4t&kem2I;emvt3E>?!Fw@WQ^psUU6t?{B*RV^wY$-*uoNfrg~Ah@bJcb z(o(~y(KYgDCyclALErDHEMNaDWW?LSsXi3e@@hxw~eo*_OW{1 zUKaNOk`der!Kz(U>j41#?A(ueT$8&v=r2aPsgR-{lk4sk(xrIlj}Z)a!I89i52J&Y zAsr{}Z%!}*CbS4SoSF(yhjI+=6DoR-jOv)rCjiNzJje*Wx%i}?)A1sFvMF=bvdm3> zUVzuUbgB1yXwP)EeN#HNe1ZU@K0cYY4Q?IuT|CZhzw1IkqDaTN-i(ixkN#cNJ->6) z460&l1@%7C|2cPL?CXf-U-Ce=PJJXM8tzxSXSQvjyH-{=MIU)%D(rL01LZFMl=t|z~EV| z{BmuHW{vZgiJ2Pk7*}3vG@6Hpri*qh&UN-X;g4L3IdV{01Jf&#XXqCOkEGGi0*@6* z_aM?8MRL!E+Fx|!0g=aL7bv}L!mR6_K30bDB|k#O6B2$%C~#qf$W93A|c8B z`SCr|GIXL*Y|G&2q5=?;Pf3f9<5>*pLl(Wj4J~)3os4^AYU~K}C1dGhF)%utD$>GM zY;j59`Jp)=RV`Nbbh*R2_;n5cHbrU1@7z}~J3^Cqc<)@2r)hD=PeFjdv`|5A@-!2Z zGNcB@7B~)7aU5qH#)f^0(a5n!g~~JJe17V*Lwo zRfU|Xv)3Bw_C-Oq@Q`+**}FrHPzj>CWEv}74XMFHYmQ`X-2>D8ygz|HN;!&sr%aD<^t^#rWw9S?R zuFL*giu>TLur7iz2D;SwkzVXlH+0aTlU1_WDo8#`Ds+~dhXN*U$sDUQ5S4S?P?);A zqV1cpxqbFS{^^F8RexMh7WIRk2mB`i*DAAuCEE5o>a&X9 zN8-2`M?VT}bTaI!+{9nZm0z65{ehj4hx=X@E#i!v_SkLXmXP8yBz7o_`V$!m0^L(E z0@xn3GEMbofBiVqKk{^2VT5#d+wGmeK(7DZ=2%DQsxRL;?nlA%(17DSS(*5?vpFZZ z=QqBSS-3L76I*O{@oO)|`1z-Z0^XQ-cfbVeDWPF^<=m(Vg?5<13b#=mLk>ZbPeFZ* zw!cy=q7+zo+Q@!5XsWqwyb+p8cpHWoaqqwkYWH@ADvZ%*QoEyK&``EBj=iJd zvuqEhMF#0Wod{{uyz*H^nHBOqluS(YZ@u^7)XM&i^5k>oo4UmO$D>GIyx4XF0QeUr zrt-}j2Ms&NH&1>fl`js}K+Ml^8jIWC%_`DfkxmqxmS%jP3i%zO;*Hq0nw#WIizfwM z?D8?J?R7;{*U6ZlTsL4dsja_+HJ)DJSd z(N{%t`@6m)(PWN0fylzBmk%mD@h}BMY;>IJ?Fkw6F}LyfH3`^FrOJ$?;pc!wCKT7=nzaEfW-* zUi4t>0^`%^?w}~)NvU*c*z6)(pju$oM@k}(VBHL>pES>~% zYB?5VYuFR+=-A8ke+7~)Ioz?To$_)6*~jLCWEn>sJN%<`;xWlZ@0j$gxcc+?`5GQ^ z`*{<+mqqCpLTCcbRm%cPghp5Ib8X6gKCV%A96cX*D|@~SiEYE*;j=vKP`Z8GdaxpG z5XbiZI+}G&#L0f@Ov}GrZAtr5KIxzR6m$%>g(=iM%!+&4id%1ViozaWIn%NRO1~v2 zTE0{Afu!X`d)hqI$#O6u7$ZqTVmfnNI|Q9s!{07}PM5yq%Jm3IYk+&Lb14R#{n#M5 zJE2vjxSlJT(*0(yT3gqn#p8bax5+z?RTp1mGNTVFFZqXP6uDhp>^gQ%t0wWaFzbUj zhs5#39-$TgVUuSg$fO5{gW8GAPXN%tkz3<%VA(y z&LD)`hvU3^xK&6@DH8maU4O=cRdi-@(8(BHy_X&BI~I@2*B-KBm;RwMt=1u_kOTBL zC{~_@mvd<%@7lrrMgAj1CuinhkKX3mT@uYgCq%%<6ElK-$+m0V4eY?OFML=?{GU{ZZg!=BHsjIZ{xL96Hnbc)nv1$6VX{ThdP*JWToVo(BxGw($(fdH@#r29;pLQkg zv%CN7Jv2P-;T8Uv1379ZW|Zib6!s-4jOv>TqN{{ra-dXg{W0R%Tto#MD0(m^OewJT z&9K=%YG>QzBxw};zVKpG9f&Fi#fKPXl~@SvOol$Is$Lu$GyZsoCDOJR)lC&KOnWx- zB#-l#ju|JSNZw7n0>yZ{Xz87P`9-_yRwLAx1e#N+`(;n|N89j?-5H`c;%e%u;8`9Q z*;Yl10Tv)HfnZ1S$4YG$DSz!rf#Ip)~WD@ces5p6)esgFziWCNk2tKgzltf0`;I%GiX!q&x4@HKB&rp!oI)16}ghAj|II!T!qxL6fq;M0z-o=6&S5jYo> zVU>}K*>p3jl6gh%Tm>0s)|V7DB#i|3z^3R|gN9K|%>ATP!@P25hdpr(m+^`Nn2!H| zLl=+`K}Nt#@EF2=Q{xYzSuriox9hD5YW0YqKKrY1K%Ng)cs7iT8AS(^h(pEDaphbY#{+960`sX9Qrt1B)(TQSM~W6_3uz$E2RB3n7p$2eVkyn zqZ(qq6IBFa-3dzrSs5Z8G`%X4Zcz?ky+k5swxUEqL>WZ3tDbeT9<|e+NYw0g!G@h=U_k zdLq9&t{O9y)k^~o3v)2AG&XC$TBkLYz}!SwIFRrNg^7_?p11 z#wf-VT034bTrpZAH)+ca>sUiP-+N(>^Ygm_#QD-WW~wfuYxs@YJAbK228 zNKuXoPCe9$BWw=yBvJfb4_JvHxhTrJzOo}W{xjZuQgUZnb$D(m59jhq|Af$m)a=R+ zyurLC|I4YcQn8GE1&3rqCe^f9ZTpYNd9+5o#&8cBO_sS~Mu#`M`IK{AGD1;geKsLc zFh@IaU-__Db&WVV#tImS2>seilpvAwVWhc@O7#- zp)_OW>r9Q_#2&#I{>$CZjY^Rvn;N|7j z3@5bjjTsU5M$dv)>8~igfmFVemO*lNqERtef}8nKl`QgaK*G~rhgH4! zl+L)9WtKE`{`SFlRsTTxj*n1!mgn6rHUf=5>_dL#HU2 zmqbc!@y&IDl;p|{{BuHufd1P8>i+L~{sfDqOw0R`dm)4KEUj@SifsS-6J`hZr@Pb_ z-qIrD$Xbw&e^BqVaJOVya}|k>nVI&Grh?oi*Sl57t6mD{urm&{?HId#>Tp2fK8mDo zzwpG6)cp@YAkXJXu1U@_blR~$o$eA_3P-!Q4c*_l-7e!WBTnOA6;G^e>_X=jSr@B| zAQmy0n{@FOka?0hmUFG`oVprfNjn859$; zhzAu9wnOv3oTw$0QzQVIP#y&TTR01wK7$^DZS2C@XPEq%2vtdZmxTRsJ)XONn9(^Thd0gDZ!=v4=x zFaZ^^S1`KZn<6e!^TJh7YPbYUEbOiW%S$JZpsJtK-1=p?Qx;G>tLHFPJW^AZK-y3t zFU}p+q29xfG6M9(y)i!iR2Blzy03 zK%#rLyWk_S<2OP3dx5bQTNj?kPTDriA@I*&8ah!;xQ*!d+;|OF?!igF2pd&4tS=mN7j){BKxjE+5#;xcw{!!q2*p^A#F{>QmswCG|H=io zloYP~>98Ll9X_ZoCTh?Q{X_~s)9sMxD7i>-xr@u`QU{A0)=0!dBEu~=3b69`-(&K4o`z`ewbisV5(SQxx_{sB$9&-(U9Qs>ad9;qV8Dg~)9ZeSf1605Id8%z> z#g&!RuLXF84}%pTyzm{h4##szQPEhfLvDcG3hQVept_1oa))$)pE{8bLeXq=^TC74 z5_)fY`#`5j%_*y+2bEsHEI>N;L^yHb!588cpc!Sh*rSl7x+Hoou11N8I{h{wV>i6s zyelH?oH2A`?d^&=lM9+&k+8qGXc_^VVc1B1M@>)9nwLk^^scNvcTt zFW0O0wHFV1J$N>%EWjtTgs}A@>CgHXj}PXJS3gs<=PA_la>cgC-iCiJ8CFZh&Wh~{ z-)k(}@Rt=bKkC(!7;@ABhHA=t0ayN*)KmcG15x1t>Ty~-C4Wt<{gIsk?crS#(TH}4 zDgv`}k+hA-$}V%sG9D$=yjhtFp+i!ZfNQfevWec;Qq#pAE|`=g8xE_D+IkHsE>Kv?|`J858@A`HNQ`Vl~rUV+kiItJs8`uA3jO3MC z5fs*VO6-Bee4-92eO`8iP7c2-D49d#z3!>0 zs^_L<@=tm1YX?H$gO-9hLIhzUL7hD>-nl;O z{>9ONa+|{ww~-ouM?Jsls*9t~j@1nw(kOJYgwN+?AHs*Qi4m5r9J1FAS0XgC^F#XT z&!~*OhwLH1d^nKzxlCSg0*IKJ?Y+dBH|2+cl%w@&PdKZJUQa|m3^$}HP?tyH61q!!TG9RavN&m6XHP}}{X zdPu_#jRzMV>=ui&JnW;9h#TkLx%$giO*v&ctYdVGL$wynLUaP!WU>=N=8KKPuzA7G zg|8wLTjx@j{AC?~_IyyM-g6uOy_HrrAzFnP?V%)k^hfM}RF?VE94f~xyx^VnH)(eB zKNwl&qsyseqSLf8$APWI&Ofj!$$eWKvNq-2j9D3iti242WPC^*>;ff)hx%4q1egM= zzugUwIdB&cDva0?d4TMsv;Z=eZ--X`v9^l*>C)&sKE%zx1SqnT3wMT(Qf5nhjyR~B zU=~G1)Ct5tyzYk1`tPZUeX5nVRU}=HrQnFQztNJ&S{wkvEoTlTQLVqXEme+82c}NaOH(#*Cr+`Fl!6G z-{cdg7x+{ascD6Y@hc`7Xbg4&p`T|lWPbl$`42DdKTvbz10?$AuVWx6d`|HCpj zH7V3S^A@TX-Dp1XVVI(HVW_&dj14cvrcrFw+s(5PN6@9R=J%01ugFdheS_9-eO@RJ=<5JnD<;8=RvPceQ{SeplLNx*-XElfzR|vNXfRbPQSA2m2nsye zCnQEwW_C6-(hQ?|hIVTp9u>_WMq$?vgQ*qk4g6qGlG~H+15#I_Fw-+#VX2~di-p#e zTt5qU6}Wnmq+nAQF!w2$U!AQ~hUTkmW_~%*Zck|zChf2M85!BkSOy_Gt!3?Z>~-%Z zwe1a=ZrIDDHWc&QNt5DJuo>XDBizs{B9(y*2!Z}hiyWI=BvusV18#J$GX$@?S@tcT z$C5SZ(r&WONvW6w(~)6h%cxfIoa~R?1M|z9BqGhQLd%mSF?HYAX(3kMpx>GRH&g?7 z+{x2>h~pQow$PzR+}}BVCz>49Z91h!jUN_6BPSfSvE=KM zEq^iV{{mDdN7N>t>vFy77?FZ$Q!+CTXN_1Mm3M+Qw$P;SZx#SA>ID`XRAIY=RFfn| znuqd(>Ey&^O|6?ih%`AggSwZ^g*Vtd0S7JLY@jUh(H!rEh*w>y+2SwhFC!I;a(kL0 z_5CQ4DRgpn%|aNQ*^h=f0V^%~aKJ|C>E!8S#O#>~h!_H#1zmdsN@!{tRsJ>d%QF(M zOBfjX!4CQ^q4AFOtON5#d7FcyEO|!^yY)=NjEDtLwidqq4vqscsbBlAQ3n^!3Z$$o z^N`OviDGZ-lP~irdar~pwdd&}v3Xnr$m1R1u20lmMP zhK}cx05t`7$ruQ>D^kU;^K+*0fcZun z)2z!bo%@S=ky%EjEJ@eFIfmhez5lL-LAJExONn6vE3C2Vyp5M z$$eR&o>O$2DM5Vni>@BSk4oZXCK1xr!(cMK)`^jISp;OtyCl|C(W_?nG=;Kyw8ynK`^`%;u`1v5^QpU%^x}a zc|0oy`5I5r6AH)DxB2|{Ed9h;!eJ1N1kPT~GfjcX6=_V0tHLDB;UJ7FbcQ8>|Qw>I5gq?j4IihT0ubI|C!OVJhbhYQv& zX6ph>VtW7UJ+V@`W@-zGzX7PZv13P%&Y}hqoY!gpIE~Zfri?XwaQ2Bpy1Y{gpcTtC zeqtTQScP~BD!8dLZlZ>Gw2E|WmdZ~W%a^>m{VlnDMl7X2P@iHvwj8fc6;)C6Qbd>P zZ4SyEuxU>$mo8;;<(uGLj9a<@iI#M&LGH|q(H8@^GI~y{iKAqgA_nDmzq^2i@5H=F z;Cq{LxapUUY%Hb>7xSD|-@#PEkU^~5g9h(zqODcbFw@`asKkftu%1oPiRaCtf6oB& zY&@xONNnPg?Tn_c`z1UiwsiX%O8%aK5hJd7JKz(>cL)} zU5Ll|=zu1woI}a%6`J@Si5DuM$wbHch{8NYhlx^v5~+tys4C>ZFv5^bwUM4bMS~uLivSn=O}Xec0<2BTcs8er;#n*I5q7L(G&=#yA6jFTuKvmaa zPY_r5%D*)t*$IEt+N?(&<`IeybtG9QDMdeDFKNIw(*+wNM{UPgAH>qemYK9Mj7S@I zH$!4TR0MUmUdGsL;9X13`aH{zs31e3cTn)J9pbSRoiL&(OSo0^`QL8EIto0o9R!&O z=C}7yLV>wp%dTI@W!b>+>Rc`>;$JP;cG{lKncY*zq+?*($n*90LyAK2q2)paucd%U z$l-9?2Iuj=hYv#sOVLj$*x+g7*P&>k_@)6VKXe6gjz_<}sqSsuEzt)N>b~w>-#!PG zjSc)yw_Erc{(bGopfUQO??Y~*zr#ym24v=;8-0mULC`%K5*2%s|`qU|&0 zOpC?F3@r0Atcm489C-vy1lpYocM+ojhMbn5iJ0t)_8?_}P@!C4^dnpM$i@o!*JUTY z8Cj+c1l51$@aUKsvTSP?+IOm8;PS|jQf9f(YT!Fpaal8?$q+5M2MAY1NTjPmGAhJSL2Q|rk&-}= z;azaU=s?sYMI9$Dc6Z!y`N)lE!#0HrL%;Y0FdC7NN?-!p^hK5$3Ipao94mdM__i== z;)tfzc2rQBY`ukWgV^NBOxq(oyMcI1LKmouHwAN6{a2y2W(jfsT47$r^o&p+=#1wI z&ul=5-S9Sv;Y`aWx$mUy#K4=cMVOTpa10q)0nF8-4YG)}gWt?ikq{Js3`ZXnMqam4 z^kAr-^6N#lnp1c2tlg4U661OfpC}(!bSr?9adC;uu(&R7-#KIinscJ>&AY*P0_)kr z|4fNB-Tqu*Lh36c z1lZg)1wF22>L4_4hZn!p@=6~0iDKl7^UT1n?k6%F~G-&BQV67!)-T*!1}FFS05a)@r)}v17M}bN!ed^b=d!Nn%IMGwVi@!&3?eL;vJQi} znN1(G2(Fgywf@mx0gGyEJ^$_fWTUWZ;a24G_k=X1mkT5-Hf~@kfewlU_kW~JHhvnw zNS1VHht3=|=Vu0;pi<#8U}m$(p6SaxsI($zt9c&i=!+jhRSlZi%h! z|KZg4a25gq0luR#kiRsa(L%98aukEXV*RYp+cGphhq7=tjYAqFSsL+Kbm@`YH8CA^ zKVv(heykK}k`MP7**%9;jp_i`tW| zH*JrMF1wIB zd%sbQ;$6W8OjH1aYqYpeRI=sM=No{n;n`14oA(^}gCxt)O{;Qg`- zLmaRD$Em*PR#gsW{o6R41zvNPU6S|sRNB*AxIC->zEZqvsW2q%XIy?7udoN5beOHN z(9Glxy+Ei%9St9zmg#DAXQhhFgFjCJ85g0V5&n_sA9TrWOp98Xd=T^An5%e1>GePv zez*EwHr*Ekefm;=Lbkq(Y5UwE3uj3+ULkpVdr)e2=0%{~H|~$Acw(#~%=l)ZjjKRO z>D@BKitzpDMX^om?^_>TGI<)Syp8LX^e};qPXFKXZ8kEiRG$pcR%b)wA=pqh0qlis zI&RRQ1>f*_+V&mVNtZyrPT4eJq|Me9o%uPWMLYCNR=TK!upTjMFCpGH>Lv)h&zq;~ z;K}o&E4U!qy$~cgNKK9FcSV_=Y4`I%0V54x@l4y)8 zZ{5$-Pll;q>*FOyVSXnccLC#@lp+&&i61Uk#1g%`hjAqlsr;G;Gg+)0u^xrzSx9zM#4=R9KT7FTthOS$V3BAa zT1So=eS#N~IPMIV|K(ViIk#M#tK@J87kq@*jX8s00Kr#iUVGQvz0uKw8Dr|Y*oo|N z>F7Zp|H#r|BFoDQ`xbjbejfj>hnFUrBUGH;QC0=cmsuY416Xc^RN8*GY}h~+gZX5m zO{3zRrk2U3WNZI}fF!lYgs{-y< zPsF-jXns{fG-SWCNV$wUAp z^dHeDQhY$9c%9R>mei=ZSr)83Ob z$eih4)5U%$bmz{7$1rGEpwn7A9$s)=R9GSR3NP`)`Tv=cQEYjC*;Z$Y{%)R5a3c)D zy?&=l31A$7;=I%yn`P+c^IH-0?;wDA!jOVNRQnSgcu(0Wopn;P?^=@&Gq9@Y#Q(UU zJ{$PqP#5!kjefJB6toHZuID5&Ads~U2`RRhM0QxEN$s2Ub{<2G_|U&3c|lPd=X#4U zKK}ptT(M%Zt*_VjHCJ8H@_d|^kE;rBkOg^+ZvnNz0zAi6aI>Xg5nRvL z`(p*vbpE0~hQHy6@(?<)7{pIR8}>&%wAsHoL|FtrQKg~on3aL7iZtdZslunIsKOcb ziM|PJf3*uEVFnBLzf;00Iy0FGWJAayMQbQWH?o|GboL+ustw5^HEmzr*xN8r0&+3Q zT)A#|i5-c5F8dgk_RbUYHsf!?dRFnr+ywh7Izb=21>7?_VhnzdnQ@G&Vln+JB}HYt05XRvZ`F(yjErcYtRjm;rrq;ef*ED!h1 z5Lp0S+pIKV%yIZql^SP@l<&#K6qx=L&gYTLn=xQ}<8$Ju=s*_p}Xblc*>(#ku!p$<`HI z74v>#?$C*st8Z~x|A@k{X(v>17<|oo*70>|otNJ;48U^(tdF>K>CynEoz;k{id1Kk zqlX|7hBJ8;cWQv>I1q9_c7~j=frWTdyU>(K`cuWqP;99IM|SsEQdfiC&5&u~!z{a8 z9Mo*;+NPlHg^ot&&+bJHKN}7($d-&Ysa9I)^te#*=;tq0YlVttlD?B<1WeTWw@ya~ z&b_B^*8Jsfl4^5B!Tsoi3QLMH-_iC65A2q9LFT>9HeL4Un{Yx|VgS%1szdZH zOr9_h7%vFa=q~^@CX1`1!0w83{9nFPa!+uZd2wG+ zg&*p3Y~2uCPBekHB1P-yQV`fP(>Ctahxw9Gv6c&1VMQbo)74}CO?%paT0jSpJ5N?N zNef=$W~mm8{Zz7y`Lm#N5ek7Z&BCxe9MU1-IRWr}!-}s}8}VHn*Y>UA=eA`V z!XBixityv;?z})Aa7pz9P~4SA)Hm;?1{`08-94@!Ah0b$=-i&t4xKct{rgywZUgMA znd313MG`9F_Q*f)9HU6agTIEsB_US>vq)O|?d1*)p0N<@u9e1c{J$uk_?P&cQ(Z5O zd1~1;Ezf&T&ff>1R>-QE;2JUcujbMYBmN0=qH=ZnteQqz5+w82vqWFTwt*4ZV&zsW z-ca@^NTAeyJVcI=YF`*V{1Z)eG9Wav@6?|I@TE0Vav{DY=)OHn$kuz??F1W+$^f_G zF+__s7zMbv znI9xlp;&T2e(ckc_;(KN96RgWu^i))@jZQE{PowSF;{^f7?a~iC;$FDUfO5DFKqBs z-0vKLxH)GYZ3?xsO-*;tPil^b$|s`T6U+D#PP+TV|EBr z-Nns_p3FT;qZ6n%eGv+Iytv!yMK(V4gUVR|!apJt!$D&7EU_^(KX?7~eHoLkoRkTN2 z{XMknKPUlGC^}OymU`fcv;~+MX4a9a&oEE*p!v5FRtRS2NXtD}SbZf*uWd}+o;W8n z>T!_3mg4J;YEdMA5n6oXgB?vk*0JHwvY$XPJKx8=*)UgFV9(2fcu5TprsLqSAgPycA|xJ45nXiDHNs`3$8Ysr|2Zm%Kl*rjrhETC7{S?ko1ax zZS#75d#ETlhq5jaJ7cI~UAsxN|ZGbq!#$4u$^0pgV@H_kJ7{eyO&D{k19~?E66>>QtMp15h=E0z(mQ?6Mdq+%LOj$#+nG7Aw3rm8gZjxXU z6?&+&Il&x1jBF6)6}PB=={VTvInfm2*p~+rKsm!w+x{BM7i)p(lycLH)5`foE)Zx; z_k-8mr?j#UxRQvM11h9fO^L^aqscvM`3H#Q&7<@RgoAlSO|z1FEcx{071#mS@j|lf)o*ioUDu5G6J{5eu=3&g zbi(-Vc;7C`N0Q%&SQuPXIBdv?0)?KheS;XOujz+al{e5G2^f<)JW~WAZ2B+%1$vN| z)nKN&I0&Q7LQjr!)^r9!B;Tv zRMAU{Gbq8-H!ClZ$cbeXW1Vd)veq+A_%mtC9t)&<-~UIt{dTIN=3SNuH6U z4Lw^Y_QyldVvQ*@aJTC4Z2jN8t;zh~XJc(@Ka7r_?J}Dx zuy0vvV7Y-$CbvP0IgzBlljepoL9vHlg{^=YiBBMs)m>O?_rJ$QB}Aa$Cgc(OszvgO z&Crzq?W7b@vG!jdEp|!Xklgi3WwD_45%v0m99k&jxe(BKabV>XXQq_|JUA?hBcLDXK!z1aP`tXUSZS^By; zks)r)U$qPzmWv}ST9h*z0xbyR$j%PaO~CfoCz)=I2k=+{67h&tT~%(jhoZ0mzg&UC$)hVf*1a0gfO>?H&7$jOnWk&4BROYZRA>Je*o4e{-%uhB z>wxYgH(+-U=Sz*O#%7(d;HEAuWpyh~#dW2}us8~h@nX~k_g%W#t+u-h%==YD)7rSuTfur#y&Dn1(_2m_-0 zeSdUR-lBM=Qbm3Uo8s@M?r;Xg8^C0(J4J~ZHPVRGb!sfB1W%piH^q*20?oAM5ed?7 zOezNgq1af}4LDvj^B!mfst$$;b&npokeT$`Wn$$xb^}N(M@o-|{o%JdqceNRQU7Ru zr&_Ki1Wi2?;~SEd6b-9W&n%<;xRDo+EAPt>`tdW|{8|6i>3G`(GZ-F??V3uQ&TSn$ zrczZx>IflNeHg0sF<6Z_hu~c~Q$oM^^ib=+br|Q)gF7X?+lHF&yk5lP8I-#vsC*$B zL)%+~gx8Ad4>7z*NWxQ3-C2^j!u?h1hugCLgm+n=Pf42n^7*Q>#b=Zz)$oIx6F9Y( zWWLF&4u&gl>15OLE#jH7Fhd&s{BV! z6I>9(3$@Dv?>PP!UM(mH7{2%ZU2uUrc^|+a%HK7LhavJ3>iv;BnMHQfGX?q7>>n=Q z387)|UEB!w22tcbFjy!{s3*}2&a~fZZ(Rq%z^t_ zWv>y~P^@vb)E;4Q(cYQnYRKcpbtk!nBPAvtgeTZy}rE zR0PJfaofJ1=$jcjPF)DOai4|5j~{k1ATxJP%&petwjno|&r{xcTOWCUV zpzPIf^t)&>9yMIodRg6<8ZrnQ0WlBcp+VhE5p474tY+G}iKFXQ4A5eO1TKT@pG3d56A+{ zk=|$=XWp|AFgJv8vt5B$QjYt201z* z5V+ykbEdcuf={bb0GoWGex>@olddYw^0)Kd8tBwN4m++7nXrU<0bSqYyQ-=xX_lEmGn-k% z79Jx&2db<7mBFm43Txv(4|SDAEkyjE%EsX1&Q(pe0s!*6Jq6R7|I;9yu~nqy7$O8+ zkGfNR|HV{djj-Jg)53FR5zjhLG-?X~c-0l#wTLCZaOfCBjHn8~Gf%=gxIldff6sml zMj_6Ap%fxiHLQOAxOn{+!k>nQpSRjlx&&li(^K<|A<212~&*Jj^o5YxFa7l>&9kX6a>c-)K#$rwJ7&q66WO z_S|l8mB7c+au!6o##42tBse-Dnm5U~kUrCT+mv#xFCe8wG&F90XJX%mF!h}>2pluj z*47>rOUinP5mlA#eyR;jeS(@pFy5*UVRR_*nW_`T(*ivW2`HUp0K=Zc#2rp6OdT2;8WBdFJHq%zLn z*9v>LSCU}U+Z5GnCv8-YSAJ(cKt`hW0q^X6h@Atoz<%fI7yUfKta_y>%5O991r;sVy2iD6dFUFLyGg;~cIJENU{#$A3FZK9U+Vi*GS$yUE-qZ7b0q^}c zW_bs@Lwxf$KJlHm^!N`t%feDh_Z1f|?d*K&?Rxr`bKm88@6Wr)^_ch9d4=b{obwm* zmo?ry{=9h3567<4vn?|%t2p(X^yq&5BDQXGcqvM>9uatzyQre5AGoPbD1_ z5!qeLcxyF(nSqgDtAJCAX5dG1*rrq_)~Yq}J|UA`y)Pi?&;Yj5eWZF3h+ z+TOq#A@PzpT{AT?P5cY8v#vLR(QR#8<)rQq4k0lu+l<!;(lF;2SM z#npaM>Q`PJAC=e$KPxO-kpaRj#x>(N&crK23J$5Lz#I42ITZ%MUrJzpi-W@b+Tp z$P;>Bjl8Y4Y4O;wAxqu4E`{8<3fu!2MD1>ze2PGJB(U?-c#|Ji${be+8o|#nhZP2d zZ9ZG;n{{K>i28ug^nRc$JICXV9e7yR4JY(Y0SM#=U^G8!UuT>-WTt3^Xi1AWv!)fr zECjrVM@|*Q?Pi#}x+L7;u^j{bq45vz9{5!<{btr+(W4tWbcP>Od{$C<_>rxCCxmj1 z#!FKlMswrp*Y+z76dD@cy1YUfyfVMx-na0P=FZZgy@Z2Tm=+RAoZFrH_5|fu2JHe=PhK1%3ry& zjjlOZgxyW>6J7qOs=QNnG%P%s;zh}?(`n#e!l?eUuT&mqU)k(fB`+IfZQR=(?u3wTMVe=i?r zo9dhXZCZI+3}EV|&U5R$QPYzC_UiW)rwVvh0(axus*+ZJsroLh7xC3NbiVsnDUKD3 z)4f{4(Ra@=n>=i~0xP1PDge-Q)OD$eP6_5*d+V$x(8((mFTbQFLLU4Ti;RfZ6a$n-mV zD{vcV(2KuSznAZzY(<+~rQ^DD@_hD)I?$5h{j|5~FslTA$hQj;WiDDPEkew*mKvms z3pTbwhIsb9h7MyS*0+ovJK;fg01P(v!3CK4;;-^fQmj<73vzpK!FtZGEf!JZ-qy*Ji|7XFIph+L)B!9pm!*dxX9|gSRHvtWS|6euO~aBB(@0t#)4vL`D0< zU`1t(_JfJ?f;cRBoq5BVkx@2x(zsr)TX@|IXm22SfByR_QOkPX)vQo-=)eN--fi)J0^eI@q9I~n`Vn+l3!N=UoXvE zS9TKydVvn)Kh58 zcA8@J4v1&UGNh%NSuUY^DcTv$oShZ}HIj;lqOJWr&EDR{6WPc}=ELK{gfJTY z3NMum@e}N?Okx{NBcmZ> z4x2R&SFoTzb?eW~8qeP6+0uucy!oamYi=*EkUFw&Fg}1`T<{yqHstoHNui}ywgD@k z>gNey{(B?Z4S6+BAWK|bhOO?#Jq=i}Di+rWh>}m}sLQ^iiPFS5$**ZBWHS*rJ1$M3 z?|GCkvibJ*;5QGUFGi}4R;(&2!45V(Rs@9%Cqn|6r3Tj1nFpj_wG}I<@xr6|2jdMi zi(Ee{)41lBbh>xAW6gQ_AlU&$C*4Xon7$u6uJ1yRT|NB_`)cl$ll?#(c{*@t(35a1b30gll3I}5Y<8@3BJ z!OhaskkZJ61nJjwdLh1O8)~16?R$}pVaDDqndF}Jtjd7nRrfQKM@J#Y7ODqqB`E67 zejnRF9j*grkKOWDNHE&cYXmfh*RaFhK*SyO_S?aGB|Q~2B^M4vD6S$mougvW1Pt5d zjcQ+vH}3+{Lu{Z?H|8u`R@t$P~Hz4?J2UEP>KgG5^y zi>%KSpX*rDofycto~qz&b28*m7fn7D(wWD3xe;!_7pq-==64yuI5#o!X1%m5+nQsL zZPi_w5(j*`kniSj+q{Z?cO+H@UJ1Y@7m^`3XF&J4S`S{WoT5qG$y~DjS@AK%$D~Al zEoD|ylXH~h>wd_vR?hUhTSKxoBCQlWfc0Zh+Pz_x!dd!0gWpJUY4nJ7F^~BtOQMUX#fw;@5xR5Uidf>yL-IMtE_E@pGsPs~RJUY$ zG-}C#@g)p91o(gAEd(@+fzRo6S|REMH)BhTdHNA(GRXi=xS$V2dysBN+=sLwoV9{B z?qusC7KDszA|2-;2moAHyJ(67WfyL`q3EWZmj=uLMGCi#lH>8YTz=IieMAeAr7-Gi zV+;ikg$cjr*hRC!CrMh7J04$-ln1??bEKXjcc)S4!JzXh%k~h$TFcvx=bC$`;|bIZ z<%K>o6KM>B0zijef?@Uyzs!KKLj!5ZxI|Jo=rdzLh;I)gw&eGuXqPe^>p2?&16Ac4 z8yw&<^fg*a5*+W)j~u}f;x}(nP<4f|JdFmsKC$=oeX7Amf11FaGvg4(FX#LH|6|q7_!PtOS819GKWZK_K+k7|Wrma41rhrh`_@os}$^nKOIu+2vE7 z=lPtgM=cJoTl?)=DJiLS@R47ROG!yrN=dEk|8f<0=aFUOY4DG3&_TN(D?iU5>d62P zDf5#-{yu&|K4(sS7vd2Rc*f6HQ%zHC->&aY2L<^D>Zz-r`_Bz(egR(UUs<F}X^YRRr~AxHzj&4T?6bg5GuV9PFZ)&Zf42XDfZsfjOJ!te zP6f{E3Tj405ry6^%+k)%&RSxfu)&Ba%FnIV2jlp3?eTW-%=+|#{1;l=4+iw<>i%wH z<%&-)q@;?!|IvT--!EMc935Q$_sjarx9b)Dei^fF|HXfHCI9Q^)W1KK(*9y4@sF22 zU;cN;U;Uqs|M#EjknG^ki(eqDIygaLOivTvq-g@SmtC3@tv~dh=nf$s$VWfB)$A7_ zCDpxAsCs4U28RoF;dY-22EM7X@nwQ}z>|C$*hLSg0n{}|AB$NuXat-AAn&e8uO%W-nlo&px; zis6Jpsl{iVtTFY7`g|*?7>^mrnaR__=x@nYn|Q`?>3Q)%u#;9C`~PK}`b@pgV(xF7 z&!@KPt+cbvWxV?gbn>5l;Q3_z|9=*-cs757YqJ$1py=x1U&Hez0cX%6itc^7da8%- zf4Y>apZw9^Wi=9f1f@e&6YoNEAwiss?p?a9Lvw_MMZn~apAGKNUFg3C`=xNJV8zr0 zj-r1sQmc$B1@X7oBq{yfQnAAE!Ma1(_*=-b<@O(<%bFHmBiQ(M*g5@~B%^OT9!u+I zVA;Lw=qfdEBK~s$ufQ)09ED^vg1?d9j~HsUL^L+m^qF|J9v(pw~tK-L%owh(> zFGJ4@GKso>W7(T=okvJfAMt4aW!D)BnKOXg@Vypw*ITWJE+EWfSA2!0vpyv^7=|`N_lR zq}EHZ2{orA^C~;?0xD4$>!si&RxL80?gOUv#>UE08(-s2arbYtmi9j={{2xgK4~!V zg(`xCQ>wht2};!-e3UNe@9``Xv`v+^EMIuN+}NT8RpOd7L#KqDL0!xqwLHJ?jg3Er7(Hx`GtFJ63R`qU`$l^8 z7hR4cxloul+7--~rFc|m^-^po+Z_cB_7Dd=$^RH&>OXe$7Th9njUYZI0 z`&ZYiYL+VW(+qxy{d^A6J%5$m6|IiHfG>P_nB*Ne6^mvbMJgtUysqy!3hV}Wz!6cO zBD{9F2?yM!Oev0j5yH@#O%JgZv~7Ea_Q_iOqg}mJ_+mIRb&H!Iw=tK3uelz_*1@ex z&z%$;re&hsMOZP7tJmm#SasnIRCI#&R41iHvwM@o7>zK(yHLlQ?iDg2rjn~rA{-#` z5&Wy6BX9gyB5LTHnP%yi>N$HDEw_HJIL^4m)wQ~|^6zfVUgU@PGlEg4E2CN5*z0kT z?r7wrVE+6lm9Nz9l#h*47VK8(SK6YK!xsg|#k=tB?8pX#u0pc_81;j~4j>9Nt~ppd zx!GJ~PKhmYxt?DluoGNc6DSyZSicr>-$S)aa(7yAxMR zbe<$SXu|#Fgho^!R^4!u*MGBG@O0(1zEOF>3#eH|H~JnOHSoLoa9F>5T5tM~OH<{) z82tSkTxn^n^+e#xw^{pNEY@IPm8tRxrf4)lM3e*foW~w1|i-7v#S{1xjBec@hC zzgOG!`S4~9qo^G#33j9}8c0dALQG}E*uInn5d+-xa4-`dIUHm*Ec zjP(C-jcIQLUjtDh} z?u=BJ@`OIS?IgY^ZOfXl42bUOy;s=vAWdB|nhFm8^*BRa{J!#3hArz(i~T)py=g#c zQsMQ|4~*!4?2-+sV3)u=OlIv%eS82mvO`=jj7eFrMpqmvWK`3OPC%WthufopDb~V6 zSKA=Xs=BB01tRJAX`+QzW=oQ z_Jq0j_rT7TzvLfYzqAsOZ-T7YB?!wI7K1h!bb-97S>&9Zpet`YMx|444_>tU>wj#t z?%zV3FFfykOB7W@6QmsQ$W96+FD_2TnYOUC5tM zWJmIT7aCEv0vO-Rj?gu#DgYi-1|E3l6YH zHPHy4D*iP1UdTqxo&J{S$)QDd-uN-O$tO{>P&lN!Gxp~>#uy=;^5yLNp_0qZ8#=#Z z0poX9^Mlc_uTJMcEk>06E48#*@M`;mxePd}3KJ{i3{_o^I^)l+S@ARjJ=}`6%^+mq z99uNq;y5h_8{I7MlMX$K@~v4N)q+yx3HDyR1>L5v!5@d1jw5=@%bkA_(}Qp)v_Cks z#tMx*bUE_{`%1x{c_$jM`G&Oqz1M55)?w{Ocsj5+M6T?M;Xs!R?iL$#_%9`3_ssPk zV(Tq={g82%dso=yASCifJg{2OnD-o^K=F$2(>& zLs!(?`uE$1jxG$-45Ch~SvPg7LFr4ybO@OfL0*&vXVmHPLcjmTDkYd#+T!#F-S`B; zwBY?ai5NyB9$@X?7KS%MI;mcZnsmW%i<9)nUlTL7)%WfEW0`BcTdJdL(mzyK@;V`7 zjfTeuXf@yAR@nF&wy5yTsFpc0*8z+7;@Q{NwG1jQ;>g@ro@&(TVeIW1ND|jT zUaGo#@b7yTYj@z&?!_nBennR4pgsAQAufaMPouWumZ~5CjZfJt)`!I^_)faOd#BT5 zx{D1mZON;F_$|VsWV$M@uleJ@B}K`F%SWz0y&A#?tP&Pxpdw3N17Q?QMpietI2@(! zKs~@gxxvU>G9m6?+bO7mM$Pt!p1Zvz(qI>irL^XqFdXU&%p=c&j;<#Mh)+P#kP`_m*N=+Xsdv zj}IRwLuifIu1bX)?nN>omW)040&LX9ZV@Nd#g!T7a4#akBB%keCCD6&w%|P>#4mr21tA_3eFE`QDh#h3y6=S6 z7~my4?F2UoqsW!Bw}ve>Dz_MoTEPU1%~4W##ddj!f#@JZMmsNK_BEzg0xa5HA((IN z$M(da_yc5U5FLqb+EPiW8nUZdcWkikMKFIQY@{d5AFUpxg!Nr0T=Q|Y>wmE@;blWE z1mS&1-I_II^}B=xRXF7rM>f0v7&(2WDRjN%5z8J1<_$f~wltj1# zx0dFCe3H%jbHA7!LM=^XiR+0KhtxDD;!Vr_>^Mgmq|DG3fiIT zdy(MlkdDGw^*+4$mSzRLx!DF?ZKe+Lx0tDB&+Yztlc2_ZjR^#^TPahXtsy^g4Rt|+V*ztjP)8F|e|E~1=>1=NI(5P(QIG-*^ zZix#Uv=caN72}uEeSx(9y(TMh)FqXMbuQnwiPX zf{keVvlo0#45gkFJTgtW8=UDRS z8-5ErfO4h@zuo?#j7FwI-ngY^Xt=Q8P@%*GsV${jo^X$6H}~3_-Eh%}{$8NCp$SY+ zH&Fl+TAUkMtEp8jP6K?7$sVGXsA? zH#{iT1`R*;v>%KTK3}l^`z&-H#m@2}ifUEI5xy*HaGNgiHVk-6(DKGhVPenA$edk_ z`pBX+Dch8y5o!_GFocl~UPWtth_TdwgDXA-B8O>$(t7sX@=#sfFbtSFUHrT<+ZGB7 zrRF?pAFDC$+g!;xl~gi(kgJpKUvQwQchvkRfH1gPb^ik{L+_Eh*a=-7ALNq7^`Z;d znn%W3!G^saC;HP)pt_+@%Sha^ynFu!ku`0RWbQO-aN!=ECOk!D1Z&&B`LkqR?RuPo z`Vj`}H*bZikB9qjl-gDK!z^U^?S!C>h?pIg0g${aTjbOyrbLe$GySiTLv&8>XCq9NTAxI44ZGo=z?r3i%$W(oiZ{VD&uwh1rMr(*u?{R zjlRl4o)7)}An-2LPhWMp_r)(LIw6PEN;(NRTdPwv?(u*e`q+}M1)(Mfour+kIu{`k z%bOr(>R*V+2epk4mbjsuOr9RI2+OeC6UBriH@QY`DcKyh?Jn&KIwO_artCyl)vdz{ zOY2W0bKk(e+Al@%GHc(EVd)Wlbwl?y5awj}oai0^(;`TLax4RU0nVWPaC!Xo2?bb! z#iM3}l>ZJ%!%lH_;xj!VZguKjM>YMK``P?QPTlMrd+wqe%^(jO$l>k=@hI1u9oc4Q zu^Q}D)CnP^JyC9J_VKV0KLA9j4HFmZUIy2mmE~Xx&mnO zGk2io-FrPv(QsK~IN%JDmAt?9XO*g`&Ei5A3tl}T9tuFmh$4hVLxq9mb@Ad5GVd8x zS@1+x(E5MuigFOSgzz11l>#)p-cu`2p?^BN!1$#e?zi3dlbP+ronhbdxbw}Fg?OUQ z9UWwg9(?O_Kr-$_mll84$c%7K=cdu}!7eG5J7<64d3t5T^M(6z24$aMq&?>>EqT3= zON;As-ZKIxFyJ39-M%?c72FM9kaO^u*DeRXX&;Z^wW0AW+kyDF4INp?zT^TC>)_i z8{^Gaa^{@*Srb*HNu56nZj)#k*r4)lKaw-!s&9h`pdKCk7Q`7Nc6w%hv;6J6eE=h{ zR9&zEo_no#pB(4MU_*pK5j~@`Gd~T-!}WlF261O3e_shRV!!snHL_BqX(B+TPtwdHQIdx zzY#LN`=-;l`x}`i+et1gW~wicHmPU8P{o-c{0!Tz6Uxe?T?LqOwO}IePq4emD@Lot zqjQaWU)NP?`R)rvYmA0V$aklXB2($yp`JzRuMCHS=flwmEnN0c@8QB9KE*NKr#n{? zcQ1`eZz{0-mQ2gK>lCsYrtNyJnqkZG+<(Vp81?GEz-OOC_ey#`fT|*~*=(CHDTNmR)0JQA@RXL&Z z9>p|~2iy+xSdfIpHg-HX$);^f=H7w}Gq~3vjtTE7A#U1XwR~Rf%0RSF{@^`1FFq%n zayJG_l4hkJYz#b$oy~zH>bSaRpTcCb(=jB+j90`KU0d^7=>}I9R?KlPTGA%hk{!*aT0Q*{moiVfnt&rEAub0T(`a`p2NwcE7@mqOuRE~^z z)$zvpTpKyRv)FhAEi;vSyTmkwvTz6mM`;=wE!rdA3lF3L+nb_h!mEOEDODFHdxz1Q z5^TrEW~C;~mYBQZ7hsoBOM{!|C`B3r9f#W)y=*V=m$fx%1ntW=4^Z%EsLBNuRSSM6 z>b$9(a=PquR~-Qe9bBiD;y;p*b z%cA|~)q>FI^yBGy#}OTK-k%_Qq6vSdGS1)8Wk=eeU6e3UacJar=8=HLr1>)-b7+!_ z7ZgB@;|Rx$CrmPpwnHS{>@8}f2_vtVhuwQt63E;Q$kH_6{pSaqbGRqS*H0j-oHp|< zL5WKw$5XD)H0O0gbf`xQr(@#{Y|+&>W`!7l!qst2%^!V=pe-s3En0X;Ky->bKWW~L zF4*0YRb%~P!GFa?iB6}83sSYc>PG@N5Qtp)ZLWL)$HCWmX$VqMd1c^qS+m4Q@Np0v z->$5EG{@?{J1V^piVk1SX+~HDU8+{#Uf0?nzMR~~KWta69A6DBoJK@e2s;;>S6ZJX zpf^~6lo?x`!4}z&3llVQ=#&8V8@!%oYtq0pf0n_CtN*b3;tJU~Yo8fJU9kH*~f(S|=;#&A5;@ zYm~};oHXA6M@8(ATRzUa8i9SfLXXZ$Aox;X%_y{VlGpYQP2Q^ItFk#dw%6`+T zAkKOd>Bg4LJoIV4TlTgn^ed$_talC6$uz#j1qs4qB8p1Q(VKK>S0kpkD(=Lm^3LXr zk-?T!>(5k|4mK0N?J6*||8Vj{)z5t0=h_Kgg&p4Q16UJ~T$5Lf*2joxS8T@JK>a)svEy1_2YU;` z>VbXtOjd_21@-k0I@lomc>_foO*q<|uBjKvBV|++WD~CqhGi9^h-7XRGRK3Mz;SP} zAKvUXrAcW$A0fPhl!a4Wj7}~G0x?(H&aURuWfGIQk06T0_aoHOvU*Xq)$gRGZLRmG z%;qSKEshf6_xZfEM;QraMKEs&GA@s+3Wvf%P<>lgBVF)%Ws|~Bo#IaS?IW3xE!b=E zSn>fzF!>1{Wy zS+@WO8!S0kzPW;mR#3vcRvjD*UsoiGK;;u!t8CFO)v%|Zn@$;a)&-#kbb8+SqY}qv zH;a61y;(s0ZygDCQ`O`wk^zke2x#u=98|aWf8~D2ui7GLnDlntM?;jrwgHq~jlHVo zL4oJHtV8URp#W%XtQIJ{bxH1H*(qE4#L5?2ODQ^B+bs|ZX_cKyJ(Iaz(=Y|&D{UoyyF{&9=>8^JD?hZ z_$qRfuf^FVrVIyUc;zhKx%!Kdd~REq@iy=2l3%wjx4Iz%xhUw5A2$gIMW(9KU6J5E znUMV%fxTy!{HkVf=ktZfigBDTH}}FKrE0;3>*kY$H!3`fdLOFxOX7BWk?D;m*IB<@K0o*6hBt8xAqy#Xx@c2Wu!GDop3n@_r|yx7N<>aMTTVri@}7!?*7nl{HQ1sVs_$|1t(cC?`LQGCNYAht&dw}YIjdv`lY7wB?JZ%N2Pn|Q_Q9z@ z04HuLZ96+xEqH`g>&0FXjXGv>12_D(aI}24KcmCIt?Bv;e)@M&81`t@CyuGrqwEuE zMY3;>f@I~<3UgixZPg!`yh@nED*fs<_DlqhX_5(}=aePtxYr=s0%7~y!p&ZUUgURy z*k;X0G$4%zH99L_d@)1g-u9tyf1(Aq=j;K%33=6DYkgEN%0VMehB}iVzQu|5brV=` z85X6B=hFHOV%dHAIGrxIS!O~mp&g(Jjp6K@4bvhKn(2t})6W3#+}Leu+VZF92x0K3 zoTl>^(SW1csuX>QJdVqGM9ik1u(9vG@6zd*VlwyU5?!9d6(e)F%(X7s{+Vz}*eS%& z05=E0QNu*pXd#07dA|D-=!2wOH@qcutXWiAjVitlt)XK^>D+kOD2@9V0=P|{SL(<; z3v(V#d5R6lKR{ouo{d}J*$Hem6rSgPLqc-o)!9l$pZDmJ3QX}P_cs~mhlaNKQ7J=S z7Aj$_cKXW0Of!&i)w#CO$a(2>MB=v;Fh%PIQ-{2QCZRiYy4M2#1~Z{dHr-!*(QRr$ zycu9iwyHfI-A4JC?_X>$^}zVM&AmA;Q5Tl_0}izmIMg6M1?^YE>7`}s zn}mR<e>#z8XtnW@eA}ni!S7Pk_4O9?Jq|(|nI4!ELH2PWCNvofZ+AFBoW9 z;~bm2lF;gmeEF!9TyAjL-A@B}Fig$qVDn9R8{mOVuE1V+=)DI#0MI|8&V`zzLwgD~ zZcN$Zqx%JCPqkT7b27L$ONcA#UcSgwCif%|RjBU~J}sH2-6}lxAb}di>*@V~FGx z2zO5n&;SYaQXI9)uRMd9feO!{wU?&={A?M*U%h#)kubb9u&G)C;O;cPWiL^GqWkDd zBCwhcXv7aE*C8x5*f)vW39mPKWQm%hjyD>NCF<2l>%in)m>`Bdvl_p>0B{C;a7YYQ zg`tcBjH32lz6K-GNzq8rI5FL(Q%7eOV7BYK(q?6mU^8k?*}t5b76Bkg;-fY0GeygW zWRH{lqx#6whu8tMUj=u%(hN@c5u?#K!pKKqR@VSmruFONd*OLI_YZt*d=7Sg!ItO` z=_Ok75_h&~;#ai8_LEDaf19X#fJN!!;j~x9f-UH_;|Kr^n62>zKv`k19ap0CghQ>i zn%#FI_o^#4W%bR8-a$%v7{@H&rGM;2K%SuhfN)XFkO&DeagRfK6L7g|ZLBOx!u0g; z4vinrGKS(hU=)C_0LIvF(NYHTN=qIWTdalDGw7d@5mLSxl>vk~S=>v2E;r$gVT%^1 zpGwb8AQ}o$$cWmH9uDC@GtHl2V~c6fw8bMqvEVO=0#*HiS(pN!p8@rp@mX90JL`?{ zm*>ZBH>rtfhZVIapr%Rm()B)d%YYDcRX-p!q;K{1_E(!Yisc@i<)huhL7wI&DDW7%v;RPP$FYV`>iosq+JYGj@$ zIB$>gWdS;~bji1$079#WT5*OsiiNrpuNNVh8XeiG8z*1)B%+7pa@sL$m?rE!!jHU5 ziWXzEjw4ETcmHCu`HpwHms`nyd16y#5%s(vzq3Cn0wQ5vcblu=!{P%!sdYsE9@%KH zb$R#J3p@W^FIwaM6|INvpIs(ds z$+nd3r}}zFuJwAaB{P2VvRmz4604ul!EWkxae{APz1#6bNcX$gpJS!bOg4Kt0AqDGMT=Ax#t5-+U*Iw;hkG8+2l7x{H=anya>{*#)v+)7hoz7h17DtUs zRMFJ}C{oe$+r@*2Y5h7ljW(&TF$#oB)<|;*|Nc%q`m-hJQ5*<*>zk+%Xo}~%RVB^V zEURikxMuq@?-C(w)W=NR>8f_UcoCI8#(1!~6ygfPQ0nLQCgb>FP;zYveE*;3K z0ACCML>H>DGCl+kXlqLn;B5Mzq$RFjUr1LsQz!sCS z3r>iLiexz<0N`S6h$>8^Ez%la8B*Z@h!C;yjXzq7Nq8&2U z1@f~uOH8Ts2jcm{*Z-kHVh&D$$-bGgOp9<-^`pr>QPh z2*9i0Ir`!uH!oMUwzsS-6@cR)-e$qZ2B?YpE%B zp=7M&IC~Gs@GjV(Uh%=k6?92NmQ`3Z8GSy}D*`*QeuP)!BX}p2wC~xn-2CPe50Efw z<9p@$?Fb-Ym}arB1o2-q?hRZyX*osQtrpyZ=gk40K=GVt8;hmY)X}G3u=#dH>cwf+ ztRjGy+wpf+3v@M)jFLQ#=5sO@nQ}y&axt+gzTwfFpA5*epHDtoo-EhBntct1c*o^t zlYo=xaCLZ1@xlp`JO;wQ0jxS2jW!8jL(#TKcrf23A9<32AcktV3m`yLaX;pFSx{9# zer-$5T`>Ia$Cnw1?Wsg)waP*X#8)h*HE@*l@D@P#vb?_h`1|TlEUESsZgLNo2J;_p zQOm6a966&DBT~2r;1E;ZBW&?B*gqF~e0`C*-({}#c;6GW!P)(6LrK0Cl_ZVQ+`&(( z-&L#aAn`3e9>@p|4;4Rz)Ezy{mZz}uFEWYh8ahuLnw?15>LTs*mH;?%PjQtBK5LuO zo8b1rzuuVAbLO5v0gfsJVUW2EjJh@TZZH;tCh8v?+xek&ENQEsWdMVy^ND=99Jafv z0L7S5^#OhlJ97S;VXDjPMHjCLUmrg3G)1aa3i}a-3~m8%^kZUI($OcE;yWHuA}ncENo~)F04~gFXd9DPQyvME+gRzvtsFy; z#9;Pax}~$buz*&x6E{+3=P(Dgrc%uI7P++DzA?CBLu=SsbTlD22e3P7HYB>@1G2^s z_M_l0@~U4X6V8JGPque$T>#Bex&~f^8-?%oH_}9cgGM-!;t;nfpnP(c{!KTJZkcu5 zNaqO9PXK8Z$RD4#))%^r$IPE>(|6PX#J79 znpVQuddH4`>~^W^5O0vCyO1e)gLK@&Db!&-bGqCPK(G{iw?_ArA*|+n?pG_`vh?Ub zERo4V{|{XQ>!OPwNzIecmWRJH*zabA5a>G%u1f)^ahG|39qKfaMm>+N4(4}_RxNJ| zvQwX*OLzE7UO!(5&Kti?7yfA z$XsLT$NsQ+pV_lHjPc8{n-#(AW9xNb6b|=`M-)2hzB`Nw+!wsc@k0DlpDe z{^7iF4>&|AguM$NZEA`D)+Gbz912ssIo;Xbwjd%8^QY$2hS)DBb>vhR+jv&RhF1&Z zTDH#OSalf60XhiS_a|)-AUdaT@3SL^-j|Y*MtL9|Xibeu$*6?9>|UBl_ow9185!J% zaP|pA$0Fe9DtdWzE}fZqhRmhw4^f{!U*LP)TApqx(_Xc;{fE~{_iid92VjZ;JXt6# z?t$y{8iU9t!DaU(#CD04@L7+{ReG$iwM5vb(ZAq%vjA}5DOEks%MvZWT1LcTf*&l^ zxTGd`c^2m_{(LqxqG?CxA4ytzxN*VXoQzLP{^mjq=##9#Hno34cH{G<7SrqDM9Tsc z`|tUx*%VNR&^75megdxIv!(qFB5l|iEEFjrJl3^pVcpZtM2J?y<3vZ z^g-3V=P|jPz&n&D!nau6t(aCh~6A0jpB}84swTb*b zD)2$w18pGxYj206&VE>MMntBhNIkk;o5bl|;|)(<6r1qUWkOsm(G*qP;9o1dpsIbO z4(K7B>2UrsxanUYypXw8KdomlupQW{1MP2##s|gipTXHQ?hHJC!nM^46@rAl_|G!M zbS_{LPG0;z#hT?!6P~B$Fs=o6PU(YPX{&A-T}*4_!8H|3eaKs8c#i~9j80xFeu zRWh=5EePVzNIT_WU2*$3Y_^i!m7Cz*m^*(bhkE%`N3;T}5`S}GI+c44nX85@v)}KY zA)_-O51jnw0N;Wq4@W(~6nof8+3s0GCz?GJ>Hxr3?^z1GKHy3c(FkP+7dfL7lToEm zG|H7n=ET_I0@fSIUfO(~_kjZ^El=@wYu0XT97g8!kvUT&xY>U6aSTu#+I8kuic+EJ z)-ve^_5Z>9+!9s9V!bHWC1C3Hd>$?H7Izk|(+Qc1fh5Ne z@dN1sPdEYQ$;t_jZrdGFBoknuhI`W@Krm5)5hY?dasyAieV4@CuDPV}ExeD-=V3Y9 z7A6@_KTO!N`e=aInkFF#h6N7?2p+=rRd|_w%k;sfKd{1#{Vx_2mDyfU*l83<%N42x z@1QFx3w1#7NN$03njd$b6*pWX|nJj6blxMLSD3{+fA{i>a9dWF2^;b=!MnJGuMrVF&KblU6 z`OsmH;+DlsfFzCw)E(^{TiSXy^8c=nw4h2rTG`K*H48X`f^c%$hn^RHc`C#Go$~Zf zB-jKo46CvRa58XT~*i9RwEm8xKpuTx}; zS_yF%VdQo~+M4y5oWYNK#__u=M`uI#qq2#Q`E9q$UAHsM9x;yy8e!+he+?4i5Y%Pc zgm}th@)aYSLn;BSdI2;9;?90TTuRhMqJ5-;3Dk@(5hQxO>n$$L8#kZG*bb(Vy!3$y z*omJjovWLJfy#Ujt}ff$`R>Ca#30XJgr>uEEaykuuK<3zVVnR$g@^3g!S?r7@7~G` zaE(SA*&?wDZybs?=oCH0u!SZHjGTjczm*Wi-?GgkFP07DG_(r>=V4yQ^)_5Dk^&B3 zn@{8B%0vL}1@WykKkSv%Lw**#MjugnKdFnSVh*X32dB^H$I6~=VOK0 z?*du*4AN$1JV}hp%;{o}?$!u-Jhyo)esDUyVai!TJfcQBUJ6i!6@7>k~i^DG7 z0Xr$+UZjAPTRFtm19{C9kdfNUpQP~p$0ervF7qG6}_son$9UIKwT04yA6{hr+{IpMsqeymeR)Tw(CX~0o% zFTm@WomnqO#Gd{qP`|>km*5MNM+)V1Ip-RV;d?al45jW zcv!XoW77q^7wu&Ahxvn=&QL;nt_WYUp_ApUdKWKQv)YllV(fwg>PHDXi0XTapUi{5 z_M;9V{9_YYJ3&u-f)m?rf9XnWB62BJwp68;?8CCnt)g>-5808{RE`E-2ZQkCsgFqh zNdxT6Ve{V-;rU%;zUXQt5WlmtkEoc-*#_t#3Md-`qDY$X&s%{mc7f9?ASWPsE*=m-W+Yb@1@KaWO339?MV{Iw4amc65miX=95I=tgpd z^;q@Hhv`nNR|hZYS&W&-O`p~PZSb=^bASC}zMbGDtV*TYvOIc1Dg-mBvvVTXm2)eH ztJ*5sBShYFS*pj8)vCI#PtF|94{-vUD!KP7z|sc~L&nC!{)nZ4K0H?_8Ul$j=OsHO z-)jlq@6E$vQQ_(G%~Cb~y3eMDs|8s|FauKhb1-;@tX~Y_d*!B(0fzn`Rh(Oa45w%S z5XZ%b9WN*T1a&UOWc`gY9)IX{{Pfm3x%e%wioQ?V7~EEupeVSQP?=#&-v0B zxW^N30aBuYw_I-94QDf|UxBv18zTZy;b^fvoNbRJ=3yo%cENQOzfw}<3ThecA?_49 zd9#3VUP2v*{S4@dWkq)T_b&Srm+VdA;Lb4!30iEJVnH$TS^x&gQykR5EKpNthWg z1qn7sC*1o4gGDEP=(LO{DZc0j>0?d%>gWrFvk52qeNCS_GJ`wA!Hj}ae`_TX?m5vh z9(W1((MUMKlIO>sxoWHN=n#26S`C=q| zgYZH@>43NSYeddx&retX!yc+?w|vfbpV%2;YX*RDB8GJ#XenSb=-PolgcTomkN6_Nz;}C2tU5oP9fHcg3LTnv zrU4amAipspZ}XZYh;fq} zt~{mS(KR{q>x8`dPm zXz$dnJ-LmCstZA_#OIA&vrA#uiKS;`#Kga?RUYLlF}gt*s=Gb*^*mXwm21NyRq1)- z_mR072*9@!&ntC8_y@hSNW!eRlBoNsE9y(pKuekfP(nKcN^iHun<=-c@O5sxnj@Qf zl_m+(5&6pYr8((1{xOsL#ZM8y5_hq)(_u|QPjq@6Qy*7^K~h3Rg&`>2-TP!Xnn~l@ zd*4(Coj`IMci6HNuyLTplwjlhym8sQ@nZYY^3Sq<>Wq4+G0FxguJTkM8gVLV21Lf< zBZ9-|wu;uWra--uS7#>XvOpu+1zEWY#hB5aP8K_o=@FN4E3AuLn{q%YzrZfoqwFhA zI;Om;lD(XKOrRR(g-&>Qe=m@%lOr_^s6i#2=}gZD-nBakVNIb1yYT~PEC2R90IH3c zHD0P!Z;BV%2=QGllk>_KtWaa~M_t8{d~6XXoQtzvD?1jJiAMX=79^5eWX^k^M2uRq zaJHeC|J#c)B8}?{3cI}~4lGF9r!2+tY34u`5u2NN*zY^__ipbh4;B`@IyC`?Ak~*d zL^WwNMLfcMv$=elFbHTk)-8mfT`FN`s4hQ=c9G+Jfv^f;u>oGx8r-JoQzGc*z`Q3z zsfAcq2!G7VJRo+Q2+SK#maBKwxAAaHa@5Hk2DEr_F-p}$xRdFj;(>f6B7U@ zUz*nv02D37!Oqi}5Gc*IG!3v`bxABxsrmu0phf(f&d|PJ2B?VwvQB|&4w6YHn&VAw zG@1$GBg>On!Gfg>;nLFfb-i14I&>29YF~0ocF$k*Ec(wU!vp&+rH*=eUlh#ce&t7J zu~SsSB=1T)y(4$y>045ZKAPwO@*xXgxKeKIATAE}Bx%F?C+ihKAPO`vFSkDxik~kG zeAIsRseDqfUIO*j{r51T2z)gr-jkCwJFWiHS&eWIR%qW(1x*yQ&&O^B|8^g(7RbX! zx;_MrtEg$Vl%@v`JzuDkPDpQUP#)c4wp|t6=0gq1W<3EAS=luO3lci=1`_4Si#1;vt8gZ6!#mjaZk9=_+{|OSrpjAn5iC8s#2p37aj9i z8fvk^1knZbXsE$1Jd0Ly2UFy*jWf@m1uflxaujtrTA&s)tZT<>!w|0U8l>cMki-MK z3&}~5Gk9SXZ+R$z9LoGOP~nowog53^GwebHGNsk`n7k8|5~jfxZJp-qD6jiK$g~O; zbN1L!769W_Hx2vqeG}6bKu^Vl6!Qic=Q%O^4Yx;I48V zP>3D*`fx87^tvJ z8~Uqib)nKx1k?p}$Y=-YpW>cSS@1=h^Cwck*J9S4zNKGTWI}bh!PUtdmxje^cnLgk z0^v{j>d?t471)Aj6M<`U2Rr8v>@X$FYSlpkegx`+vC6o>15pr|B?9od_% zN)jf07pKaX&>0YQq;S0e^AM}RcF}FgBs)a(BRWYcwmu+;40-kBoe+C>GyNC_nkl|>?%L=4JANKV2eYAy`2Rdi z%=0!0WIr7u&s%E!Es((<)CXtNZ|Qi0_dvZb!g9mL>B>2Rc0G{iOLgzkezu-K%1lvZ z^nLNfOSuQ+Qi7{~B;+(Ix;&Z!g>fd2gXxcH^RNP3&_WLsE(<~*d(Bo75w`>4kSy>V z5mFHjIPQu_nl+j;K}a%BUI3p?+Nmi4iy{Z)e!FN(ZMf6b{fjU_1RKN}Z+rFb!yWq( z5|%f!M4WVRCDpJ~*O|;GN(E_;Q=;#v~3>@+I8J=S++dd2=`O%0q#*k3&s5{RH|Tv z9f*-)kK((Fy`;)N&Ep4fb8%0r&uTuF-np}PWNqJ09Mtzknw%$xEk_b|VU~rp`r#Dt zgqP1upS>lR)-14}fYSXrG@au~X0DT=ml-<1qKBd@^2W7+pR*q&rzoRg7uCOLdjtv` zAehZxK!NXKB>92sZfo%90SmK7qmH&{A|>nyIuXR*-zauIR9TVmw34}R7EF!nmHFPJ zSuf@ea{F}qfQrQIUDK-XPwl`FQoaVd$!6t}Q|KebJQCnvE}j}xr)}$CQ^3PwRO9CA zl4cvR@xe1>YFNL1S_KwUVg;Q*UBgK|Zv?(oynWK3vCKFVmj*(uH*j4JHx9}%=hXq{ z{pXUVzjUqzREosP0({Qq>j`PN(Be@?abzCEu|G%#)8O$8;2A!qfd135w6aa9@B(FXJ3OKk~i)EuU80Bs9UNyxd9$9P&qW_qO!mSWObMs3WOE8 zXoLpPTl)-#yn#ySf?z8%@=TTQ1RO}@m17_ZtTILE>l3LakC@MIXaWx`ckdSYm<}sc zXoDWuymh_+y8r}FZ;7kocN*oLAXwJHSI~UYyq>d=xdbTsFSd)_m>y`-hwrNu5OtC& z8Qplw`DVdNLSXT|B6uH^>C~0g&|bY0s=-9fweGe3Cs$LuO9%E&Y;<+X5ohO#EMui_-l#g0*-5FTUOb zs>!Vh8zl)vr5Qo#paG={LXaZus3->%6p>y<2vVd9gr3-l2%;cDkfMT(j!JJ)0R;jm zN-v2ZK`8-@^mcdNc)oM~d;fK_TrNuT?%8|xo;~x-Geb>9w(8Tg)WnQg*0l>#C<7Ba zhCfi^9c}BY;43fd9L1Q^H)6~@X}jXxBzR%PY)nx^WDrONb2G;7ytv>>Ht+LA#kn-U7jV{`KsO+YqgQ@w@$J^%zNAQNN< zni>87_ohl+N&%1Ulj)EELCn#7UMovb?|3D5YQ4Le8QsgANrN1h5)r6tl}E{`6`=b- ztS;c)e(`vc2ON%QX-De=Reqr{*eed90PpBz7UzyUbW8pAl*_VPuR21T@@;>A$V6Ro zlJ2XTVqyEKFYjwN54Ip~4(sqwB<`sLCa`2BD&qV4Ny}gt(2<4uGd_5nFLPBtOYOWRj(0;H;S2ef&f60F3t$u5vl<2Hvj&x&o)bp z2X?tks>F+XMchfcp0$-xZkd3P7NF(Z0n+IsrwYN=Cp`-^Ns>D7^TJwbe*BV{^u$ES z(#w1%k%;*si4wt)vUJpY-)ZT+0a650!%<$L&cM4f1^QBN0kvw%?JlXmpVnfvLORSX zgTLWREJsbH`jA3*r3ttu`i9^tNMvdMgKT9mJcxJB|x}p z58RdEF|?8A)eCiuaS6h1&h;6CdLdWK8BJr{w}(wm2EC^PEsHj8GJWN~tReYpvF{Ah zz9U%qr=CUtw$1CJ)1Ld!iEF=$CJD(YQvQq zzQ~h`Z|qaN#>Gdw4V9A^@5=OGRg-8`(KnAWd$EBwInPR}8YDnozeoDGVoTwxnd1yS zwarZ9=<=Fk+t@e%h;!rMYlqrA04G*~B7s1wq?+I*P~p+I5;q8F;SHL#nPePR1oM*K%W zZeVRH=@2w=K>b#G%_Nc9BvHuJn+y))JCk&a1Ghd8OPK;Mh!Go*bgeKJ3iR;EQ6;&vlE4jz9+{{jHVXvZFWD^n9*a`=IHTnw=xn>@RGK12Qip= zu`pk!JDHrQ=S*f%&#XClkXnBB*AH!d@~j~)KAqR5rGC@(?i@ZXMME<5tPo`d37z=EzrFArnQlU{>#M!!2V zc>`V~FESu44FXD0ejeCGMpmK)psmBJt-pJ16+3)_#8h@syg5{xCzPzH(Nu*VJNgj; z0Hs4@zP$A2F7SkcbC$#EEdt5nsoxi?76(D1Hr8@sMMetH3+S7ag;pjo3SPMGLA9J< z162T2*Hkw6R5At{nGMoZB&If(6#@sz&D=G9Z>|c1USdIZ-UmaO9=t|X-jO%V_#{Q9 zA^CfeNUeMUZDm@&c9SgQT$EQ~-Te&>Ri`kYeycr~1d#kQzp{hcWkOH?nzcOqS();F zeoH@t^1d^MZ!GAtvxqkZ%bZJO7}0y!?Oky52bDL_Hnp+TJJ2GOJY-;hyDzyghD-SH zfTrdmNWOpqkDA4PaIG?5C3dd|-s%}=WnK0=Vz9TxI&U%+P&k_oSanBRE+~o!no|ty zL$A)tblSX*uZZ!Gsq)FKv$m9|9%^}C8gb`}WBPY8$IV2cT#8rK6c4MB19OVukpO7x zSG12=^1w#BbKaPhl@0qax7>7L3yWOOG6of^vPEZ@*a`Dh@U`Q$U1iPI>%6Ro0HrPa zYvZP|Q_A<P-f+`OpV*%!$IR;vcntM7o3KN-^Ub%O8nGU zxb|*oTr0d_;|5)la?r1X+5PNbP{NHKQDz|+>424G#pz$Y#v!de4Pp+NN8hf^i`2fI z$qS=_8VlJZUHz8ML^37mdvV_6eY#}K6cbZmzQh_?MJd_#me%`Ml0ixSV39HX{`WhK z)A{!ppECzR8a}(?=1<=}ex2nUbimkXcJHVInX23q%~=_5`DP<{2Q`cHj@LxAxUS|M zQEF)i7p7!0IM*&8=3mLwxKH_Q6@#Mn&=}8B2V1tj4;1gr4mBx1cylXT25`fi%LP6RBags_8`G0Pgg`L~{Cy5&y>5;r8vmNPM~~ni`!ik% zti6_`XI#B@(HPwHX8@@#iJ?}BulqDn%S6l?WGa5r6Fc_K%$y62+1K*?Wc4DjbMB|3 zFy-{-EE$k_u}Dp0OqMPdTX(~5n+op{Ss&OH0Orv*M1SD++$YL=(4uDTY6|-#odKX? zd#OB%e9Q3jdos{u0kggWv{6m_GMxGL4rSIjDX-c%>3#Ba>QUt4Q)5u0oIu~C`Mes! z=6OXvUyHc1)N<`Rhkz_bj58Fg6FLc;7oBaevB-FAyLJd0{!DO)wTP}bedjJXg8=^TR zC)c`YVLCw8f1}NT{{LyV7IZCd@(w7)_}+J~%Gx8WrVXf}q-t6lv}pLkyEmOm! zU;xxtQweS-qBHxiBrGBKlKbxy2)IvH)~YtGbXRMn-P{k8*yT*$#~K zEC6I*4_m}(uX4WmQ(V|Hmt8vzEfg&5xY$oyYf@Rs$8f%9iPN1!cwomR2C;GRD_-#S@++U2C-@v8Q1< zU>slS4j7v6JaK*}!;-usE-rBQ(X)cvcb$YCJ#T2(br*g7<^@d8+T*;LBZpV&4(C%Fb4@__ANsD%^EqB z#%)3lJ|90}v0gtXK~2!>ux36k_j9_rcFYq$+rOFLsq_5~=2#;1Wz#giCAco$Ai0xF zNlwyDAIbKpQE{rfd#@s1Dp=bRl0^L`YBVB+=HQ~|qD|dNy-TPRs@zp6gcY>eW3wB3 zpd?V5r)icqNIn{|Vr957yn56fBl+ou!EtC2&JTS(GF^>E$EvF*zuP2eu7 zG3o=!PH)QN);dAq38JrRss&nr+|tE8oSO$eY5ARhQM|*);A3$2j>YD~Q?RviEx#PO z5qK!12b*xm6(VV2E zB?K!F4#$IZ0&%7=?xFq6N2K?;e&5F&U1s5H7|)hk@Yu*gkYffz)-fLXeb@Cb#k+?p zp4rA{kxDb!+sG%70Xm0jrtNByvCzj}&T9M!g+pIj#{b?GBCFzQ&HdvHnQRcU6WW!z z+l!q!=-shjD=;)(M}l^7V11;}C?tNaehay3qvI&^)4Au0Lxs7il2k>~^9Wtm1{rf| z*fC_SXdqBo$2I?aVed1hoUDJIUMr1ZCLh7{$;MYRIFtPN_maXFbE>JciGfDv2~YpDyc0)4q6@_2Xpbn6nB72%DNO zF33_;iE?|z*sN&yn}5ePc0_KN{RIi#@(j$a*Q&$%7Qs}FG08VN13#_UDNy<5n$16w z0(leMKD4eluRXW{JtO%v7-5TNh^ydyIfXOw(KRfWbw_avc~FP&AMv_M)ENB#tWC=c z6%IPFN)Bblv8Y%xvKuLjp*asE>_)~S?A4DU45rVeL&JGy5C}g>417C27(b48zZ3(C z7|4j~jI4i!e|c)P?5Ymw9%+P>MB<^630QZG(@<;E__diF+;O=bgNQV)b-y#OQlO7q zR7P2`@gYWd3VJ-X;wU?xx#1%Wm3VzPe2$gok3>@UP)EtN_1RVb(~I%B;}k%l2=X-) zKVkkOOOXGiN<1N1&gw!#f%pJ+SyvBb#i0QYf%CCvnFKv8XCFx>@+S;C?}Hu?z8~ep zlW}bR;nCoyi_>RLUX(>e!)qV+=xL&RrA`!dK^l{rpzS@_%d2p?uyZV=kMmC$sx}~u{Sw~ZK7qXKrnwzXtBf7M8sH88d z>lR_y7N96^N<-MpIIScu{MbWMksjqD4XOo2YtmR-5z=So;B3LtKS{zxye+Z3QB$JIB&ei`-0jd zSCPIEwVzkm{xLMWkgxHVJ?n>}4N8nKS-qXL%^yoi1LG^wq`;i*yO4@719z8zH3zC5 z$unVefndX>#iR8?4Ny(ia4PW_-+vW1X-MH75^F^*Y{d~waj6!%A4ddjIBf2@T9!x1 zSqbY1X`#_7vuDbojrKCOT-iWOr$Rz~cif<~D;KrUJqS6so%%Y5XX&U*p~)Jj%R_Q) z;So8sA8bStsR_%@i(DurEJtHT3|fIN_Rrz)Jl|}Jk2sET;&tGSETvRIRx7vOCMPi3 zV2%;JU(E{TDniv!4=q}ArgoV(+wm^X+AR%EHq9K)hK0b&6$cgBxDZkjrhNZA5!?=T zUsf|oHgNY8SsJlcs;IAE1`-xz@qbY(2BHi5~o+ zM_2sTZ`mzvB9Ye;{-bp#;yDgFsa()LkizCbnQ(wq)J65p%TO7vP-_0$u$B$$_jJmU zxZ=;X&)L#DrlM)8o%_3e*s>hy36(yq72 z4xc76!cnLPxpIGHJB4Is5TA$c^gB@EShyBi=aSuiDAPs&|l=$n9z6FeXX=o`Djx;1hMT9SPgr@qlJwAJI}*ZPRigW#{)l-H#> z8M2p1&F!Q9JkC?2iK^!l&m<;Zx%-4Un5igObsRKo*Is>gUE3@v0c6_(n&?CzwBr)3 zs`bBOR99Uz3d@SU7^|zx;kwWwH0Q5um_1TJS+Pf-Dh(Pu+cd+L&lU@dQM3+YsvuXs zlXX`nsngwPyGc52v@iHC(yj}e?q3~|stKd8rTAAzs~ z0ek<+Ttoy_3ORq6IzdVy5~EB@&|8Sw7rNQ};(bpWo^S3V9lY!mBU^%_`JMbC2T-lD z_qEIsJx$^Wwxk_`OV*)ov`RboNbzMQ|53T32vL8B!r5hwqAdykX*t^EZXw)3#hDYN z=QtG%ZG#P|iojZEhdd1&@*;JjMmdO8C9x|^(Yh)z|0uIUjUkH+P@PkBv7pZV!m6R@ z2uVK!w+?z>`sG^$UR;iXV|EKUzeX?`Q|Rc->kEKDb48>EyN9U@3k{H2 zFH=N?z!%xdIW%C;tm~uY{X6#d`oNT|H749?l<>?6>^-72%(^VXab?zFAys2**te5R zsnGFLM7au3FPG7`Qi%pHL+-2Sh)W?;;X-i52hNxIrV)`1LM)jLUH&IC%GEnAg{%SF zMfjC3LK4l{rY&g|wY8`H-Hm+wnNZb`I^nuuKw}LD^r%_^ttY2Sp+$7KMG%5Hb7c+x z$m12ENB{oUITdf;7`nd``30xhTb($2T;cc%JHpv#`9fV~odS9biR401US5$xGB3#F zI+JtEqu>16^Iz>E=Y6TV)D?AZ#H(vLv#3!v>V9`L9#K=Px6xI$c*)hk+*<|R3Y~FJ zlmEN(+WW}~USQ#AuzkJqOcl>gU}B34uk4?j-=n;tf2g9%DUmkI#T-|Cyz=Uwa~O(p zwWhWS@-K;TOeUc4Dqg^n%z9S;juLO)XybJ~jrsB1bB5FW zk)=Kwas5K@RG20#B0*3Z?RSe1giB3vEM|}XI(}X@Im&zH3!0Ht@Aj(FQN$)TzzO4I z&~<|8D%5w9T$im84L`j?AZd=;P?cFnE=T3Fk}p41naWM_BpoJJy@+|4Fwl$J-Nw+t z9S=YB;eA<1)QKgluhu@rAH)mCaLI$U7!7}~ROl+qEs7&7$kT&GZ_F6ayE0UXVb0nZ z6+8Q;jR`>xI&6Aq!Ao%)mJ1(rcg2o zipY6X+&kJy7>R<*L^DP<-Mfje9z9-V+ted!7js#3-~OEHJuyny7JilyK`RVZSzteR*4#G$76Ai@N3nuxT6;CuylWU7|rVl*tRh_F}P^R`qwYnebEG(ON z6ENdW5>OAdvR6b|wUKLT?xisWFqQeA**e$GXze^1%&?aY42byI*SaDiA*dUl>-1N> z*~4Cg8+dM%61=%hV-{LXU&BToYMG#lhwNM--|RvWOtSEe=FHw6x5Wo`YevK>mp5-w zqc4&3R|$O@s4OHhKX|9Nu}hBKl4YS&Ht`JGLaONc7So69y8nF#9a;;|THD8g(cYNN zDnH_t&bSnYqx6%MnV(ZVV&ALV(Tq5gHRrO~-pfIER+p=YE7*ss&{8V&iQ1Iwp5d(T z8!9I|2qG&irY~`pgvibx$RYF*Mk#fZYv4|PMX2Pp3A!8R%ifWL_57B2xpC+&{;+VO zJEle@fx_cs<>|+hLBa4aH%R)N!`naF(M%|;5U4E7zIFO9>)wHfyhpq)Eu?&#WCgW1 zcoio851-ytW36W()q_Sc67e?Wl=oFBJX3mZJ%ga7gR+YXi(If<>oNas+3-x#f;r!3 z?AHE&-2C?Tlpv`e6%$gVWKxoQ#0J3zjrQ}KUtKl9T3=CAg@kgm0&&2lg{*uDWh-kW z5;koyr60}nY-IcLDZ|$%)vqhq|0NX!E$zBOjx6ca4xY4BzujTKAP!FAVkT)TKcT98;3GK}H5%zMVX|}zFBPwD zYpXPuWVcjo*I@;T{y`3==gOb z+-^CmaS9TvQ*vQEJq2$eJ=#Rn9y0S-aQ*$k=pN;wbfb7-DBS3Z`~#*c7cw~hYy^iE zvJq<3&BY*&qPz&JAD|Q*NhZczT1qF_oSh2SMaNLyJ$TD<9Ag%;ZH_D33g=G@+R^w)JZ2MzgB3+pdZrA<)T_vGv z42`&yZb>#Pct-*ubx||_);{#C>-_H71_7iuZ&3eZQb@`of>b)(Vak;Cz&!)R(r1T& zjmr|vI+cOZrkIhD3$-n7DlSzfYi3la}@Arh#-S-$@n&0jYyLTh8SkCq$W|J zf2uTUP1HRC;bLaE&Oevm95RV4*F{Oa{OjGs$Ycyw3z{hvu?K*$W zeVW_+A43vP+te+IdRk{;sHEDs4z|uXrwBS}^{}J7zl!tChWt$Lxb_j|GhZ4!vjcQJ zlI&{cb>{cRqMsAgt>5P8^1I~!5-xPxu`ZcJTsqM>g{O2msQT(r&$~Do4zU$%E8sp| z>=>;uSEXuV39Z~KX?z`iKVC#o1=FC0R`DGlC8Y6*bBG^f)Q3vWHR!d3z~czK_{-kI z9}+L@nE15rhd9J-BTyN3w{!vitISB%c_Y0%u8ZmBd%jBh&3`3djlrqJI_;jQ?ddn@ zwm-jYQ)8?X`chn*)>0Im3%B{`H@X{eF8USBLAR8s9R_GQM{dWkfDLcuA(Yt@n;RRi z0xyk?goGOw>;OR?yZAQU6k3!oe71!g+e|MOURu0Bon>R%pATNY$dNKAx(79C!HdU< z8m(7?!$>r%AxrHrBg4)2r+NmgD*_53MTm|S0ffXV2aAZXhE4(U1eL-GtO4|?NG0A^nBzGgl%mrO#o0M(+6cY2;I>dAN z(-p7BsG`qIU#J!^F=TIQ@a|q(yW5&vwwQE{x0Ng_J$l4t%w!2elCmSppdP?A3WDvW znQ?-riKr$A9XYQ+MUZ-q^Jw2Y>N|oOz2wsNN?Q}XG-Y~|DU^&SPv)mt_SJ*v&K&Nh z4Puz=TnAy9tz>u86SyLrfw#xsMl%M?CYWJDuDnl-i}IX#`cgpmXs}n*`FigH`sO{d z?z2>5v%dxrV&?}K@*$F9Xk;mSiAiBZKBM%Ll zq<-Lk!7O6%-1L*O9ZhC-iSQ*h&9j2#*+gRMlI-C8LDU1pVnMJJCH6eui?XdWVj>@U zvsduMT!LM^1j_Y2xi-4e7=^-Be62onS=O96oAlGGR#c~vN12>HhObLDE>LwyvvP4g z#p3d27>wb%IM%PfjQh`Z!;)lmFS?ks2wchKr~aKw~F2@>%l@h`(^w%V$mjka$^ zE#x)SXsY^c24Y#Oq;uPs8U6xi&rXhLib)nzuX4!^v#1d2vbV1P2y{x_H3GCl!Z+n5wMV-2%C8AcK=?w} zaw&h)yAa+~cUp=gp+;kFI2&`m zF8nUZM{m{&+7tkLvWUpC)9`B}ukP@I-s2hBU(usqZ^S5Ylzd+$(Wi;-^pf?*=!+t2 z*klnpmi6f{AKgZGO?WYx>^(q)cJYCnXwc-zDf)na6sBYL7&%sPqAhqI3(6DaLXBP{ z-4o=;U%b0d`)}v>r>SG(X*ZDbiq_$fQ{@>MN4SjZPbpdfi#gBg&?Mn-5)%!m+Dg@ccc52hjN`Xh>@iR*Nuy+0n$vK>#E!0qMo>fmcub=#wI z|G=l`vJD%r#HDmNoiOinQgJ)Ose&zDRh~1BD{Ov_@PpU)4WEV-U}0{kG#&Wy1_?2) zDzuFDNBW<{ghUht$fH%tPL<(~J7Bin-E=QH9pGbJSL24)MC$6}p z(wx{M#g;=1b-A&UO&!0#;3M#gOw-olOJ>>L6HKJGFr#?rXu(m;&X+jmb9D-{}qsqa}89vVieOg`ew>!rYxmK()o|dp-gmPWIPu1$UQs@a$aRPtYmceli}pZ(_!-tA-{2?s-atSroV@urG}P)N z0C_(xw(7{{UH7Yjwa)ZLZ&y0?+Gexw4*Jiczu|4V;|EiM*MGT@7HZjHJ$sCWDG>;r z2qW|9tj#mjeqz{JjMH7>8J-Z}|D_W@z#bx`Wx$64M^jwuU|!YH?rbMVJoh4T>x34|93 zYX|1Gr{AtWxPAKbiZd%WxBRsNzC=FlqC#~_AADH{uRMa<6hAHsqP6=>rmg?o;-u0%P;Rh=JSZ&7Z7Orz;#BOsV~25~7-twRW>*v6Pp z!_KdI;B`Fp?I{=T2eEWYUkKs=&NYQZCk?A}_apjtVLjY0vH9iph0i=CkzW;;atyYU ze2HPReQqoSA^e3ee~fOM+R)hNBw0jtDOu!rpdNyKhf0? zn~8*sU_vOky}3S;Z{sJ}8lKvI-^?ynG^)!ET=&CIc+gT<*l!D!4$SNV>PZeo1w_!K z^pv8(Be$RfziV#&7aA{ye*IEc6jJV0yvjL)&o{7)wobMlVOR2S3S+$H&~xZ_V_lVU{(f@SK{3Y-+2@p8 zEaEgft#d((NUlm)WiGcLDe)x%d)QxVu6Ex|U2)_GMD|B=*5wochr_3W<%hNtR~}rT zg>%ns@QrTmLx=vLhBFn?#eSdIYuLz3T6OPT6LDweTh7d@MP1aaJcVXFzLU&SZ7_E$ z5NPIDtylcxtQ#sXGCHMP;~}X8Mk*Ej{XUY}H?1TE>1fzFvxSIzfW~K?K5W_ zK?3i1X{3SAQm(<)y`w58lcnu>Uxy;9{;kNJSj)m$F_J8rp|N}hxt@<>XKNoBNN9;- zJq*{`D+|O$1^E{%2!s@T0xq*vx)niHrJ9Zx1wh+4SO#63Kv2X@oE?hr6#{DYYbSFQ zHs2x~#3y^!Q!@o`zu?78wXPT#-79Blazt>Mw|(@tCc^$?BXC^Qf;P_r zGxh}+3Y%qnkXseLmO*y#k)0vf2=v{g)zLGQHzlAMCMbe~s$#9ewQ2D~Z>Wz=pRJbP zCg)do?Jv{iM0c8W-N&H&d@zjVzyz9HeuWt3U8Uw&#FOYAbu9 zBBjnj+ssszxKc={^UnjoH*d-9d~P zGxV|_%4w6gvWsC$<0rHCz%`!t;d#=RDqut0;)fcq_&x9Y#^ZwY$5d=dGIvf= z^X>ZGl}3$6)vaCZ1(BT}$=)}szCR~P@NpnLQ`sQ5Y%(?V`okVZl~@~g#&il0d-X!IZ-2XmRHYmi^{&PAn%-BKK)Gi(~1(Ql~+JLAg=aoq|tQ+S45?P3kj zx|oxx6!%b@>&74G8`{9~N@yvzJ9h}3@Xp7Tp-{#Si508_7D!8|QU)#bTh<<$!TBWO zY#f1taOUXoxxyc6ywZ=QMWN${@T<)-h<_^-4l*Qz~ z8n&WX3v(W$4BtE_$=X@m#4r=XjH9KW1|Q02#deB%Y55=Y7oD3yh8$t}t*t+MchDcg z+U`$mUyn{JEq-RhTW7v^Q;+(H?67SoQbn#f+ctWOZ`B#MF=Q8EmM?^%T}B2-mqhm; zzBWpk>hhJ**a2Y3=N>e@s1}G<0iD65=9lCQ{`GCk=7#Da`tH!n2PZKFAx+Bah~LFY6zMi*h3eXi=2cRs;pKYDh?t9hpX zO;3GZ`&980Tj~fwlLq4UQr)?9yQO(R<>K@CoALBU1bz^hY_n0wJA%aM!kW|PqJlw@ z4)``#myf-n5~9FC{9(`0Zr*y(F^f0 z)&J5BxE=^|G0dbeLslt_8>AcWQeMlVeQYB$h4aj4uYwVBM~#=?O6t*zjd}A%tk3ndi{B2GEshgcmdu;0;aU=D2nUWK1ewcW9dGmV0}T$NtUi*t@(?K3?Q!oW zn!PShB<>7)+8UY>T&d7#9+5&ufatThFmeHeKgTd51N3!hqA5Lv83yX#S-a(= zJgS_H?-{nIza?n-5mw)qmD}@dojiq)z-;QEiVzyPl}ER(7&_b~ZgCO_!MGfG-ysB6 zczNT{K23M3!bI6YWr~x%yWcesJr7Z^4bRLN}mJ{Z|~@*3B$&#A;%DH zaIv#PWAy(LuL=lSf?BV9tg^R%*gI3bx}={5`E9p0_f*CpvD|Z4;>4Do;G^A#yGybhcNJi6Ch zt*3h7r&2B!!TI36A`hpbttZ;>Y{7dJn8<0k!-rA7V$B_mQXC_9i50xNWl6n?&u)8 z%?1pbNrF+7A~R}ui1R>5!8cEr+N~v%96)dxgl1GoUteKsqI_QdMtzgDf2cbA=ql#2 zQ^U_~^MFgC!8SSgJ|;$qRuuNC$LSTnHe{iiPZn1=^8-@OMN+h07PP(8Pk>~eOK9AU zzFk`K=$JmUcyg^G+L8~v$9C1IOOHn@@MvO>2FejU(U+Rx3jALl?O z;x4$a0t}yq9m8ayIa$o5uXzay6Nwnwe(CsZ)ptuqXMrE#?_wDFHMNX&lXt&~mOW(L z4x_((qsbm}X?_6VHDgh8?<{vYLgU4o350=UPSut)>cJx$i$1b0yXa{fZROb@WoXlMTXOeE ziMo=Ht2+-lmEB0wwCvE7Fooy zBy`?9ykw}vJ#9OsUq7r>mNrWuWDeBQHc0o%=wH+rugn5jUac;1CAL+yn8KpXoM*U< zNA~Y))&-=^iW_O%iWB*7GNCsbCtv5F>z&*4ET+0=gGkU)M)i1IF>HJTqQgU6HVtZv z8dOGI$Llw;hw{7X5n8X`r>U@a+#x8UMx~MSwFDcV!8(GC1}Y?xU~qQ5uG^A6%P~T^ z!1Ab|oAB%93V?rr`8Fs{*q84Ndf&QowHyttglCcsARV1Q(RhGlMWPAXzbX7kDjc@E zN304;wGb=3D7Tq4tPnNJ#urbh67-w)`)fYbN{_SFm&f`Au+acM4w>Rgp1A+vIgSGv zfNrAbWsk;YE#UWaRnhmk0KBN^6w8@`4*0o>btXubNw7JBmMTtIQ7j44#taf{JjT#pH%AQIa}X3sv`Am zEda2mJIR{x2)H#5`ZtoQ&J7>yDt{Mb&~}ruLV<2k;X~M2jgSJwFLSku%%5i z&~ii1Zq5f7Vy#JU8<$9kr2lb%BEgXJQ-nS}6o}h8;|UcOx)xF4(&}@)3!?&)B(ttZ{E8r!w(O_Hb%A#&<)mEb+zbiaw z<|OmXMqw1a>3;qWrV+D<>mKZdV_>J?{O1b1{CNQ#HiI(5%ECbMy)=s6Ui(a!!o7@L zXd?smr-A>D_U`^r`NX^zkqz6l-gtzc5Pi3v9NLs0Ps_*Ep&7*&?{B_vrFdCXw-+mtv8 z#E^sTw3TicAa5Fq^G2pM2}P}SmY7g35LX5zX-be5D>VxfgEU8u@Vo3QiNHhy<0;~^ zf0mq)O$3ape&UL`iyk#-y!Rn|!l<$QVp0_}0&A)rcgRcXT4rVl;=~qzj)%c1!j~VB z*D;3E?9&_t?2)^)O2$}(WY+U0lgQv_`7EV$?R>W2IkKQI!S6;(k&buvx;|@Q8O>P| zYN(_)N&a_ke-<-}>G-7pBBQUU>*?UNvJ2cjXoeptGo{o%_&$^(`}4-*1cIaV=&#mN zi-sW9;=KA{jbGc9!Z5li%-Go!H_et`v6Jzjb)`AS_}};>DR+-9NF{~&@Hl+!bYm&+ zG?PXB*LWmt=S7-jN3Zuj%z~e7X?x^yPW*A)aKH%vbQanDZUIafG*40S!-pHF-#| z@lL}QKepMf-?}*SKAy!)PX5b~97hO7xefzpeU>GRMQcI|1OHOWU+@2R2Z1+GWc9(epQu0bC|puT}b8gHydByy`X|-oTJXB6b<9r zP@@gfqwdI3d$7$N%;rx`+b2JE5;Z1p%%Ho z$+rFJw9SDhgZweS0u+TD@)xSI4nZ410)I^*E+J~*q2|--A?FOmcO%hj4~fvy2>{k* zx)wT{EsOH5((h#BVbTPCqNm_QyeEm*I zP;WA{B}|P0xDytB$X{trkb0J?hYaBK-|ml?+uL;Y^1(JTqb4nnHLeL@s1M#FPQW{F z6Q09Vo-AM3i_^hr6T=)07_8KSW2nrb99?JjTHp?9wAu)r@34*|^lv_ZP|V4z4B_R` z;EPN1(M=qWS0STwd-`4g>6USmb`R%1_TgmK{@=m~`yIkKYSfz~h1Z0ivd|^nd8{m-__S?42sK(sNYmcK^2KwrYRUua zO$>dyF4Q{8MI$`dd;C3P{~NUHb@jrR2sYcbxUdoXQw#V+zCY6N74_fg?<)eK$TFrr zF`V?Au-UD0zA*_0?S=zrzu80o1uu*q{OD~&s`4%$p1b-=QGQ3C5NsmlLkg*m1nBi7 z1#t9c+Ai9SS0BVV8#P)HZ4V|vce$~^-x%dMf(3q~wJ7vN<1OM!YRJVCjo$v7o|YTF09ntjgegF)=X;t`2VTsK&nb;?a;bTo8@HSwq}gWnaiImuY$@# zM6zLb9}2p=PYABb7dX6+bikbf>W#38=b#wX^H^F>qH&vM59JI4h9*Uz8K%;L6Ef^?Y zlIYuEldpS*x<*_{`OL0Ryr$nS#nBT_DAYM)4(+G~3ydVkIu3(hy+So5`Qd65jw7@L zDg`RHEz6Ynjvrw%tZ!XRh8zXYJOaTTZ@}i~F?VcHJhzzs0pz@He_Nv4U4@=y`qzen ze@ysFf92b)^Re@H6b!@+_v`qO93OPmgFdr{OnqBW^FcDPyA{}M)0*J?ZD zG(EeY&8AZDMnH=L%T*#KT|8ojQI;$A#D-}KuvYfTPjCl|rZB3AVaH|Pwoduwu8ff; z|H&ec9cShTrExPjit3dMf8~6t+lLFn&w$#J5e#I})8kOCp)R56OF3JdSr3U3ZZu6a zqt`t~F~4#v54opL4fWusFQjJ~Q}I*3Jx4yYb>{YY6^hY0dsI5JfBZ?1tMj?h#HkG+ z_Y#*f4M^Y|Rxm4eNkHE9eI(~&@NbnzuKeg6$i?a4BmfWxaI-go`kA9yy=!)m2JbU( z>M0Q9T#?5d?pQc}2U;QmoNv{!;`ec)0Kk z!--8P7n>Xfn4iy+UB(y0?zi7?kAzMFWU`aOFL=jI48xSz%qEYKBNQg`L;esU1kOR1 zygv2*D-jac5uTN|YG&}~_y22BCT|>OqDSpyBaokc+qy#jV;nt?O#-O-tl(3F^I2P= zhP46eM^U4uq#F5XEo@1=;=iMxD=s(-aMF+FGqy#6n>MKsGcig18`DEZPr!>gCFL1l z=SRw;tbE2-2{x*zdY*Nh>%w9zzSoUrTG#U5S}-?=Kb$%>S)OOZR{9BZNe- zsYv+N3oGWjgXlqQiec>yGhi894#ojvn{p*eB?@z=T_RkpT|DDP7sc?Q@Lr?F>OG(# z5o?9O|KUG6fVy~5t|u`aQkP2zSkWfN+|7qN#w^6(R>2epU9gF!9XFLUN{bP3N&F>j zcD~4-Un{4J-b8^y{3KA$@_!+1KxyBu?@JS{D?Bc;R5GY@bJPZW*O%99ya3CCSq}y; zFr4>`;r0)}I8nx{FbI42)Y)}|AOruyhh))Gvor^$oa&z!UhUL9Dfvsvc1`@}s@ptj zHH5~xa>wi|W*Mn$R`Q9wI0@V}ypHr}K1p>?H8elF6e8d#S(2W)_r?k{Q=$dNrGsH( zBFi@{UQ)GD`h4P_j}ipb7zZzRRM}}y*yF};3I~bIwUBkot_=|g)`(a{r{g$eYafKmNGBxsRBfgbXN{m?)_#8@yy9aF_5Q!Do;O1;hPpf zHo%n?V>z4ZCW?^rx-QajYoGg5X5p3m*s-)tZB92kkL%U|Sn*)&Pfqnr3(KO5G;RdeAoBo9;s9vq=>OOQjQy zdTF-o8M~0FY(ns~Ew+T7pyIlN=sq?GZMAdy<^#%ofhI`_^H;c>_w^kI zS2|u?Wt%Z&}}Ub zf0zEU{!0^(^)YoMR_)Z$_LfBD&rsTxvw%3?mgxZ)qG?7#H}E8`w;O;C;`(OeULw=X#LlahZZw?9+bbKtD% zQ{VhLD|Mprv`dZM(yU!od1S!m5@}FjxJLB~eyyl%(N?-}#7V;5dlpo&f!zB+Cy4Nq z-29(l0W-dSOS$o(Gsst(cweikVOChvAdka%>^&N{U-AE8?@j!nT>t-ZOHoOVlNQ-J z3@Sy)mhDthlTc}pJwkTbhU~|?$db-Tb}E&OJz2*x9b3boF!nKGP?o`n8OE6Jb&qIm|uRecktcU9a`|dcGD!lvWu*@-fIiMtyq|=<5EH@+I zr=G)JfO}$MdL<_+1k1=Da|sViI9HCv)+=yq?bs9vJSw>*BzQ@$+0~2|J;YR^Po7jy zdwEy8y*p>0V#qJB5SLjC;XvM{$1&AB>f-8(%5yF4v)PUjO_3f__B4D*U}~AN+rp*c zv}4N3lH%M>{QG@N8!jm;^9rkF-uH~^?5&J37rX0B2#y#crm_hq^qcZfOSa&90q(+6E0ZHu~@zzzz?m^C(CYJBcH4k!;B8G_OTxfxj*nl?Y#!YC71EH zG3qHV2boXtA%(i%3=i+#6jYD0r&WY=(KzFdnHq$Px5Tb9l)OQ|o`@vL2}D|rcg*0b zimsFG8NCe)O;Na-#hxq!z`90u!W47ODV314si)P zY}_~8@%q1% zDQBK(7~cVvVtVrz%E~Qsr*Hd@J7N`hYsghaOu@n>CYO$;53b#Y1cqb_q~Pug_p}hY24UQtgf=J zO->J6$bHjQT2UH*2V&Vvdt&Wr){(-=w-YA5sXc208r9w@EU<7TE27H@lr^+oh%Y!4 zP|`cCWqjMtqeXH&`&=vW!ZO!|T%`~=*yW4v4#gF23;(TM`8fr{V^i(UW+~CoyN6F& zILSXBbeVq-LJNWWTlP6xnm$yCeL29Tv&(#3=Us-|0^#9dP%8$qq%--6IpBp4@H$R| z*RsFVW??vB&*+@*`Uo`CtK%+!A>}X#5&aBgDpC(X&;Q4N3C3wb;Z9+vlx=so^N1Rj zU(;ly4E^W(ouYd3Z|lKIz3d| z-vAImtBaMc{wSrqRXJ;8F0+dJ_0Z%DWhP&O?0}7sU^r(N*VsO-{pNq!i&P$_SO6ZG z{~5yEzLzr=f@SCRM1?@bR5+&u&$C%yi~ZL_|E|m66?vK_z&SHeYdhS&Lr@TF;7V*f zGL7nWTS$4TXtDgxf-#B@scvzDq=?InZ^2M-iI>j3}$sm(C*$^S)OnJjU`s zb$=~Q@j2Y1CN5sP=08nXt!5f|ET4r2OZR*B737J^beCG*4IOi`-DSlyx?^7D2FMXh zOLo0jS6%sqYo^cn2WX@8M5*LLiFZoc(Ch_w_MFcCE||g1;PT=yb@NNfA?zfH^M>ut z4xMl@K0id+DxfWjKKhKe?me`Fy)_sW6s~!KjAu{CLRLJX?)U31t z|EJc8dd=>326kexjjXV7S34soow4rG)+>62T<-k%H-Q(n1jo;gzXa&RA6z7@DKYAM z>4#5eMYeEU7d8#o&@s1?Q~1R8CeMKC&@(M@LyT)D+f@@@#0}4I>2er-#Lu~5=(GQ5n!an6&9u{=whz7-PXFsxon`d_GHNQ9`am|dc&*4dcHIwn7 zm5qPs`#WYZ`{mnE0Xx%N3@F5^(A~Q!aq&7sqV;U|Zcr%55hy9?`NCW=^pDa#r8-fd z)eCoEkQ`q=s9h9XzCT`t?Qx{t$L3?}VyZdK|9&|ba({tpay;Ob7eR4~RBritQ4AX? zsF*V0HS#>OWL9z9ACz$?Y{%Yugy(s@Pr4gkj~}Zp^Kuj^`2)nZpVtxxL2P^OO^o>o zNuwP`x4%vV9IKQKX1mL3`0Cxqp(IAy1poIJTa6huVd1y*HfiQlY>>o}a7laL@nby2 zK1j)ycF&B{rFNl<@4V#3J+Q_R>&c2{oFg~1)W^K{_OQdUhMbP)zH4AXbU@gAaEz{% z@scAf0Y6HbSbKKzVwnhiCF0Pv(GG#N`1Jv-F95_B@pR!=BCR7guFT7EWteORTvPC5 zDK2fa?pZw5RlaMGPd$H);1}EI?0Znbv++>iMJJoS*==opYqbCy8r8mD1Ok1B?7Ipw z6-W;P#pJ4l7{^`5glRd(!`cn=vfo8et_50DNla`nxm@WZ@PE`&+N7Y^Lh2Z;E0YBby>t zl~-P;1=&04oShyr+?&JIz_}SUp|NpUoX3c#vKw!$yiyz>i^uy$bVihz%nRv0ZR7wh z@L1Y<^Rek5EoIWKdH8ja(@!r&Oh$A9=QUuvx)Ar)##_r2RAwi&#ARS!*gjzROYE>g z%rSUC?4^!>%VY=ZL@d{me}`fRmu_5)vy)RjN5dhT;c0sK`?IGdE4g$m=X3<&ON z2-8AhPZ29i;u#@&AlIPaqO8lliya3Al_Q8Q2YE9A>eO9Ue?5W$P|-q5f_4xxXL%mP zK?;6EUu&P6KUv7b0$hFG)*Iz}ccyP)ZvoK2$%|jsH-u=*%Ez;r-Q1MC!50gQX+u~3 z*u1VysnIt=a_DYe&z9r*lR*u{hwVWl|Q~S-&w_$X&>G*4y$?X^o4w z=?=ox4@OENw3U6sPDSfpYVL@zz2?4~w}q9{rd0Zsjb=Er?g1|o(-68yu@wiIWUZ5u zHoNApF59o)#zvp*+AcaX-;oKlN2Y2zqJeO;*oQSkJzSt6!QCaFXw&U~>QnN|pdZSh zq9@29qx5;8W{nh3eJvMeTiZQ7ye{-}M{|^)SXha4cz7f;t%~c151;cya$-uz3!?@A z)?l@J9b?d($NBb*T-3wJ;n~7drV;`PRhE_yTvq5-vk?~<$Hsge;A25n#VefS0)F(A zvhfdC#w!YlcL%Q)kr9&iN&6-j&M#N#4K=)P3KV+;V2WWCltgEzeX0$AD0lP7zxC_n zvKg5A-g=|nj^&mXMDsrM)bgW*+Idm-G9Xv_0ID>8PSj#k3z~e_EATK|n^Q^H8Uc0K_bDi|u z@AIzhG+EMsNAgPY!^0+_iuXGX+IyO7*nSGo|9NlVeJYmeHOh41YruxP_#&9AfD@Dt zz=aA*ZB6$jP#NC@%TAOEmhSgHx^y#rTGF`3yz$^-kJ0Z( z;Ch7|g}jBkwDykjjiS={qA{L_iFCEY^6Xrj3w7fXh&Y@TEc0{Hu@PA@vzzh3R|=Nh z09;Y#Ad0=4n{R4yHeef#!3ih@ARrT{rRcUzaaF$RG~H!w#4h-MwL8}f^lkZnae%eY zanbFavIm>|EPog5D5dv*RjU$yqZ2my+4;=77&;#?Cv88ozQll(k;YOKh+ig@u4cBa zHg1Q=tk%`MbuV7O&(X~(U!0)99jM!~$koBocCBu&?w@*vdqa`|Yvw0tnupLuo>T<2ThKtzYI9@-`r869U@%-&zb#-nf%4G zsKRXVSnl82DIZw2sk`U7Linl`CD&Y~oU~^whw(0jEPnRVo78iX@wRzAHx;#4Q=s~V zmcV#K4BcOEUR=;PF~(WHc_gwUGEeP1cQ`0KTa{s#>h#>)FW4(Jp@~&E7CTbV9b3>{ z#akcpAJEMKyzz9@M(tmk0C&grI3|X~CBbc@+V_d7d?IIt3m6rdV@^ZQ*l6vj^#CoU z^Y}1xZu%{~5P4{XPqXm>6;ml#xAv9#h(xnSJU%{##+~;m zL@_Ld`Zl(m78h|L_*ofrGcG4Kes6i{SxQ%4*pT${mkMP^xO$%U(YR<2-(6;IXR3yN z$yB{C&swk=$K&hjbcgm8*u*gD$LzIK&*MD`v%fY2p$-h{8 z3%-jzOKV)X-39H7SI1#&Ow>xY-%m`Ga!)H#0o3jQC^_f6-u1(*r#^TD7HG}^#Vgye zfO~GELe*+_rU_VrkU*L2ONd}2H)fg5ui-1)ekdYNX=UtOL-6l`hpWXwfr2}C=8i&Z z;gxSO^v+$n#eQJIbK%_3Tk25v;+kyo`$Hbw3SHB_Q`orz~C*k#2MQ{>Pn0uDuJ4~k8E`VO6NuoR2y@x zCbv7sOSaySYM#IBl-=Jt$OjR-C7$8q`)eZl88N!%`#rm%D;Q#UboQ1A+m@6`#B2Q_ z8MYUcvB$jpq*2c{4W?Q!=neQktB$B zNO}eE4#@%DA(ONq5517z=wYuJplHX(X-uuzQ9!vATMw>p!xRza%^aOpDUUS4oMESD z@_Ch3;NyiUPkFew&owF)evN7v6jMKGh2-7fxh_uVLuipWAX6`qyOa ze)0;qaJyjZ0J5~0A#^b^m?QX7GwaS9j1^lPymOjhD9~u7vJ`KG%q&zOGE6boQVVlD2{3ChvQfgWu6(gXD3U0UvL70zQYqxUTmao!}Fs8pZnolGqo@YNVDviR|b->h^)N618#l8NCD+F@DcIU z_e$~Yw6F`cw%%v!8tL73g6wXBbv?IvP>dqsVx5h;RVg)St@oJC8qbm=8;#ZTlu&hG z)Bx^lP$}wU^?oT-#i=5kA1oI)$qALTAijF!*`*g(7}A1*fW3$GY3WB$A~@gwPKE_z z`gUvfrLqGgA4fX__t$g6<~J-A>ma20r4w+0)@p3KEIzEanI!-;#T!%{ymQGXcBX$s zui2t$G`RlZ^pzzXHl=Y}eBao(H6EtZY5#plNWiCH=OW)R@w?r*fz=qTQkhcM^-xot znWvM^H|oS1#XAY#L=>wyx?*BHl*$JR8X-J4dDtAWHF~gE`+2`kMX*bPjh?&lGAVy{ z{za?v^rYajW~_w$ku~1OcW>7+-4>LA@oKOghm?uZ8l5?aVEFlJx%X= z=kJv_aL`ptwNJ|_=VYf@I!#xmt%K@DvA`2cp5s?yGZ-9BoPdwv(4A>_JL%YeW_=G= zZ!nZ2bKAzfEO&_7&gs0gO7plZSf*U+@p|r$ac5#@aj0OK=u)x;jbwRDp6*%1ERHev z_)m=~@0i99n-pd`X2#kE=k*u@s=(NPn2Xni(m^@jzEapl#Z6F;bzbkJZhMgJrDe@_ zmctV8Y{PViUS!UF{X49Qy)-#nR=z$o>jT=+AhOY{Hh^0`E{63uCgma&ygK8paq&gS z`UDM+aq3U-=HY{@(}YR zfa46l6z7pZvn|dJdrf}MJ*C>}2&nADM-4jIyhx5f|{J91Z0P5el zxx>72jX)IIDOB~z>M%!a_@V&F**b5BHH?$NL6V~9WkE#|x(;_Z3*hBV zoQlEny)$hRX((*|lyhk;CeTCVN3iIk^R+sykOM6f&XxpVr0hHcbdEf}U;XWO?cJiO zX(``TJ=hANwMu$Jopv3h9eGm(iZ6leYXep}a^{9m2@B*tosWl|F|T)D7ND zI95UteR1SR0f5{)572)YL)nhoTnajMv8-jifKzhfTr6T){CObf_;KvDf;wA{x_rVT zrImkTz)mH-ybUTtX`XU3)_j0tu0sHa*X8eF+i>Y*NqY?SyWO~XY%t+MBn?U>NQ2l% zl+aF&ZAhjo#`6{3kldEGK4{0SpQ~jrslLI?c4BLRS#-(cAqqJvE5S# zDkBR!X(cg(`|0`~#ohYNE@?H-A8f~#+K(fp!^8L{8-xW1uATH=8yy}rVp8KX(l{dB(LD zVH*YNUQh{sc1?fCV}4d49OzK?9>IJ#$)&?9`YdhX;Jy%5$%8k9YK%)lDh@^+>QQ(_ zU!FEtz;9=(ZUVZ!;|(v$(uqD;n<>R3aFz{SmrGqvd8SH9T^V>&nvpY#rFIiV*iwl1 zX>Tm)@{wt7Mt|IhoUfx^U9|laJujJ99?6XGszPn=vAa`o?LUC4fq!fMPvEMHR+=jH zN%mc>r-tLL0eo+G@2ws!n?sLO7xjDz0S~-Qc_jgxjXlt`H}pS%*B6T9h`;eW>ixU7 zZ`|bKbMu9;N&M!gyDUq`>6znOBbn!}pVUpgi2a5=c(97S;jUcQ@N%CT`zo>U`A}Mr zenHDZvfIHM^H7DaV)N-IC(FW6!1UOVw69bfB4?P! zGv94sMyBz1&B%M?t#ccu96S(lRYGLK3F|}-Uki}c1*Pp8SObwS5!T0TpRpeZdw#EM z=0MEEpHPC3vhTpxy^0FNn00wc*yG!Qsd+Y){T5)W=1vylWAE3FhSC6C6>#;X0pnz8 zJFIR#-YsS0xQ8b@pRZEu#Z${3KC1&wozVeb0`}s@#cuWA@o`;wwJVb z^OWRTe2j3D^wsN06QTFW|si-u)x(E=h9(tm@bxBUY91Kazeh3EaYi>X-77ZBYxqp?0yk9joR>gfz2$wI86CyqsY&(54_PXy7=#-=kF+ zKx6Wl_Ul7g_-(K~TmMabgOoFrN9GFT?IaMQCeF=QPF+8g(BX2hinMzkl{TyYAH^s~)JLdsEATk+tB6(~ROhF!oi3J?I)s=h~7X*aLjs46a{H9CXAG30m-FKBA zytat>_i@6t6+xd0P9HJUj4y+S}-jl)-8>x7+i3aI<*XAN=7kzMS!&c4(e z)V-g1|2LH}gJOeO04LTMsSSL}_QU2O2-=6uSdeLrI3;DD2A~)iVWf;?z$CI~ZE(=`__?Y@q}|(ZjDH)*8!3ivS@3{xykdjzlbUN! zfxvPm&q?cV+1!9abtX}g+~~UCKT_AAGbXn7@6t*T{x2NhcR^#$%ID@;+L2AlD{BxV z8|HBJp7qu&$3c+tavxU%h%K6JgxQ^GsocGm3YSTRopW;v96zatp)pf@7gMuR5&YW_HS{Afj1pI#6h_zts1VuX{176xc2%ffAaaw@5 z=bDusp38>A-DtTq=%QV|YSSIiykn|wdx;L-$_3S?!~0B?O752euk+(|2bg3(cbGt- z&9?^5KtO(`O-B>~%4~>_F<_`dwDf>?7+=sS-n!}|`_$``eyMQE7h@;9K_NVkje)bq z&Xy>%pA9ssP2XnfssljpNkFDhXrOpWTC#sf7f*k_A8F4#2(1UWr1wV95W~Em&PQr4 z-REiGSegO)#efaF+I~|#F>h8iBcX()6!4GWv6B9GJuiw!S*w2BUV1Xo47nM(y&7n3 zx0_vy3penUkaW6r#>|YjI>UZyO{7+xKs$Dj^KRe;J@>QcJq@@eiv7c@;{L}aHY`9| zIGXFyJ34wHA$d@w&8}shu=qi88~P{{rwJI2RAXXR)~7g74$&XuGQCzE89T z%eA_{V^V*7wjCMFox&++qP1geci^egn;O$6#*dCaE5q5aAHwRV9Jv|gV`04N3gWsSIPuFWyHN?rBpUUiy-;!CDfyvE)^G4o3IMhDuO{f<_tgzT)c}KS@Hr%6W9lPkzn|QbT9zrl+OEpAKu?MUvnIi7G4u8$-YAB>xq5 zj(u{UZrb`Cy*fd4Ui0*cY}Nu+2k;b*12WfZLM4kw1iN$TowsG}0;Vt=6z(zgH{p7Q zPW@(ABsywJc-J1sAUQ@jjJcgS6TxEzj$IM6{TIXJ2uQ>={LBpL`97e%e#rMM4HODB zC{d_F1?AR*5470p@LBr;+uVj$(x1&+m{iWj#=w>U~c8fsOf`RU(j z0$bs06s@b3<%NgV7Ken7!UX>jeaLZ6PbTe>g{}*dn`7VYv%c`mt02U z*PFX{|0c+J?oYjQNA+UxT&Renzj6KNw}-zep>FGvBoLj&*5Af3(X%!L1TEA$lwjdi zKWA<1_4-ERtaH&7YWIbo%@a$XX>(^G-`!@8s!V5QgoZz9*f`s-6>86L$~X?S4o_7e zGB;qzD?YAk#J`yt#>SgB*Sy?qg*BydS)iY$*a=~95;!7G9Y%j(&g~yDvvBCr*gw)% zy(Dy^ObDH zvQYdHU!A{06BdvbZRu^s?zXjQFQL!Z`-q?;We_UGjDScAG1DiF2UNh!;Go&5g6z5< zs>+`x>~<3L8iNk3s0f(Q(`5(g8XJUl8Ac&JedPsAHhyNb9{uz`4FpZ2>-knd|d27K*xIie$efG#-B#OFupE# z!`<)oZP7;|H!x$PdQv~Oqjwp~>PlK_pBP5E@vStMTXnAPyfFokz z-q%k%3ojuXtI?nzoei9VB3lTn047{A8RoS}F^Des4V*T}(@Xjq&BmZ z-k1&EsZ{nLU>R0ee+KR1iGamQEioJ#wwwhf|f zF%Vh`(1CA0%1=S8K1Xk0o4Z3FzJ;DtsuwX7G|%=x>K?`2gJ-9cbA?r^WEpB0(rH|Y z?7AKz>n0*GADx>w0QEEnhg}%IKQGM^R?|tJc>^EQxCZs?#L9mrI{VRlYZ=erlvHwJ zQiybc8YbKsrEBctgs6Xyrr095_7+P@@{T-J-6J!}R5N&MQA}Ba6q)dy!I}q;(8;3%<{gN=4r{ zMTn`~G=xT=Tt`$Dp=YGmL3dG^^{seHzm16rSa(QxgC>qY;GI4+H*lyl&LXA<;ko+K;OTB0u%E?mB`lIk#a-Q;L0ZtfU{HgBmCV_5{A^buqtz5aosh# z^HkTu;$`XttmG@j7g>FiJt!FVb}0`HChPS5(#!$5@CY3xoK&lB#%JL*8ngkO-lB_B zKNE+-PvUk9he{DG3>R|XR1{2sLNQ(lsrWI5dyCeYzs%NDYH5AYdM|y2p3N3ksnFHJ zeU@vQY{R`-TS3*G$bGX`wdj}i<2(4SPy7^>)m`A%C+H17)TC)ZTVfK@Z4u^W2u+eg z;R~p{{NrRNPasO1_Xc``-|ZTRM;YOhBkjatAh@OBHa)}~k+-Tp&aA}Qffrl!0b1ee zsaL2Ku<#sm3z1oTy8~K?l?I^mw1`X%0yQTMip;%W8k#s+R9zKD;Rw2+2#p4NBoyV4 zB#I)-!F52lOJeA^Cl%m}_@qA;$Dt0irO)c&Thh3=q`G2EqoTJq_!Cz3E!qL4bq0r& ztuaOwNZ4&iBUT^6y5}fWUQ1ePSE=6&pQXXRQHH-NPQGD+ZSI5evUC_WL(du~X<;zk zr1Ou!D17IlG{KM4iNzyCThUtRx!5so5^`YcI9PPa%9AD~*N5SE5%nqn7axK_*_L-nbAQEE{wV1r!l;30;dsHhM(OFwY}d zBTjpCQqdc0FkKau&0HcAnZ!*Dy@xsk+L$KQN#PK!#zfUz%|6y@Kp(iL(~Hw@KGdT< zv&bn)A+{(&!})nJ;hiJjCc{*4Rf$OBMG9%~&F|3S0Y}78(0w5JMd}667=;3Kn{16W zO7p7LY7$&^c)TGi`)~4-N6f}FPtP1+Xxt>AO*&<^6G-C2I6|ZtL1N{k5)H{>3Dq3Xw@x4t1=Lutt?8$cTvGL=b4wL09y1 zB-~x{Md_0F!By>$bXq>M06|EuW&CvxJw%Fn7p~Cyh{(*366+%d7tEHFhbwPh$c46@ z`T1ZT9TrKtW~DhyHpmbKX}7?dB|3#L+an7WVBs2WxXv%Tt5f}39B zzrWbL_6OXvGWj1cOvG&jK|5*FT|Z$qi#!4AzCvAq7pF2a`WH3DF-9ncG}N%w5U-(v z^S}ffBPHHRHG*$(lx9(MDp+ZhhCpRL1Yxyc_A$aAblkm&uy!cFh#=gCH~72K`&PwC zMABs{F8?+YwClz82)_cWv^bf(HblELYdc3#a1W@b=*Z#72RhV<77xI8limbh{St2@JdatqRvNL z86?$(@VFU0{HLJX4w8s=90>nAsQvF2|Dm%=Ff0!#w|J4Ua24F7^2X+uudotfTR*4+ z@%#K5MG@8 zSz@!>0CXppFrxlV8N>AYgSAoG2W-G6%K@@MUz`rjQgjQ@pvANv$^o_MglhAsIS<`P z8xXQdn?rp|x&gG{%H{VoI5h{cT1wIRcGNd7_<(9JpJFKf8AAd+n+`87`_SZBM_2*k z(!Kv0KgBG2aBCyITy^^6qXjk9{4qX>Gde8MWpwi>tu)Tk!T zSXLu!BDFv!$OA#Fz~}}A6Is!;Eu2Ks}8$?YsY+(GIp}w7Yc; zr@9%thdb)KdEP=;-yS`>m0n03&5l3+ty@~70{y1Z$m3Z>og6L?rKOh3L*oW!X)cSg z>5fVSvJj1~%!Sl+sy6|=L5LXBd#Gk*GaNLwWy1I(Tj8^T~%oQu0~it2p+cGH_`h`$44eY_m4zF)lbPaNhfC1%YL>;3v+?jfW zJ}Zf9O45>JgsW^$7R=@n>(lgU;0eFs$Lli2O~7Q$|4h0SSXA<5%L3)lI-+Lo(De!z zw^{OT83jI!_~Rxa@y>VJcQ~*~pDySik-Cj&@n_`h{Y{Bir~+=HK4X1boQ?jT{NPq{ zYX=2L>v0>-7FOHVSL}B#WOz}j=0*>3GgtVqDFtOC{p(pKZTYLI@~jQ5Yt9#xe_&x zRtzP|r+8?Pz`Z4+@dmw52S_BljCl>7Xu)Bn)E(T*H-qs4an7?sE_7D30`}W%Tc-L&lLn=a%j6@Z@+31u`^8 zzC3-j0F;p{@*ZoPUWN)WLs-vn%xRy@)%;Kr60r2(lo@0rx)%V;M;|GcQ+JP)k+kUz z?5U{Nbt(+`bYuNcj<#Y&WbLEP+6;BlcSRA`tH9hb-*G{;y74H^Wpd#P6_4IXLf2C7 z?<+?0!h(!Zm^(r;nmAxZ@{e4bdw3HFlEmyITM1DrPmwfB)Fz|((`R^?x2eBBttDd} zbTL;}syz|b!|h}Oxg7H)7-IvU>E=&jrfF-5a=pqM7ic-AgsF!7V)SEU>gGHv`YW>Q z)irRco#jnJR#Kfj?ttt=VGPvFQ|#KgDgis|C1>U?IR z$5J3ziq>AhSD`e(a00S5$8vR*%uryd*ML`#U{V8T+ld76n+Rhx`j9E1Eosvim0^U} z2(BB`s7w-Ss^C7G%$Sy9Sw-<=^`s0Z4qH0#ZU9n3c|*1G04t3g+}b&Pq56(1 ztCS#vqlOj#Z(!0Weqo)A;dK7uGuPvUfigqyoVHL#`js6 zuF_bT9zr`P*`4V-ggh4{4Sbpz!_HeS?#BAz@nKZF93-TiUZOqIKa=o@X@|G&qImsi z8r%fGyQl&~{_t-c(IKZ9p8YBDo=<3N{@Ii@c=72n)&q);TUHy;VJG8(snzfjW1B-Z zf*S!QXuqz&;HkWK;SP-U!Q*hsC{dPj4L5f$BcGWx5NwCc`J4Ry(Tk??NV(do&;EI9 zjY^lHRdF&-?T#O9)g&o1<+DT-t(VBkCNIljhFB|6-{JtzE47*u*1h%&dK2#Y2;xy( zqjb%5^HN^YXbDE3?^*+qf?|4!2fCn?1x~Ya-mEQFMfw_chcbB{gZnc-9Hmw*3rFUl zuA9&kVYk*V_)by7pJt2dO5+k`Yy5!?)D~-KuG__jBK4NIWa<}F{D$N;A$sk{VW_yR^yo>cW*@nnO zd7L@|raSl)eO471)K*^h^cA?#S4y{l2|-Oez?G#7tYmIHYbHK@+-$S}{aAMpjz*(4 zoBNjB1`vOM)$o_b_i>W|eI)S5rryPCQYomN3XYxQMy-@h@Tp&&|7l3CFzVw$`)RxA1qNj zxIb+KHChaG-Dhh;aq@KsMjG4*c(+A=tP*)`py&teO}c6!z|dZrr0vDlGH=c=0f zYmE+|rFz%!_>o?-=eE9tTbeU2@W<(cEFXDRh3nkCB$ZYgtY(!y^9Zqe2p*P?Q5bE8 zf-&Ydh|EW@oWr${%(Dw^C9N?P;GT+#n-wtHA|{@$CRY1E@UQgl^t%tCDVnaX ztiLD}{^EOE=lVw#5&l)M#xp9Lg;60>!=|F?WDpE>Mrc3BG@kBgDfns3g)AKhvw{xy zPjjfzd#>{WD64uj1@oa|j6`%USswLI+C-p8g=n+K-Hb?zjx(^Vfr8lw2PX5S@{)7f z@HLtBq1DZzI*hRxX>j4*{w9SYbcXbLQ}Wq@*-}^{{wuPfy?InXHfZ@n7o@b_o~iC0 z^Hbiqm|^a)(KQ7ExrrGcY_pjqm&3hKx?|%vB=BD!FUrblsN`y5Z8OPexMwn%6CQQ~ zmn{1jh=2hzf;J|&_Di^&c+O|S&#>j*Ih%rbZQmp}q9*PUZ<;R=W-Q8jh1SU-7YGyo zL$O4OrVv;6 zIq)d!<$=dv*MLzFMnCrOZpmkMhBywYy;(~fymKnU6k&FmnhqPtIjp0GOZ1~T&RI=! z!#znv3G>Nyg~#DrMd&ciT)An9v&)+c${R})DQedsgA+Om+x**fd8rRzx?@DIv5)@{ zL(d_!kK*K#Mx7_}o03NT5}J$*sP!OhpO6Ux&UT--HSu`-U!#Z6vxx<>M%?{M2EZiI z4cYHz_2sCWX90RRiToN)QB@4Ng}M|#V-+H^C|gUM=_7eFK+1oC+i0)$0RzcS;@I{S zIItFD>7Ug?b5cJi5cfHG>8trMzQIVfpQqOjfc*iZ8BnWXyc?Dbv!u-cl%+o{++*4b zd^PS)sb;ltwJYTLDkD~x<0-RSJ(R7@=LnCnAQMI}($6;Wn`WhPNevO$O1v^_z!vwX z%~h?uBGy--!<2Fh21=B~8|+aa$UhcuwDMQHeBoe>h-}b8d>17B!SN@GQY?11`P8dj0jIFAQgWVCaRKqRLf$@LyMchHU~c%Ona* zmbW2yBOr^>h^oE-;#}Bs^TJD`wDz}=%)0pWk)-S8!H#~fsk`A@GPpD#ArStFoUWts z3eL8@VJOjONY#38-owO^ai!iB-OBaY{ycP; zDsB;s--yX+AkNsdIOnaEDE|5LcEBaD`$Rxk0Itvfg~+TTG9%)TU~)hZeuz~}5nlYi zV(`e?Y5!Eu%Z=+iiH$?&`ZMy;8)YyS5Ktwk&53|)8i#z^u&(=)6F;X8c9xh*U=#z` z8o8L9USic%pEg){CRy%Q{SZ?#X)_3=45CR0e-;|uaq4WmfYAcUqn_84P$sNGEvbg# z@+}oyI#;x{a-G(2;TSX6dOn3hNE{9r$R1|(97X(l84gX?;v=K7{xk-LF_UB^i@T6i zCzI>6h|{0H;-iNGj&dt3rwHx5=$&7%o|n&Lcs^g>+A?8y%~4jIuJumcBycCyoy7gI zzsc(|6*v`0&8`|Fl1c?@=p6c&s|56os#b%DvjK+TPh>8^+GK*xqiAGm0wwvn@@C0= zNOFp=4@$v!ULuEVGpDsyX2K}Rx_GV^M3CWIf8f4=;SH!De1{9j^wmbseuC-hsBAv_ z!xiYDpGQFds2Ze;$}tS%T82E_Gn+g#ghVci7r$dBEQW2p%>R-nF)vR+_@75%jQ3_` zkPnm>$>*arVL_q#$VS`cVi;+Jc&KwDMCAKZ80oA^L?7U{*ixL zArHe^;4mg>;P}w97lerqwro+EJw#F}`r8$_(Pio@7%kOeQVt&Ga^Yv92bvD1zxXZ) z#$G^aod!XBURjNhsr+RJWA~i0a)Q_=U)1QS+;p?et0)j1aYkh(k@exlO8%n{;9;eh zM%Bstp6TSXCJvWmf`()UER8R17PaYu0B{d_!(G3T)&hSF_i2Jf7x|3Vz{NrAe)NvV zFONW8c>v_Q{72%`hr^HIR7@YXC2A|KzJ#$-$u01GerC&J1SsAp2;VxJOS;|i2mG<^ zWGRqnk(98RfC06L3(BrvbyJbDL9eC*{vFm_-gf|m4clbaKf@BQ_{1fDS$1$H5r^e) zno6#&;TMrPn5Ngo21whdZsVVUad5qZomOY6%?JmQLc&oJ20rIe+P5(IOl7zY3Q9ucXO#qi ze47Mn^8zB&4W%ht^)tQM|Q zsWzD5j}pzg-ozMCcKwSLh+@rC;*c+Yrai!=?R5Bu!9CLOZ}XX7gjKXbLa?&rOhrx# z83A%JjiGsSnXf5ZIWU&8pO~i0X!X{Mc5QoucxfVc`kJ%n!>iU3WrN_T6hGPw5Be7o86l>6CyD`loBu2S z0u2BTyIsHu1)50#Zj(s{av_1!?UxO0X9qsDt->^_kFWpo=TxcShiA)veXSfaAU6yd zjz5p2Gu6MSfzyZnuV43x)keS(s|#?-Gjb)oIGcO|UR?UYu@+;Tde7zO7~rRSc@4Dw zL2%_M3^_b|1Ac$*z%LUi?d9=cZ;wr2NR;e#w2iuNc-6Ydg=yFQ%hgNc_J;D(W~77g zfx)$9q3>Km-=%5Kg^2%qoe1kY-PdG`(ZRq*j6Xuq#I?Y)lgT4VR*DR@A`((7APcfF zG~r$8slKkLkpNmYMd!|?uwQ1v;p7Ts?~KJjprZq&^$HVSj{yeLA!B0-B@V;DQ^E|8 zED}uZGBtQI&+8fa6}p!3_~tK942$RQ0gL96jK&`f%GegmpVsJcC*fWb0~q!p`i4{x z%rHb)yY;UEhw$f7%6wQG#jr++qOLpKN7Z?k^ZCQKSw>>1ui~w)m@^Z zHM7Lfon$BGX0#=5HpC85|2%20I|vT;wk0N$(Qf$l!RECrf%oQ+4KD+~uk}6Q6ylf7 zjeX39a{RAhnSnqSpJg!wBlvLuRem`t7@6~ojDPe(vruV4!t9N##u*%lioEDeLeJ7+ z-Q5kCDp{PS^NpWIC-hZKCpP-RQns?uc>_lY^Fp!G58wAj(aZ?@(X(5K)p7Lw0F(g0 z5a=Vl7GXe%e;YAZ`*~IHb7b5HsYg0jVnmgiT(|^cuNX|;^rjVRf7?hh*%Y3wrsDj% zOdBo_r;^jmejp^EuVX7A%f{>DSIS(TjD`Y^_(s-`)+iga*-oM7$%H8>2Eb8m{vZ-w z<^IdnDx2((AiwPet7$qr&Af#O)xs^x)^zsu${A9C#|$SjC6rJ7{_hte#FWjW82Wxc z9aOSBh|pj6{T~kM&$BJ7#Do0#zu@QefBxsM zfBpZz{`+*M|3C0F{&{iXP^tU>Gw)Mce8mR?tAhJdIzm+3_%+1V)pqxU_R4+dHKh(WxKvP#2HhK`1Dhh3F zMFqju1GI{WARuG3wA9E{s{xeJ0jL6kVTjDJR;d+4Ps$`ytyLt9ii!{*Q51}ficCU4 zBn&bH2||QGxNC>j*7p6r`{Vw)`2&GupMCaTd#z_ZYdFl%9|*VV>u1CD`zcN52-7Pp zcIm00wF!JB!gLEas3mC-f-xfQe0B5J%PHAU6Y3gAo@=46W?c)l8 zd2Ty}<#<=h?YTL@g|YF`e5R&P9|{O@Bz;qbz(r$@hjoEa;q?9B-(^X;t;zjoSVP0e zYp~cG4><(!ycBPiCsCwcJo0Rhl7^8wU=Qo4MbAeVrMb+!@_PZZ-xK}4!md@XPvfI% zBwORHTs2Bly&wO7Uh9Z|mn)m#i?3C>Ch_kI%*$DRDL_e-len)|1myk7|CAEc>zgz3 z4f&Yqji}v(rbclnt?MSsFP%R~j{H(=Ski@a-Eu`ZqGRgQ)|hYMj_7!dst$x5^+rYNkL~j zFP}^;!ZU4Z%3LjLd)s%n&oWH?4-OEx;((x^CR()Oc3KxNDv8gk3a~f*gDEJhYn(j> zq|&4t$-G5Q1NlTm2Z^h!aYk{i8rnmj2Gb}5WOmP4Yk)myU9()!-tWLrF}o23tCgc) z%pzs*HNhu7t`hDwVwgDz!5+z+-yK8F?Dh=g73ESKEQ<-A8uyzYqi?(q)tS>owpP z_lsOU{BX*=7ZKL6iL0+MNs8w`2vQX%?hz}d?J#4M`yHM8louhmr?93zr1#lti>HZ>;FSXHnYzPf<2CQF#>MB; z@<#5-C57eVjG#FhEy~kO6EZtMqaPd?z(vmWH(*xViT^R8@3l!g*U^&@>>?U9&OmH; zJU8*zy%hDS^I6?NEeZUzJ>nwO{NhXPKHa9-Y2KmI;InU0^7D*y^LMwsTDOem=65my z?WB(KnhvkgLGsaq&?Lso*FU!2Zp1CX>eJk^x_*Njm7(74gT;4-y5Ni0O5S^7mUPl0 zTH9S_t^Vz(9W>G6mThyuVl}@pZtUL|H_?nPSk2x+ana-I8=Pn@vJ=eI&&||p?K&W< zEqUs7Mq4KM*_WBAx`9gydPFOHkp+8lMw(0jnF}A#YY>ll^HG5#ZbFDm3~>?al1q6bM}c9-r0Cm{-I@7vgaDKQFpI*vaCNahWvmeg<>Y`yCj_lh1ezFak`@KjFGz6>(8 z`+?*lCFsklUwYD$wVe*(?V+P9-6)3E zRL0rM0aZij91rQ$XV}0`&gTp+yuY*alz4KR5jRnDGR}^g4_dP|Yqq8C_urP}r#z4P znzA;i;1qKZ2*#u}u7!65VVLQWQDVL3WLFbUPQ2k3JN5Zo8?&VH zq{4Nkw?@d!j%GAr1^0AP3jCyhqrrgP@kv`O8W~T;8E&5j*W-4s-c*W7C3javy7Tg|^NiySGb3QFvY1MHn}X~YGmqL)%(h<1|B}@`&rumPO>QQ4 zZru{-NJQl_-L5k?+B^$BOflQSWykdAyzLi6RvX)iHj*c8he{0e1aMSea4FZ)**e_W5^>tlwyHOC zGNWLX^Lp-jt53y^O=Z^4X5sPtx41)UsDwclKuU>mtC2?CL^cH9%tvByx1H29yedyP zvzaDR%MqD!eD*eNBEkhdsl|G`7&6|CQi)@9Lvog=`q@KeK>w8n$ zNlCk9XG>DrtNKHa5t<&KJkxa1DdIX#g-#fuozsGks1CK6EM8Yd_6 zI3#M$rSgwJ63Ge0;ndCQA(hX}v2zc-%{U(?1A?GaLh=_Ew3gP%YJHTf61*0vpp2H# zR&^#TI`2Rhloekz$o0X-XmdL;9i@7l3N}>mB@D_vD}S z4=1(Zy|>Q)e|)}}dY&dZ><4lzLnNPHHq>WJ^7Tf1AH$wgb;pp8^&^ z-6)Gix;ygCf`TKIpuL3HbFO9jiUPH@IQc}boiIUQPBR%=h&kF*jW{m}(0zR=)(Qo! ze5#}Anhu$j&J>;|Hx2|CZ@CnHG|kFd68$m<_p=t>jOlzf754#$Q%O^rIvL|SG@3rk zzIsG2eKeT^Y0h)7n_9;(i=$@VJeJoTCrbNXr1SB;+C4{31kRO|`i} z_GdJ&|?`5_2zp)C(&D;4jHd7w&{neZc4ke>ul>l%O))&Pv!rR;cgo3b$b&G1+|O zb%ZM+Us z>+nd+^iWLH`DEi`!ih)^aThVOpT_pmV1Iyd77*1kD`Dv{9rj@={h?-J1r@}#07Kcj z^*e=o+LW3#yGnzIJ&aN_u9z|7K*R-!Lge;|2Jo(QU}=tJ@YBi15&+~mFBy$W=R;mX zcHuM+TLp;=_|z<}xPSFyN&ZAXq)BPG4ncP2kh6GA+uUu53Bx&L<_+IFf++or3xSIs zr>O`)muH<}7Xi%Dr_>p;TIR(n35>-wx=S82Qk&~{IPjZpe$&seQ+tROJj8_-b;Pot zWl4bUD!@f{)PV<$X?$;TWEpGj@XCJKbr1%$0WKFEq;rl&gxQ()-d4rdfwcaPEOlQZ zNb6gWR#%YL;NmgmVm!o+=+~Hv?(9|)F`2lcop2*ru*#1Q?CIyX*v4EqUlFoR$HllE zSvX6634;MHaSQ}^nll6PzcRyFq1x({2}j$3qDB_p5=g2pdy@%75OfU-oS@)|^ZRwC zp~e)6H=AM6LV!2hj5LD!Ww7BGW{C&ECQ}`ul&^zUcG8SoB7TD_+6rl_Pmi(isdHII z{lOwgXtS7%&~I;o8jyr28BC$ipr!#Zg}%A1MoQz?#B_claR<&SK8uvd|9zOHE9^{RuA;}@t$Z-K znm2pz@=_VhodPHSeLJ-sPJY66%GwmZOb^dWFGzn1$mU|QtHG8xE3#{*4iYV1UGW!b zt;188V^R8vnVAcaK3_lr$?Zl)DPR{!?oyCk;0&5BAICMXB}9>l!e^ki>n?yQWz9U^2wXR1F&% z{}oS+EsDx!=50F+^^@TY*rT^n6M=(?kSkVM83QVy_w|#pLvd;urERAxPtJYRb363l z$dM|$)bW56GZ+NI*fzpy2rlzI$&$;=^Qw0?%;OSMG?!yA7pv_s7eI3EO9Dk@drm+S$TX)(xV~ryFXzVN6rB=xU%lbu}zCe+hIuvpy;#1)IT*tKO7zd1Dm`*h{?l-hE=*KUth8fQp;y zMF3T{fK=Q-QZWvP-!UAdLKURK>UZV_t_jhhFP0Nk6RAmjeoXmSBdNHOrqKp&5Yb`4 z6~z>Jzih20!u@FMIHyVh-jvfrVBJ-Q>(vfJN z5*-ZVQ|XH|!GEjSoUGzL#_cUQ0YOZyi_8)#VW?SbF$K#Z;cuu(?_X?VOU~q#(O!ZF_RxtesILS zGvkRvR@q$^`$ifnmIFJCitXH2Nfme_C@MY^lHH2x2C`f8Qc%$K0zVaZv!Na(M1dlu zGt7^`;H->yMsdlC3sMvQ|HbnCW!~(d)K9Eg{4K%4jkLL2$meaT$B05kxCWO+l$No& zOux%Q_U^mC?H%NBHRwYTG1D05jv%Wx!EiR>endWc$|{IP3a;#xDfp(RK=KoAXH7lD z&9qN8U%eEv(4xtbKTa>g=)UX!v(~?X&~x`T?Iuh7h>V@o+Fb3#-9L~HX9vmXm{5Xd zp^lDPG_3Yi@l9V;Xr~Fo^d^gBA_k?Fkoa$~wlW$SV^G_+!V!QuCHT|EL=?%#IkT`_d! z4h-JUTskZ*3QpwP_wa0mVJS<7$xnH6m-wQaquDLTj9k?)dM&cdNysv{fMs3;ApanO zv?_Td2y;XE)_urqa1ZMUnQ=s^pixfFqj8l(IpMvHX^J{ZK+XRL5igK_z1(A_m2Ccm zr=+lN8P@)Ce@~Sybw4emIR0T}Rg|$f&zjvVb4?cWcmL0#%$uARjXO}$`T=&QDIS8z z##i(;Tc#59y<{+d9k-O$1ekN2)G;YHxUmUTsRpRh3sOyg@$ASUx$Fh>ky{@ZY~<=g z*^)lg8>K%1lv=$LK$*`!QL+3^KtR-OMpq02;`t?%perYbWZWk;*q$SIbIY6K;@Af) z-Fghl%z=zUN5cTAp-50B=j^nj7a`jO_TVZxowVhRyhYOj&K)D8EA+CDZ$<^38_HF2 z>(RICd>IO0&=W=0_|&78HC#naC##5+m-FF;X+0c+Wa9!nbh~s~~x* zc)ul03o3x3)s2q6yo*EGOO!}K0v=Ak@)_KBuRv% zUjw8c;Zo^NiY|9oudwW1ldKA5MIgAs7 zyb7s%o)B5~!A-iUlBy{fKzOw<0K?wqt%;23jzb>#j;ZBc}S=Nn6(-lGP!$S+bj`^5~Ld zWhyu-V4SZmRLeLjA~BzY8*jGKj-I*%8DC=uC_PCk=47o-qS#xw%-UdX#O?r;N6C6q#A9;2S*hOygQa3W>Lf0E5!(vq^bwW~h z3Y0>D7Ceihd>3q~0853e{|=!o|(JlqYg5H)#4|=mzO{*|47P z&sY6-SWlyHkAv;XTj(x1EK*@}07dNbv*e*{?IJ)3z$(Z~B_tkcJ&+J7v8Q6b6>NTs z^34yy?7nKFQKnB@tXzO`BKe5@Ly#VHle^KQ-U4?fOVM1O?viVn_+_NV6;3C){0hr% zHS(LJI0t?#vp^DKD(uncs(1VyUSq|XfE#gkEdG_EmGC?SKI*dvMcIQ%2R5R^4&)^KkcPVHysCNQ zHQRb({54QwV7weM-IDlSMCoQgZ`#iX0KE~b_Wz6iu#m7;2BF9TF9Y>fY(tfy198)kJEWi+Rjbv&bK52KUSVO^z8@vc7Bs-3&l83S z55o7)WXGvN1xkr{=2Q*o<+}R02;!XH^oK82QYLbpa!^9e%6O0uP|z2v56FOUfB^dU zo*l{0+0y@G%vUD}m7w1qmWWI7jPz9{J$+V4LQhL$n$m?p2p4nT;=JvK3#4pLKbV|o zzR?GOH^1=7k1(h^8R?Sw+irj)F^to^_b(G2;pWkqlM`x=1$Xe{2OuWWFHg=h>nxu# zZY~8%sT=hgbAJNI`)fFTt9}Aqo&;#~5gdqM_WoY4vT@G|SMLlI z#59hKHyTZ9EsvzkHpn!G^}RjbThSJG?1uTDSjG@(wryaAK#bP8fpQe5{W`H|V4_ae z9U2ylXAee@1-hywc7&acjW`;QBAz&0rw~y7+KJ~63v3DIbOO$1@T+vEM=jNjG`Uee z;>}=tOyCBsY|$OYSSx_8muFVawJ(I`8h}zJaQ4OBt&&WEq@2=cYRF~W+NGK&)w!P<+_k2O4tY7R zfsbmL7E4bHY&KR?G*5L$Q<_E?reAVJUfxP36wAxA7m`0&%t_eW1_8ly-y)sA7HrBx{7;4#P{$E+q#5_K)u#pctFt5Vv$G0L9$E2+ zehQ`=?FI^I&iidLS+#>VSA6z16m;~B<+X%j^wt06i`%3`ZYneMDB;y7bokxD(obj~ zd2~>7PrYWgTnN@z@!0##4RR+mS5djS3d1Zx2VY%>Zt648!AD?^)*(4Q%PjFFygcUI zB~S6LG=6(w)CW=g6T`<)1tRo(IdQNqi!4ZoijebNCxtStNq(J1IDmCmCrX_19UP$;l5tM=#Q+=_Uhopx$dx$rCO(1#utOE$`Dwf!VH=D?teS}ijnPX#y zR>EI!he1L8@UzVr=S(UQac{N(kJ?XRoB5Fc3>&CQT_Y4W05~AO9pJ#n*P-o@DK5_2 z85KgCtF>$f=c7a{2UUBPehcDkg!NGUn=`b?-OAoPHR2%ARa*`%HPW3aP^wvhsv6wC zLK$k>67o_2`OOd31xfEaXzc!V|8({iys!WE?)4!yHoFr;KqvMy3|1bWBGHghn000)lG@xi|+Q_)}JyS_XX( zw>2E(MNosqqmGxm~7Q7IW~9MHATFuVK&Ck;PdC+QIQ4 z)o2*S&=M*Re?X$e8ufd2wcK=xSnHi`ej}o=_LD`NI%vY7S?o>3dA$kkg5pBqBs25{ z>X)S@17`3n(haAOkDB^tEUEYP#MzOJxm)^E&yMtf()NJqwfldA4MXbarYkQb=ZED5 z->O4HlG$f;=ys%K45M(Rqri5;LMchPkvga+@QgLe0L9q|Jt89yik~ibSjbsdBKAhb z+Ml*5btu{h?=z=!Wx#Ye9;O;$NF-1m9|2A zh6>7JtN;u=HVLFQHVnp>UJVi^L7-^?k4LsmT^0IbL!&M95gQ9u5AmVQ22jlYK;6oq z2MYvAWXa{e99C*_JDbtxTO0w(Mi-50q8z)tl^Ly=GZXB$ZQ ze#Qo_7ct{bBZY}KEOuwun;+&C2qb|7OCzMp9&)2z2>+wZwlmuwYGBUL`0QOX$g<-m zdR#8Kvy+#o-~gv2i>Y8I94DW5UOgo6TITQ(#u1|PCiR~owBa5CZXOBQt#>aSB`IEi z_a4KMV0=X}yUsM%84Jj`>k{=g`K4+U2O`?d-R zt~OulJ>5i2bIPFU9E#Ln1&3ir0d<{0ewKVOa(dq0e=u1L&L!vC-loiJXG&OprRPHm zZw`W?b~J>Ol!!d&U^AGx5=1Xi6dI0!jgMQ{_0O@^Tgsk+UKiJlij4bfAMXbSz&*lN zN)!esDqAA6REyqnWr8!5Ew!Vs?&V2Das>mB;ziVZe9~&dwJ8Z>Q z6z>HCt7o+Fir?!KArv!6N?rr39xMn1a^T0jmlc7gLf+eCR+&2eeY>qbgYsyIN7k`Wznnrd!j#>uk3cUMc@WF!D z|JWk&3C5y=@D1XxLhWLa#Iysc39=wfePltciquhozjNyTx%0>m4KY0=&3OWS+6y1h zS%!>fVwS-Ctrkc~i_{16Bic0}#!-YDeXh)g1U}IcJ#8t@mZl&}akeNx4&gH$U}iE#x*9aV%*Ua%lRWCiiVoPn5_rZ?cO*>f=P-}17J*9P!`tUq=O@11 zphhqLj#Bhka&i`e(gT7y)msoqv+vjl`sgbp^nIOW;7w|2fg{v7&+*s3%%(w708NEt zZ+UO_#sbI{=zxWPpB$4?@y^aW6bkON~l41Hw(SoWptZYf_yxr_Jn9DIntd2>SG&<+MGo066+T@ zmhN!CteeWZMZQ=~7PDk{yPchn-^9Zxk6c^f&w|K_l`XPB(hXVygZ!i=FYO{<0TLK@ zoLhi7ehw=wL@Rv;r51s*St+F(5{xo$WVgn@y&MB zTohpuL7n&&MJM(%o|2*?&`Ee9c%g_B)8M)3**o0?F znRWjF%7OwYt-D0-OyGOAO}F?4)6_~PnBb|VI4f*NRKzlXZ0@IlY=>kTNJP1N5IWbj z@ch=^RK@PtQD(mb*f@~gLgaSk{sHG;Qy%zP&%o;RN+GlwG8ce7wmI)xP~g15iLLt) z-N>E-=dij>>6wX`J?V#YMxQx^K!8FX?Fmwq?-&H+;Z*mmUeTU`1m%tmW%g@AGnVG? zW2ncQiDby>+eJXHR1kTTdvp1{uci+MAO9S9vS3QkPNH6;IC#>^G+<3*p~V#5#YZ>9C-$Z74y3kf7Mc;MYL& zrWXX}$aacV+Xx`85gjH0&g>(O(Ft$ro@xy-80R{%_B=h|4~KU51!>ckm-l#AOx-np*kz|u#5 ze9rhi=EtqSeST}{ogdECT#tJm`{VOFxeH2e?f$hYvgF9>PyM%lx8vU8z4yQPTvu_^ zsSiK+aNUv**R5DRD4sc9H<7-9xq%`|4-*-Mv0c5Jj4OEkH1^bbQM$;59Wm(+?b!Uk zE>Us+bt@SDH4S|1%GK%vKl%8}B|$-2AmN1+$c})wJCMmaB-VRwzE0Sk(<~Bo* z%ai?}vl!a&Z5z;tC0mU+Z(mVYtyb=k(fEyd-by&zW~w~fh8iqsL3XFoCe!i}gXRV9 zkZfc{R=u$AF7!vrW)2>w1YJ#RT8O##4^Zi2jUc?)WQMHuDedU7Hp4d{?7y%yjSfUc z^-#T?nt9^vK|QiToh8ZFWJsn!g%XrM#nbedER=YXBS~DyLx*;m-x2`~XKD^~PgYLc zs)2Dnc}1mPL<4WMf`REU@C`7;Yi!-_&Os;EfF<7PZ2!46R*s7Fk+2BQs8n7o>e*k4p`GYHSt$X50ug(TZm2A?Pp&CEn#)92v%}fe3Feit$ z7?Jq^kQBig+Hy$>XkGThy4)I|u37@?a;-aCUKHo_^irmF$J`9jywF`d_?r`ubD7mL z*LHwf%2BmZ&{EGA#MA!ORAo-ebs~^sJV+$$#etAsj{5zXH_-yL3KAY!6 zX~|>yWi!F`xMbAXSd_eLXeJ=s3EQReIZ0yx>fz`)2 zzc~Fob~y6OnvG{CuSSY1BH+TjD|*rG{>Dtdz^Cbjt*3oMG?s`vc0?n$=q#KW z1aFbZq)#q015omkIo`fY_~kuxN!G6U5QS7R-bBaI+=M-X_b)R-Z4j+5{9{d#UfP;k z=0CUplnrUazF-*fIQP%qY&=sUP&uhpf#k72zSaH4e1sq#;0{`jMtXnSA zNx^6tW^yf|w7C*(@3)|~Gte=xf$d!bYWruTwx96k2>uqbG51Tds~ctRSi@zkb%_}$ zJS=>Zi-OJ)bbE`AQ0d%;UY*a;`GGFL(wqio2$@4pLmBj+DP;=wQd)ADWfitdI7@}m zu{lI+I#;Dy{glUx%)nym&&rE7 ztNJX(=ojIuDza$9zP_YFKlDfSfkoiv=&U`b-YLgZ-E&n|XGzh%yHS$wEP&wrSzGSK z4@VHZg(XyxcTw2LK`N_l+lq+Q7t3#~#MbYjXljPMnK__2^@835-+*)S;%Btz=b!K~ z=Pz9pvMb;luTC5?sQ*gN-Gfj65Rbe{`Q35(NP4D1i|Y@h0{}fdPW6VA*0oi@Q{YM(Q(qBwfudmTc2v7~2rLG` zvTY?Q8h^|{ApzF&9YtKYdIXpky)&ucSYg+`0?iLmA&`tX&^7DG-$SxMhYkpa?c-s> zq+ipB#mZlGOcy)q^X5WkS>8yMTtBC!IVhE1a{$!6wT384bl7OF(5)Ls@q z(+?V9h=)KYqr-`na0&YEf9Ub&NVopREIC3z%S)D0hWUM~l~MajH*oD}qGXdT$}q8* zw7-wxggYF=2YZ_o)kA`z7xe1EbL?d+duILXp~+5Fi8zjScqdvR*jD&a0Z<1ULfg9} ziwT{BY>Be*OyiU-kw?(OM#2es2IN>iL&;|y_s5dio>2s}10JV^`(t;22aAUe61H~K zT?7MlPn^NMz%8XkowyFn$F=Qn`WPVHtJ2}@X}c&4ap59ouQS^rDTU}MTs@Si8FGM7 z!l$YP@G5DUGs63OMqdb05R zL4llhh%Y{3=Ec3xb2|i{M4|bQy{aDenyOU{<-ExHCB z=s`F^jhCwre2tdrOyf#{+Xa4ayYpx-xt!qtVUeTA0S4kDvg)t0^*VD^IN(Y@^IuxJ z^q{mY+{vI~_9SHj`ug8bOJ0Mye++B$2a zb3q~xa$QZ|)sVb9X%m>^rMZOKR$FAgS!y=u*4SCB(FFcnTKxo z1^}$(0I({Nw%SJPmPpid+vG*{0Ln0*-4x!J+)aIoCftoIG1+NfHY>`2yRmTfoMA@3 zB19emp?)L zn^!b89ZPx|+0(7C5PPw!EG#m+TBZ_UE|!x=tM}74;+z0Q{h1Uwv$`(wSByuu>=e4R zI}70fD5-7A#f5!CvN}1+S{)=7tBaim;nWBSUe}TqbiDW=8WIN=!dARNTk#8MV+I&B zsgrTO%kl194Ac0?#&b1pqL|Z}kr7UNWD2wr>jAX3S?wR!i*|&h$J~Fr0_%~<{Td!7 zLzHS27Rviw17HnB^5_rmtrbq zMTaNHi-}ZMO6D=I8%#(vYE(*}jvmR8!?u46=h7aX%L%ZHV^4c^zG~uG)B~k@o!P(H zwA7ABsT=j1`TT7-A*%P=ybCOdx8_tO-tyehGjax=3nE!n9s!ZQJ6pG5-{vxb$BqP7 zM$#nc6kgquJ?KD~hLkr$z@4V;u@e9c+)9u1RubV>NZ=qHLaVa3N#e73TE=bvU3PrF z+pD5Ft>>a+-M2B7Q_PYGXvEQ$$cIo`8$8zGzA+So4&n~U`2mT7$S$GAA}mQ2?%TWBm|mKc#j!_-w5$FrJ(1;NgSOtOtEX znjwxvqptYti_qrlnSI?+IqZcu7}X<4U1xs_&QUZtM+Imk=HNAp$T@-J!G$h0_oWb6 zu`n}Zn_V)LR8fcTm9Rv<-9gYZ{Wp+eI0{&fHk_)+5|zp-6g6IT_LTWa{tLtD_>D#J zEi>)j5et@pQP_jLO{pQQtlGC8EUtFiJ|8tJf4|np-Uj7r@CoZQ(ColUfJ^cboCVC? zv@73T!vaWEw`pV!Wh(sjI#c8|fNN5x3%h_@XX#U!+b0#BX-nCA`?2m&@xC3DiHL`LJ8tj+UVMY zXbP=1CGT8{%4*Oe`i60nv1)xv$jo&?liT5^A~prm!-Yw>rbZSHE|WyFeFhPPN# zCvZ2i@FAWtB&d!~g;=BucuD8aAh>1@aP7&{-hxO_qK*NS2^u)=ub)*aP8vc=HNl1i zfrJ^e{4{jXzo9; z_AjSyIMfcqldgACA*;=nT5*cayZ>ByXx7rxOV{I7tIk>|+oZorSQdu*p401|IEg8cTLj7|CRG9Fx4MR1{Z~ zkxgC_(I;vv14iwHVPsc$4xFm^7N+F{vcT=qD1JVZ^^kPaHJyJ7rKcVsRxq4R3P}yF zy&qNq>WSpd#+i^n=WYYD@Cx)UR)M?;xKC$vpP;+G^^}=wz+0T(KD|epQ7m6pf3aNh z5RXdVcby%wI$!~!FAfrMcyXk{%wd9LC7i+iOrNRk%Z9d)5b8_9Nq65ufs1A_h30mv zuu&F^iTgLHpe8jL%t`fPCqnM<lI5JV8ply1^a4-XE%xucT2{s_M^5$m6o8`=21DK*)Sc2 z{yM*nT$_YjeX&Y{jG{mEkv8*zJA%Ly_<$d@q2#Kb*WA-$L`m@K4vx3Dd39$MA}9b@ z8Vur}y6rNgm3YCQp!qH|Wf*TOHGQtk5}UU>j>h1kbW$nKyW~p8pF@8x)8(MID3-u0lk_yrMOiuHnynn;MB3XU}`C zG1HGH9v)vd{%{rP zt=r1;SyMxi`=u`1jdw0v4`N&}_dl3}w{TK2Vn8b8t7QqO5iKz z7cqw(0q1cP>?)v3um|S`W4Nrh`mi;k|S@h zq7Dq~!?5Ofpneq5U~tel(*O%x{sc(b%nU2xGrUSY%R=QTigb9Xyu1yXK-5>|e34&S z=PK8_56C1q)#>T{WQ&Jkl(f_~weSq6gcEd{Jb>degh(nyq*Jwl#V7-kD$fj9NRA*2 zp_4?iB#h`$JpSlO>cpE;+^tS)Qlv4}-D~p!=cCkAehZOGp|JN*iaK)roGC?2rWZbS z*fZ*lnMYB%p;TSdZzFWjoC=95-ry-eLg;+Tja+V6_(Cu>!XivJaqapVysoSL#@f6~ z_{-_c@~~HX7Wfymcuwk-5UIcNmypdJDf#)#s=ZCO6KA0a^EqXr6+KQb3ZC)P*A>=7 zd)T#E9JT-h0$9$GgceB!7AX`^9wTNV>30thpM4UXk}E4#tx4e${_f4 zWI;UNoGiFhyW*hI-1RU|0-BLk-+8090MpqGh&=*n+6g$U%_-W^N02W8xJ#-7ptjd< zNT8@1So6eE9809?N41g#4ZKmO=>|;YH)bBeKTeL^!aXvcsi^RFc?L8c!83LVlW`@y z_(bF|h2d<*h3AER!OdlKynf+VR4`c?%D#x;K-*Kv6(F&`g3Xk&_T@-W0Ee0(h6#$V z^teVq$G%o75xxi+MAzVl%qVd0kK& zNtv}M^Xw@Ghp`ObEL?(Pn9~)&h8A${a+ClYYL}>7J5(R9wt(|N$9isOO(%T>x*DtJ zgw)-i9nwBvhMoVO7ImAI(atNXAJ#omPo_qmR~Zg!V5{`CUdo?H#YKYxzd=F&l3++8 z0e5A+l+XqKZPiCW1Kscg0NDDea^h1+oPmbci3NR$;Dkmjfe^tW-fSNtjWevFiJan2 zYCTTdNqzc}Yso4BAT|dA(3K5Q6e#L7(bd5?TLBG!giN_Nu<fmAR#NoUfwoeCfO-n$=-mT*|LTP!;(Hk-^#ClqP**rY0O>!}Yw`cwa??*wX=g#LtIZeq&D7wHWzAZ$Hz3BT}^qUMzfVl@!nFp~+M=Lhr4%WPUuqm@*MC{vrE& z)W^gN5BbiZekbrKq_*VaNCWN-l$uegyd)0_Hj&=cL#*qq z$9MA4sx$Hj*9$jtJy7A&=C*sg(e(rWaeYOEsjkCQeEHu%VTtUih_S@`mlu>1;o4lq zKv4=U)E3?2`hQ$TY7+{?CF0xUW9XqXQ`QEuWz-jKgZoZMW^nc;e)EsWBSAbr?3fPP z;Lz7gfCF}*gb^L)Tr)lSsXdHTg8w_-uWqEr9U@9|S)0{FBiIni~hTcx_l+$?$K1v>RY!^g80EsNPu49n_v3RNV!<$mqdmA}gW(6IV(c(4?tkYA}sNt2(m~ zOZou3%uU9<0$sk0;gdt1`=CW!$K^0(d?F@cd%1sRf~+ zh6BOvO_bWyytk7zb-S!R{mLVOfwCx&jd?n^OIT*4)7ll!hXi8XZ;vO}qMl?MSEf%3 zuG%fZbT)zJ_#a$cN-aRvPhpC(?vQ(|3KinDRzA=!3VJa13nUK(lCE)!xISIm&0UTL zTpls912&PARNBB(5PA@!XDV*o+*GZ0kB+ql+!2@!D+8+>}90xLL_ZVcoX__QOu zS>~p^2|I{y+EIr_mO+%|ILv7V3Hx7BmcvrjC$A8oM!$$!ofUf_EdY(7U)Z+{3GCFT zUf$nR)YkbEFbmh<@(8u%Yz6B<1!e*9yhj|v8-scGu3_$)JY+@cc7h2mwsIU#JuQxm zLOs&{9gIel+O_UjvUbgIY==$u;IwSLEJw)m2d}^!+Q)4^Q2Vet&=na9%o@Pc`;qKF z`MAwwVe08jRnjvpY&gk#Q^(wW0@75wB_7C6aHj?uaR!hb{}l0+;4vXTKxeI;E!Ex= z0`TD!-jUYhnB&cVDtvlYDEgWs`dZT@A4p~hu<9U}#rkVnlo33677#2H%w1!uZXMo> zX+0?h9?{C@*ic#Id)nU`-LF29pZg#`1F%DvBczz@Ifr7-L}Zs?1EU;3c(n!~Nob?7{xN&mylPd|$Uy_}kQ)GbR9Y^Hd1cmUnC4 zc4hV^t~e@49DZ>fY0V8Vmw7kTblw$aGQ}Fe^$hiM+})PZEf$5VgB++q_-XV_D*A%K zyD!Y+0<0jMH~Sns3!xkIK}b32YV_J?Ld!HN5``bUrLLe8B7Npv!Fy6y@DX~RBxLB+ z*L)>;2KiFOUvNVJ1wa=90G!owYmn<}2~^;p{?g`u8I5`W8$L7t`uP2SeGU7Jrimwc9`P)vR6Cm|i3p!C4_fkrRZ~4GZudAaAy{^jU zB%ucd9S6-)q7qvd zg3Es8w|7ejcmnPLp24Wkbz*dwj<ZD=`aK!?tA4BMs_q6tL% z*-@R5>dX~LVh?-^4lA9EDBSt+Zb|7-`qjH_Gj|B^?v7N%!Y42W9MW7V2f?GkZ`%J) zd+#04^!>FBM{P@6E!5ho$kH01tpkJ#vfJ9KkyS?k2ZDl7MFByGtOVOCwW4TJ1w^1q zD>WdXh>Wll1tUvEhCo0iiZX%(86gm!>yv2I{_f{~-usXD{pWr1hZy+I&p6{c*EuI@ zx*R7he@mWYqJ9NfhkL*mpWaOPH@h6^0-vYq1=1sc+P_)6tO^iHFyixb$xiwhfnqFr zIm$l@@{IRf)xSH2KPdfb(S3HH2d3*Rh_Y7{vDPb$xmk)(K1ZAuzYuzMDH24hPU_DNQad-?WGEJ@`*G~Ja zhmsCfKb0RiGbwcJ$7}^_AkGkr!SD+x4QQWof_|hU4XXZ(_ft{oG%y8dbo2v7bd`#H zRZ+d5Pc!%{Y*s7?DtVpv@j3_&y@aukb4N#s0a8Rwb`(DqF>jE^p~&$u#Q^P*kKhV4 zvrs#kjj)R!;WF2&qUa$i7=h>b`AogTAFTpRzcbVWMDBxTI~uv;3H;ea%g(K}k2a=}A;Z6S}!E#$TI z_E>aBnE8IbzcJmuUn<`h~8F{vBpV~eKTi;i=iSrk) z78T-kL!OPDUzgUkSTKG?x9Wq^c}N}wr9%+Wp0dn$gQ^6wbJBo(CyMwrb9eo55{p?0 z(n@+}7*Pc2#`daNZ6YmKRgPS=5J&rmZmLe7s4_R(g)}|vAYnubWn^Q)Yd7E+VND$@ znmU~6a`)8X?qyp)bnmQZ$H2)Q23$@+4@v_9Yc8x;Xpfxi=DU$zFW6N4s{`?@7h492 zf)7r4aI--Ak8D|}oP*R2%jA^YLB|44Ujpa5CRxq%2oB4AQI2)FH2)CTf6%ibgr zt#4WO<@CsjWrJ*Ed#;6$CY*B_!xd+}UZK#%;9@s8T3H z(JJ$6K8~xzI&2UvcW5~3OXQtkDj2)`$z}nk1wRz*353!JdjfUk1i0@L)LukE*g&sX z4-~mRKy$DQ*y-i{C(D*_F{B#IbG(TP-zsu80qU^*6kaA-gWE`^^4MCFj<6+dYSK#w zJWNCr8yOQ_Vtu0B5JtsG3Z9lVvCseHhW^M#&|yolNrTTrrp_Ztt!~I>MoB=Y-aGE< zq^N_R1Dcqb(gKc9oh$d-bjPefO!cHCxZ0jTPu?OV4tkT2DIH}RfEan8j0?YQz9#br zP#Qvf**0iu!(e_#xx(c-IEdSgq-Lzd-o>#SF6%rS#*9d zgz_=ehID_W#YYb!-gRHcjkDn&oo?L*)gLaCft#+>e+vF7vUe%a$gYhW=t&Nrc@O7D9#SIS^Dh&$YxW9y;wfP<>5^Vf1Gz1y zs>aK5ra&<4D&7Zn%YrAli9!#7V7V&L|KpgJHRODs?*VEN#ZF`bmPI*@xqv^cn|~`f zwz8*s9;M8}=b;Q~&66pS^GP6|xa19yuxmj`ldJe&*Vm783cu#l?psPX@0}7|w#i5u zzlG-OLCQcksL5_C>m_6em_h|zj0Ain25nXsPU!?q8s-H|B#;AbuO(*@EH z8k33+PsLy`aJ%^QARae>Z-)#Z2)7T2Ew+G=n12O;NR|a|jug!a3l_@KBi455q26S7 z#G~PwAyF(lgkO!qa`X7Q6?vN(!;4NX!&dqW*V#elEDdIlT@0?%q##4j=)}yX;2By` zexAlOini%BfCq4~6Zvu`pY@iv$(sg2kSp@`z#BEByE+iCW->-#pDLqIwc4xO& z?!Q<(T@b4$S<60rFkTfYFObM@6L!|;F8G2H?Ftd@=sB||QJ7F5o$`{9xsu)bdBR1e zgIBDZ6e>g{8lQ4hg<`k?5BwHV5H80(Ei%2mjjeV+JfEzyb0#Ht1wCSu$uCy4wgjO@ zfi$;3`U_w+LacLdB`@0rwb1bjU_I)sXEr}O`%@Nrbu0yWeqm$clU$A14Pm>W<^S0V zWiHUqe9@UO2l}`J-8Ha@PjO*$W{Fq@pu{#&!O#2% zj^s{aFCN$t5P65V?yvkF9jo%#LPP#Xa1Ka4Js0{oI3fDT)z_^sU(P6b?&3D3^ll00^+yrQ!h^!EUr#gPjwwV+Lp45HJe#$mr)`5Q!?+`-B}dBeV)gOpuvq-AOv zcAV^tNH)43c7NPEuBzCdaw}^ts1Z)^h|}{A{FJ%CBKYb<=7>)BoD=sy6MSz`TFULZ zPEDo-tVLt7&7j0u0#_iTHHoZMqHw4Xj5|qeE9=vWPg*o8bh_Fdn2wa-9~lTH|2+^T zWoveCHv`OWj+fs`UjD~Zn(mLVyGUG;5EgzTM)oX)ku5Ofhao_Zc#^0=pfhLh7hsqE z?~LpMA5x2SHS$?PzGqAb$QGuQzN3`FZyDKX)LMstY-*x#QM@a=SBq9-|H{brMk*I& zHbgvr5SGaQyGAy*%ZVmpBO;zkHT#nPE|QM|(1j;xI4bItT4c)5&jgo!&_v`e8DF1O zkh=#LM;$*eDi)_uW+(nPm2MGVv{jXX*=uH1t?L__QOdT~zd;|*gs{Qt>xWeXAc zOXX!YoyV+D+@s$xA>|16UnB*ilcpV4J-2=22Y>%R4b1;V6r>ogc*9^jOoZfGI_re+ z+kvRW>h~vH2zQjluGP;sa=Ze%aDUlbz$~6fP(u>hjbZPrHRY?Qh)B z@7Xpt_j|`pc(C07Ug+HD?u!R(S-eQ)pfsgGdceYnz{}CUzCkX1Nv&FGWRV>{|4Q;5 zfn)PE^O6MN2luB9#{>^Aie2^h&$i8nEB(g2~-Zj4wNEW7sn zqA$t7oPJ|qUfR|p<&xfV^=BoQs|T51X8+VaGQZSRZ+b6f!8wpO^I2@3ZoUVoW9X*T zUy-+-h-3>bg-DjG;RQq_A6pzHw{E^}b$=*Bl8dZ&VS}JAjq9jywkX@bX9D9&VUfuIU2c)SBcT_`G zCFg*i&{RB2Pr?|GYTPNZ;hUK~U-x}YJZt=v*>j^^8f#dnkj~hC=)+1t{ ziHkhHCV{hUKqb}Yq)>3*a_ac+q~CKYWB3_D^cMf2Cx~Y?iKO(FB-^wm2=%Yz3nw`D z>ED?1+p8N@-1pho09r;Vz@s8GV|Cm6*Q}u7l{~4LAR?87$nR1c?ZrUppB{CXMlqZO zY5ob3<{v@}aKJ_NGZ*0xy@l;BOd)P>Rx&@&nwtuw0wJAQc3-R0_h22e(bBKmJ}Dk z$yS1iuh^49l3?LQ$b8iN9bVpgOmqHW4oY82jV)68&yswHV78x~xR<7VQh2$lZ5q>( zpK>L@$%0~mQcMZex28oZ!YtNwrje@WF>hz#r%hblU2znW+r8NZ& zW5FG2m!bkTm}orUuH2Z;o5pSa(52(@fZ-rsJDg*5p;w51#ka9wBiJiwCQbHr8W zMNZjx%d(*#yS1uqD8aS5Q6aL*`(yFp<0&qkppBOJZkjQP0;+XAm89O(S>&g zown4G3?^Ig-v^}5HdRa9Hs`ShQd~&9wsF~$L$EF5U|Z^wT{ntdCnwv+mQIR0YP#b4 zDbe@ik(UyXSf)9^$_@#Z2#%7Lk;y`*`(uJVcY;+AP+Epp*g|w(4irAnqE}dbyF4hi zM#m+O1(^>1_`^Rv+Tw**;}49xa=T6n#*de!52w&F%uCv7);affOrq$mfN=__nBoE* zN+6Z!+lnCGl}sM^7&E3i3LbwPH7+TC7@t!*mD?r!MUBh#vlX|PJ+HHCyZo0tTDcwz z{Uso%ARYA&W0a&1P-A7H+AEyF_CqgL`k)1UaD+R0o*TNyE4Hf;1iDNH+ZnB0gM;_t zbQd4IkOF>wwO2OM1x9?vBFn+y0aIUshZ1|^iCV3FK!>RK#h)I&vBG5RoR0IF`-UWs zP$YB#5wtdi>jDwWBC!Y?GQy`Y!e2wKB`bi8ks4}kTzeliceX!lxSDo-NhP(SR;PUl z-)50EC=F@cC_Mlhc}Ltck1W5W-s9#Vo&X7Og)Vter{l5=HqWkxnAAJKTWw=&)okt{^jA#-nj zOL6%KQ$=leqwDMCuVZ(EOO2?BXh_?afbb(N{cPqnI_T>eUB3CLU&z27>>GpXU^s@nVy`}y7dk9 zi%fPE_B@ZOrsYrOC+^cXFad&R+I>$KEafM3ssW!nio&0f^NGFW2}AM~ z+GZo?0;4f8XKWjLHM)g(udm-7m58Kt3MhR_a9~vKnXIG7IEtgG5ZgQ0vuY=bb~8gv zC{A{7V7?T?_aO0#@IsOOux7f!b=yl~T+``;7Y{@ss5&|(dt~tQRCc%-e|tsNUg*m! zX4;gMNOK8%P}?nN5ES{9_My7v5N0%#U^m?ayDL3kx5nX^xamjg1a(os42r+1v>y1e?7waDG` zS6?Z|u-B6uuCu{p$Lz|+W1|$H3@UFbP~4RO7m~|FaS4PlxB!nA+y@dFK~s}Ks?BNP78p$k&G)!214qwW zH^c`fnWPRaoO3(hdGHhfGF8Lxd99;(B`v8%(5JEM3$%^0g@B17*EGO2H^1_J*V6$c z4N_z510I#vt=z{iH#j_%ZK=;k6^9!Zrt>J9E`HprVN++yWKIME{R!E_aQpiDE};K} z1y5o~4H(wh`fv-0sdin?C;XbfNSx!>b#&zJ0gs8LeAZLZ@Isax&w&h79f;DfX_>`h zA{WHb*kavyFAqi(1xaAD7rZHlssTi z7#lRNE+l&T#>H^b?IY2lS_)bE9G8@-gU`!ZW8*O23Cb+e6rgX~_0P@F0pf z5QJFu6%8D%lV;EDZsh8PFxid4!|_r31kY$FeV)Q;9sIKq^~QPuVf; zV+si(=X_4X9+7R9t)FL`{xnNB-x(f1M4!74NfSp_irtn9A4Vbu6)?sc}0ex^PeegJyl`K@@ zXqN0-#U7_22PJ*imfv@G*bM?IPT+>#&G_geB+TwbsapB-frR{gDJIKW?j-aakeUKW zYpvNvANUxu7V$GJjGQijl0KX>&lf^}XD`SGDl;Mtup2{v-=e2qJE5Z786#z0ncn zKw}9SnE&K`4x-2p3Iw1Yc+B{xK(m2Ee9bj<#MY7}We(y$M9i+44U)g9B`2#*cc97H z_(@}3O67W_L0WzRx>2i5_JUi&CJUEs{ z{6UkXn*H8?>hrseET)Wa7eq*A7T3mj2M33;H#Z0>{DQm`Uiw>ZlRU=&0O?fD*eca& zNd0+2cy4~L;#H7j5ni$N`4wYJ5BrVE{^99dJUsCMMe|#_)xvC-5{3!OOJ5~vzf3|k zSVfvt-83m_N0s}X9bqV{G+#@NVi<%$d<(E51bP&bKsv<)M_6q3yy|+2WV`?K`_U{A zd^VXKo*tRFhUj1&FHW_~L{wGHH>@2Dw}QX=80}R|9fW_7ibjloqLR}{MjKeDFKaF& ziHg(F>os8iK!#Sv!q|5#N>`^56!k2%1d%j`N^!+3PT^LShIi#; zHA8i>A8tS}(jXWo6IGE|jY4|tq@k|qT?{YrTwLjQ>(9a#Ar>f3+*90RQU8^v9> zM}yc9?w$V)XYLIy0{ZAB!8CI@`z8S)n>W1J1A34$8&NgHXE@^nL*_clu*0AzfI$%r zz;E`U1KD>uf+IV~4bfp^9)A{$+wAr!QqI_Fc52Y@XUl6q0ecr~wt#H>ESOuDVc^Jv zY1Sm=0Gneg+qqh2ilJ|Nk}z*q(s9`)!MH}*(RV0@G@KSnPTL6~hYuDEgzIO^cC9oRKfF#Quwb95%d+VVI5o`rIS7h-@=JTHs zAg)Av?<(DVSEPwaJn2Q3xJ(p0X?ct?E9$c}pCA>5NAi@3n>YIyKov`XD(eMN1>dPr zJbt7zKrW}+91{v9b%`5F{l+GbtR=}mXVEXyxAy(g0C|kXJUh8B`Kc&D&GNqtNf0eF zncFo&g>GBPX*J-t{i1q*Wc%|wRD-I84{R=m&6o^!MNmDpQ_pNkc5*i+#G7~kk^d1J zQTiRuJn0R=xPS)oz$|w7gFnl@;y3DstY*hJ)pv8dj?;tgE{>U6I&<$Za+$NA-|L7v zg&rwW{=?W3lW>O~X z(6EL4$*>bB9dZWgVQl(YicL>B&y4_tDV#pglBW46Yn+yWCK|m@c2P7F{ws2ZKTvE! z>!*~C0@3II473?r_yL7b0Cb3@ae7Ma+LD5wRGK1C*w!N)lL<29llbv5<|Z-+L)1=c zzR(3YcJ|Rh&@nVETvbT{7fR_~2#|UZvJ2$go&}wEs}|=3_uu}7^4!llsk(Bj_TeKo zg>Bnqere_?vErWl6o-rZiScqCOE|5w1N)qYiZOGMN~L}5e*9B4hk$xX?B*v^+;i?N z(QHA1g-RcQB|qQ=7Ln5k3*85);n#`RyOlm@PkOVd>F2kV*WI@~yd*v`QRYnB@__9_ z@%aHXkaPl3Y?Mo0Ec!KA^plB6YDb#HvZ@v~lv7+K_Mfmqa~Xq#CToL|O;NR=k6- z5D_#K690Wqt5I?YW9z;fsFrPlot{I%!nQo>UBo;oSN!q z8F70nq=&0lEIllQ;dTjY7>?~5l=9gG*9O~0J9a~Q`);W2-3FRNva0XK(IYaOho~7m zu~V-R;(i6%?h*p|sItXjcUeA7M$N9|7Wp))OmS~qUq3KQTL#R=U&BXW!mq8?0e{$Q zQyCaXrvcHLKs+02%IQk|#DSoy{ywyTUAQ>g__o^#;ibf}Ho^Gg#LYU9DcR3?bLA;D zyF4yP;WE@XutjaW@ed|Z%HfOIp}Z2y_z0yuPi&nT~DO`7V{E1u=xQ%fpkSiogx39N6!GtxN zGCT7|WxDHukqXsIj=F){9ZgaNY~9~PL99y3{`D< z503JuD3$CaqS{MC%@#zdi4zuwqq!HtTvB+M!l^XtV?sYp;U&aU9-YQnZ}2R?HzO40_3tiXY+4@%xZ}!EW9c`tX?bwaVnv!ixjaPN(`E zu-@;&yH&^@JSjY`4s__nJCUp(Ot3dwrPHTQm(VP&Sy>rPrcCu(lN>Ok8BNwBcpAuLi17?A57Czlh?t`$C&x-?i(U7Hx9m=T z7bm2=&Q=HY9Ag*-n$T*mSeh-{t-S^{m_yi(29}T036#1FBz62Cw%p6S)7F58GP6yE z_nNQPxaG0Lp8(226)j?DD>$0+q{8U3AVSkvhr}ZB0jc!lWj*{k`iSzyh}nTGwIPF6 zw+87LVV*xi$uL~#b^0S=W#F7L5X4spjQ1{f0?b1K1^EUUWZ`Kd@c8nrU*@pt;Bm&e z1wrrIg`RaJyK%M0|uu#0xH?Sxf z<$oYCcO`%?Pm%N26^n}yN-)OA&9fDERn>f+NwwKTH*LAK5jl9&_T%?;DCT_Ilc>dp zXN4$yIdS@miA!R8vb@ej3{o@A8vHZ4I<{h)PM`Jc!yL^9BWJtsC~8CY8{<$o|B&B;P$s}nn_@7hh=*6>5+ZYP!q;F4#e!#wG9QrkZ2 zlDe?SKkRu)RgAQeYI9Fua|gNFZTH9&0G-4Sl2*KLJ;P112BXl-<*JbWiNkgQEz}Bw zaEX|ttQMfXj94scE9sUOU3*{olms^dCDx9x)KEGsXc&$*8HhS!V#x(_1L0G>{-pnE zB^Or8-yC}T&+n7jQhr=Mc-vL_M8SFX_oN4vm(JhIXlFc-r`Cs0he7VnGLr4AjVeL?|q2uN#_qDY=krtx-ThxcROS3*HG^5F~c(v-_4`W%8 zz{gv>gN5IRRr?t@qP~4?ugF==j6lrM@yeyIkXh83XRYE7gw51u8Sw|$W8X4ZJ9E9| zlHzstG%6qCy(9ld+gTRJb7HK2TWLF$&*7ZjK+jC)syLq@3M2CINSk7l+!|hia%3n6 zg@=mg7Hnl#P(#+U6RMNj@&Jd8Qzg3)n}=zx(|%(*SqFb8hjX9e{hjDYsv4oHp(UVd z#D*&l0V@a`4127YU~(X`DL11+qmZOg3;uj#i%sJV1F5s7Fgs)+v@OSkA%gKUg45IS zaOFxNl&;wEV4i6cSn?S7gJ){jJF-o^gU^j7GlrcRKos%d%6$JUYx$-*#N~2;s<12c z^2f)X)ijn%B{bO={6L;Gg7+^);u0aBk|9%u}wb+JJco}@p zA{b_11t{N}Aa)eWDr8b$;EdUM#d=z-|Ki@Y0jRBR!FZ4B9I`%F07}NYqe54@wp?gk zBfb}e&>os-&p*pmL&KkMzu$IBcm|Cwv@|{;XS{xC!j-1D|IF8C6QSyD@5lq3pY=rffF#<4l-;wW#NG1v8^gJ~EUijh zqn{6>Vint_OEgt=V@EKJxwW{ayxW4$>J_E-w!R>jC{|u#R3SGrxW&4#UokA#kE9wO z?mZ$Uur?`L!ZQDTX&*=E$JVrAjkoZmi*2=WPf7!EVdYxZ#Z7KMy-zS0CKZ5{puBFN z<%aR?335d@R0=gO@9PIiI#l)?4V=YS4no34PA3@VOGARN7O_y#VA*qKmzsS*z2@vL zjf>13>=J@^G3!i<1qmpNroUSbkGxT{?WN%Shs&Y`q#cPuD%6jes248op|Y9;$!^zj z$F5x)#%&_`O8rWL6xeSS7qZoF;~pVw;K0*fG>UEyUw9uogL3ZQ)&LNR4q6gNC=rb3 zYmHj>tqMri+DP_n!)p`eP*ED|`|QOw?9*5J@A=o^2;#`%$D5@V#Ov!>wg{K{{!#7HCn@pBInhWCq$(x1oWe)} z&NOI6OEPEWO>fnB$aG={vNz|o{EOV$f8JOB6i%MKzFq~Hp4sjwj)%gTRD)+C1J(Z! zfwFZ$Y;I#0PS&HNou_8&X~a7sWXm zUGrGJ=*^o&!-?+1XMdR!p@@)YkwPHWONbvsFfZzJ71O26eR_4} ziLXg{uk&B^4HCh@P>$bpv5gUy!#51pGQPzVwag@8TbVtXh1V*UWG&)tVo)t=!iP@( z#h%=ujv$+I4ZH$H$na-0WNe{2*7n@>X@^>&=P;Vi<1jfP@}-BNSXFlgHp#*rpbV$5 z$ClFttbZQ{suC%NiJtHD!Lb8TK-FF#J~&eH2Z{laY?LL71%mOoUPmlq6kvJv5U*-B zjZU=i2EN$Pcgf*FJE-0>-oHQN&XO4`@i>W^O-C>(U^t=)f2mLr&vn=7thZU3~{wU}7zCZxoE%GsLTY6V{_nzJI2mXL04kw)!PN(@Ui(s%F0$#l5;dUCW&8uUA zPAfo>-k=ome(bOU0EXz{1j;+!8%@-5D zkg{hifxx+DS!0^MZ!+pqC#~F%J7xWaGWbO1pr79gBA6G(B;VR!Dmx`&+A;dtA8qz? z4CuW+WV$;I`-$S>i#p?E-7k*PMU!##$NPpZn8!b_?y9$lmQm`-mz@RSOK5g^$#^S zt|{n#a3^up-anQ>084PKCrz|bRP zQkOpyV4)*4+2<))i6n2Uh8yZh7x<^3f;R{dIb4|~5>t+9)!v~oOL#VyvQLmb-1fTD z8?m8@YN?{pwK&2cn&{Y?r(34BHxibqpSDgjt<9=-A*~Hwf0sAtdgJTIZ~yh{Bxmg~L3tuL~i z*^bnZP_SfF}BF|hP9BD+tsHus!| zi)C$7t{2;v``*#6)jBkbcz5oD$`*tt(N-JFPj$jjwt?o5`4y|1TvS9F8YpDqypo%^ z+B*f(aax;so23aqeoar-_(upnCLAGak*wVSi1uvQtIhL8+ zqq7z5M47K=R3RK!F>Ds|jg3DPsX2lS_ma>@2{8Y(M)TSd*{5%R4YBzo0!K5vt0M%lj{Fg&-0x5giw9Lh;l)?IX!F@k44R z4Lvf7gY!Nl<6`z&o@@#lzD*Kujk#R3vPq=22gWT2^NJ>jxLV^ZU(By}`W*R~Xs@GB z%;Vd#Tj$d3TXTjgBJ4kUMlGom#Izg`<3jE`loxkG%TmC#%eh?*q!US8f5!562klxL zY1(LmEx0q8JPPgg(Q?s7j-H_AhpDP|BN!4$>Lu@FXF4L|Zl$BvFvWM8mv;> z`;==WU0XgO3`_S%!TKnJZ1We-Al^EQm)Rxq*2|x`-VfkgD}(s*Cyy(wtQ&GGtEl5> zNAd}De~GbZjTFhcsk4No8+yE*PZ0ZslC3lr(r1^XW6l|;mtxaxX%#eTc0KsO06H~@ zRuku8k7KhwRBpiqax0-nOW&@wc;CT2eu>T2OzGb^rgZfi7gRj6X6zmHXEbrVdbz8$ zEZ=0PDW49_OG!h2mzQ#Fn|#*VmPm%BISE?#1k%)CttH9CB5~iY+}KXhWU7>(nLq!x zU#}fUBT|s#_`PXerv!6a1er)9#V_749~S(HiaB%e2=*vWPBW(+Vby#c{%9!OgU3rm zjTPi(DV1xwcF8`RJDmRR@P>-?_#iMBP&`v9uBOW^2fyZ;zvH~r7d#*W=j!XBLPta- zr)lX_4qY=RPq0+EC_Y;!V4_2Z@-w?lAvjS(HcN7Gt{kbX zf2-+#Y3+Y~RVeYHlOpDB_M8Huvt3?JAoOyRtK1TKb?wLle-eTE>hm98{fQthy_Cjn z(U%NSQ}xhC$Wc$i1C{7lQ1w~vSNvSP{N3zzY|U8Vt!V8^WHzMmG6jEcbf|qQL3uqC z(6h?nm;jC@y@Q(H7MKD=ArW0q{> z&Mk-SiU)JhNXv?-TvXmoj1`_eqy@O`e;v*W-<55&JgYsKeHOHGOd44?u z)Q>W+fBJK1qAOPff~93mbsWnj{0QR@Z8h=>xhU3ZCKw;BuCZCJwNe+1kCnQTb04X8 zb3=XDNJKfX$;HEs9i=OYq50-s-HL89)ijwcV`5OR(`tTqA+uxd=nPuYAHtd4(~7Qe zx112p;z_L%!amh#@aIr#SBW1`S6&Fb`5ApMom$c+aNf18c;M1iDYK2+^#=?~@qC)^ zrK?+=o$D8H#&$AFBJ{g3TQg(qWJ`@CFRQv;sfPKvJinB~uI?EPjDV>LJw zwYSR8Skb;pF>Y{kqN7#tM_w)+=v=deKXDU(P#^Ez+eyW*E7Q7~sxy}4w5@^p&JWCH z{^ZD>&qlpq8+v_N?xmW27y4Fw#Q zJm%b#&MrQ0jRr(boToUy@pDe4knD%7FO4LvKF9gn1L8GZc0gpg%eKU=`OP&j1PPF+ z(AIhGsMY6uG&w%XTi5)MUOxz40DoPe;7>--if=IsZ6~^|lR_E;m@B-$NzQlB>eFcK zZ-d4XpqdS0^^Lo?9We$ufNfzXK%L4ccA+kRWutm%X7taZ527}CXiY5QtJ&{j%}W`+ zX~D5``>tnHy=bNOX?1$N8EwmP&qdLFwfh_UrqDun-qhk0x;F#`qmiQ(*o1bhW#R+T zZDD>6;^XI~L%Jaw=~iJCQ=vrA*4nycqh~<;W}-{H=5cB>XX5{{{QW0Vu@j$k&r^5( z{43g)c+#(+OVq*`HlsPzJT>x4j+-3_R#HJ4UAx&23iMuau5P{?dj?P1faE1nu`46_ zm{5alX_8{h>paITHbVyC(WIvFQPSu$PgLBScQo7R!*emK#pe%s)Y^-~qBeBgB&4|) zhXjpO$q}k)p9pq~7Gl2C+?p>|IhgCGd~AJqfNi-gT>1-5#F^4}+>hjXs_5l=ZmTM$ z)@reC8Xk`I+}j}W=8S#EUZ=mMq=lNlAw%OH3QL4l=hbXJQhR;k#39#2;ScH&S^n2X ziWsRPYhzSMMIZA_2hE8A`d}H)3E*7T7oK7>%(M8At9;(ojU=aU3XLS!7r&bLVqY_v z!=Sz`1gJn{rnaEv>p5Gr*;`Hwx5xMY(&2 zW&Dncn1_edi-t2!<#nr>3{+#Spp7uUb6u3(VooM8Q6j6^ufM)rE`8et7eqJNhD1p?~=wd``li-yk&x-<5?@2r>ahs>joyTi>>DvUxlBWYuRh4<|N4Mi_lT99kKpvwdLL$ERidfBr z7rzZ26_ncYq>B<pq?Q%ym3?3S9Wn$7F$k@*_Ftr66Z8^(71h16JwUG09055TYq zJ7iZJ5tEp=h@)et*B(bK)0@JU;if|^Mv|+Z;v;-v=~@Ey3=ATJa9A%U!dun4d*q3R zR-UbBNzV9Lk*w8s)*8CLt{G!n%{?c)=;KdJIxY7kM&!mdGo{givVnU; z&k{6EZGUn^%~oz(tZ-8~FM~v~3f8witP(Q|x9tr3ZMfrw&%_h%#^F+R^m=j2wSb$O zrH}d1=QtjNmcVMO^Az`T`1qZXS)`x8N~B~|Y*OxPab{PYXI?Kg_M`O`Gz-JdQ11=N zhI_&$Mgn$b$1#}>F2nzHk5)x@r<*<*sh-v)DjH(8UT8#U#Kj?O(G+_&d9T`JvKV$% zY^nT)<0-y>Q#hcHjHBhSGP0gvc{m3T%l3CIW2!va+~=31;m}$fFg4I2nIF+pu+p{B zvZ3H%!OGr0r1!#A`MU$gMc{ zt>H^lYBH>mL;TUFZK=QXX0yktO*+SJn@fxTnBu)iC;NbzpJC4U4f~@B6&q0qNHgpz zhUhs}r~S$4y4ahr>s`JllO&c9$1IW#g9$gWL6<`DrkSV zYz|v+&S1xopJ2R83%f@1eUTJJ#Lyw-V84E*al2Fb?(!G9eCyl;W8`QN9gkPz2ZI8?#rjZJ=;^9IFDnXP0$RNuZ<)%$M~~i zU?h`1v{@s?hB*<Nishwk!6cS2j$Jp;mju&>Cm<>In z9gS~dMlebk2Xk0gxW3H1UqF=)6dapaX`G&&iV7+0vHt5B8lHK>bMXXoV12mBfy$o6 zFaMi9n~bb!VfapIJUytYV5Q!9t_G?7xV7xzAE~;}4)v$ACB6XQIt$hsp`LsCcW zJJnQd&vu4UN2-s{P|g4roFi5yr5)HUd4~3QkU^M9?LsB=m@}C7QOyr zluPFyR93vFc$WklNb0rOCsR^O%Q)S{bf;UTa*sCuRC<|fevymni#5rt5IpaPY>e3V zdhMT*F^eKZztH*&_SE(t6QH8(YCnKy&bjD5XPBq^9QPEqvKsY&ARyh z4+YYC8k4be*n?e|!)5+7w!idSKq>UWIBuxzirAXwD|`Mac4OB%_7vN)8BXaDfyJVKCBhkCocUrf4c%?Y2|XY zQ86L@PMGW&ZSxgGuHsbW2BKWNDK=N7u=ICx@$)DOWqG#=gZ@5((7?n5*%^;Y#(yJF>DF(i#WxT`GKum7MV4!nSIJ=IegB|CfmAMi(#& zMIUqs^r;~MY<=hY?W7gM@6n5AFap@?yf$|F0W{Uxo& z#rt>AszOgL31G0D@?;bFJV)&b z3*o0U*`T3MI10_p=U1{@w?4{zF{|de(I_AxS8sA>*=(iO))wZ4;x1Ite2d-SI+0rOrB?wQdN0eP_F%FffJ+`IE^iuq$=Ao@s zxc35>nob9Zl?kH^BKA`V@Zz0tp^tZ2x3VVi1s?mWI-Q}eW^2hY$`f-3TTrJ*Z5 zKfUF5;?DM)NBLh+UD<1HNBH&K)%lDLE6c)rua}sn?z&TCtM2-HcLc4i4vuZ$kva~_ zb?s1hZRizKCr;iOu&BFVLl0WP<~Irt2*$GxNr!dK^i{T0rWu89acdMLw~nT`SR*X6 zBD3;{acJ+buH?HFu@Ax=*(jRrOd5bwT;3&5`@7t>oK6JjS8V=%`ri-*?kZY~<*^S7 zML2@=QQy`0{~26$Mgi5mLRKiHrf&seX8#Mc`M+P4BSrZi;$8oD=>DG%oy^9=bBU+R T+VWa*4($hr?=!x0|M`CbBoE5? literal 0 HcmV?d00001 diff --git a/experiments/multitask/multitask_paper_results.ipynb b/experiments/multitask/multitask_paper_results.ipynb index 1bb50468..f4be8149 100644 --- a/experiments/multitask/multitask_paper_results.ipynb +++ b/experiments/multitask/multitask_paper_results.ipynb @@ -1,1038 +1,1456 @@ { - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Multi-Task BO NIPS Paper\n", - "\n", - "This is a paper for the [ML4Molecules workshop](https://ml4molecules.github.io/) at NIPS 2020." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from summit.strategies import STBO, MTBO, Transform, LHS, Chimera\n", - "from summit.benchmarks import (\n", - " MIT_case1,\n", - " MIT_case2,MIT_case3,\n", - " MIT_case4,\n", - " MIT_case5,\n", - " BaumgartnerCrossCouplingEmulator,\n", - " get_pretrained_baumgartner_cc_emulator,\n", - " ExperimentalEmulator\n", - ")\n", - "from summit.utils.dataset import DataSet\n", - "from summit.domain import *\n", - "import summit\n", - "import pathlib\n", - "import pandas as pd\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "from typing import List\n", - "from IPython.display import clear_output\n", - "from copy import deepcopy\n", - "import pathlib" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def run_stbo(exp, max_iterations=10, categorical_method=\"one-hot\"):\n", - " exp.reset()\n", - " strategy = STBO(exp.domain, \n", - " categorical_method=categorical_method)\n", - " r = summit.Runner(strategy=strategy, \n", - " experiment=exp, \n", - " max_iterations=max_iterations)\n", - " r.run()\n", - " return r\n", - "\n", - "def run_mtbo(exp, pt_data, max_iterations=10):\n", - " strategy = MTBO(exp.domain, \n", - " pretraining_data=pt_data,\n", - " categorical_method=\"one-hot\", \n", - " task=1)\n", - " r = summit.Runner(strategy=strategy,\n", - " experiment=exp, \n", - " max_iterations=max_iterations)\n", - " r.run()\n", - " return r\n", - "\n", - "def make_average_plot(results: List[summit.Runner], ax, label=None, color=None):\n", - " objective = results[0].experiment.domain.output_variables[0].name\n", - " yields = [r.experiment.data[objective] for r in results]\n", - " yields = np.array(yields)\n", - " mean_yield = np.mean(yields, axis=0)\n", - " std_yield = np.std(yields, axis=0)\n", - " x = np.arange(0, len(mean_yield), 1).astype(int)\n", - " ax.plot(x, mean_yield, label=label, linewidth=2)\n", - " ax.fill_between(x, mean_yield-std_yield, mean_yield+std_yield, alpha=0.1)\n", - "\n", - "def make_comparison_plot(*args):\n", - " fig, ax = plt.subplots(1)\n", - " for arg in args:\n", - " make_average_plot(arg['results'], ax, label=arg[\"label\"], color=arg.get(\"color\"))\n", - " fontdict = fontdict={\"size\":12}\n", - " ax.legend(loc = \"lower right\", prop=fontdict)\n", - " ax.set_xlim(0,20)\n", - " ax.set_xticks(np.arange(0, 20, 2).astype(int))\n", - " ax.set_ylabel('Yield', fontdict=fontdict)\n", - " ax.set_xlabel('Reactions', fontdict=fontdict)\n", - " ax.tick_params(direction='in')\n", - " return fig, ax" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "N_REPEATS = 10\n", - "MAX_ITERATIONS = 20" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Kinetic Models" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![](figures/baumgartner_mechanisms.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will use MIT case 1 as the auxiliary task for pretraining." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "exp_pt = MIT_case1(noise_level=1)\n", - "exp_pt.domain" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We first generate different amounts of data using latin hypercube sampling." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we can run single-task and multi-task Bayesian optimization." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def generate_mit_case_1_data(n_points):\n", - " exp_pt = MIT_case1(noise_level=1)\n", - " rs = np.random.RandomState(100)\n", - " lhs = LHS(exp_pt.domain, random_state=rs)\n", - " conditions = lhs.suggest_experiments(n_points)\n", - " exp_pt.run_experiments(conditions)\n", - " pt_data = exp_pt.data\n", - " pt_data['task', 'METADATA'] = 0\n", - " return pt_data\n", - "\n", - "n_aux = [5, 10, 50]\n", - "aux_datasets = [generate_mit_case_1_data(n) for n in n_aux]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Same Mechanism" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#Single-Task Bayesian Optimization\n", - "for i in range(N_REPEATS):\n", - " print(f\"Repeat {i}\")\n", - " exp = MIT_case2(noise_level=1)\n", - " result = run_stbo(exp, max_iterations=MAX_ITERATIONS)\n", - " result.save(f\"data/kinetics_similar/stbo_case1-2_noise_repeat_{i}.json\")\n", - " clear_output(wait=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#Multi-Task Bayesian Optimization\n", - "for n, dataset in zip(n_aux, aux_datasets):\n", - " for i in range(N_REPEATS):\n", - " print(f\"Repeat {i}\")\n", - " exp = MIT_case2(noise_level=1)\n", - " result = run_mtbo(exp, dataset, max_iterations=MAX_ITERATIONS)\n", - " result.save(f\"data/kinetics_similar/mtbo_case1-2_noise_{n}-pre-train_repeat_{i}.json\")\n", - " clear_output(wait=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we can make a plot for the paper." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "stbo_results = [summit.Runner.load(f\"data/kinetics_similar/stbo_case1-2_noise_repeat_{i}.json\") for i in range(10)]\n", - "mtbo_results_lists = [[summit.Runner.load(f\"data/kinetics_similar/mtbo_case1-2_noise_{n}-pre-train_repeat_{i}.json\") \n", - " for i in range(10)]\n", - " for n in n_aux]\n", - "fig, ax = make_comparison_plot(\n", - " dict(results=stbo_results, label=\"STBO\"),\n", - "# dict(results=mtbo_results_lists[0],label=\"MTBO, n=5\"),\n", - " dict(results=mtbo_results_lists[1],label=\"MTBO, n=10\"),\n", - " dict(results=mtbo_results_lists[2],label=\"MTBO, n=50\")\n", - ")\n", - "fig.savefig(\"figures/stbo_mtbo_kinetics_case1-2_noise_comparison.png\", bbox_inches='tight', dpi=300)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Different Mechanisms" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This adds an extra wrinkle because there is a competing reaction which consumes B (see Case 3 from figure above)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#Single-Task Bayesian Optimization\n", - "for i in range(N_REPEATS):\n", - " print(f\"Repeat {i}\")\n", - " exp = MIT_case3(noise_level=1)\n", - " result = run_stbo(exp, max_iterations=MAX_ITERATIONS)\n", - " result.save(f\"data/kinetics_different/stbo_case1-3_noise_repeat_{i}.json\")\n", - " clear_output(wait=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#Multi-Task Bayesian Optimization\n", - "for n, dataset in zip(n_aux, aux_datasets):\n", - " for i in range(N_REPEATS):\n", - " print(f\"Repeat {i}\")\n", - " exp = MIT_case3(noise_level=1)\n", - " result = run_mtbo(exp, dataset, max_iterations=MAX_ITERATIONS)\n", - " result.save(f\"data/kinetics_different/mtbo_case1-3_noise_{n}-pre-train_repeat_{i}.json\")\n", - " clear_output(wait=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "stbo_results = [summit.Runner.load(f\"data/kinetics_different/stbo_case1-3_noise_repeat_{i}.json\") \n", - " for i in range(10)]\n", - "mtbo_results_lists = [[summit.Runner.load(f\"data/kinetics_similar/mtbo_case1-2_noise_{n}-pre-train_repeat_{i}.json\") \n", - " for i in range(10)]\n", - " for n in [10,50]]\n", - "fig, ax = make_comparison_plot(\n", - " dict(results=stbo_results, label=\"STBO\"),\n", - " dict(results=mtbo_results_lists[0],label=\"MTBO, n=10\"),\n", - " dict(results=mtbo_results_lists[1],label=\"MTBO, n=50\")\n", - ")\n", - "fig.savefig(\"figures/stbo_mtbo_kinetics_case1-3_noise_comparison.png\", bbox_inches='tight', dpi=300)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## C-N Cross Couplings" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First we need to get the data from the Baumgartner paper and do some manipulation to get it in the form we want" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/ipykernel_launcher.py:1: FutureWarning: Your version of xlrd is 1.2.0. In xlrd >= 2.0, only the xls format is supported. As a result, the openpyxl engine will be used if it is installed and the engine argument is not specified. Install openpyxl instead.\n", - " \"\"\"Entry point for launching an IPython kernel.\n" - ] - } - ], - "source": [ - "b_df = pd.read_excel(\"data/baumgartner_data.xlsx\", sheet_name=\"Reaction data\")\n", - "# Just the columns we want\n", - "b_df = b_df[[\n", - " \"Optimization\", \n", - " \"Base\",\n", - " \"Base equivalents\",\n", - " \"Temperature (degC)\",\n", - " \"Residence Time Actual (s)\",\n", - " \"Reaction Yield\"\n", - "]]\n", - "# Rename columns\n", - "columns = {\"Optimization\": \"catalyst\", \n", - " \"Base\": \"base\",\n", - " \"Base equivalents\": \"base_equivalents\",\n", - " \"Temperature (degC)\": \"temperature\",\n", - " \"Residence Time Actual (s)\": \"t_res\",\n", - " \"Reaction Yield\": \"yield\"\n", - "}\n", - "b_df = b_df.rename(columns=columns)\n", - "\n", - "# Drop preliminary reactions\n", - "b_df = b_df.iloc[:363,:] \n", - "#Split catalyst column into nucleophile and catlyst\n", - "new = b_df[\"catalyst\"].str.split(\" - \", n=1, expand=True)\n", - "# Create new columns\n", - "b_df[\"nucleophile\"] = new[0]\n", - "b_df[\"catalyst\"] = new[1]\n", - "# Create a dtaset for each nucleophile\n", - "nucleophiles = pd.unique(b_df[\"nucleophile\"])\n", - "dfs = {nucleophile: b_df[b_df[\"nucleophile\"]==nucleophile]\n", - " for nucleophile in nucleophiles}\n", - "datasets = {nucleophile: DataSet.from_df(dfs[nucleophile], metadata_columns=\"nucleophile\")\n", - " for nucleophile in nucleophiles}" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "collapsed": false, - "inputHidden": false, - "jupyter": { - "outputs_hidden": false + "cell_type": "code", + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], + "execution_count": 2, + "metadata": {} }, - "outputHidden": false - }, - "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAF0CAYAAADy/jdLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA+jElEQVR4nO3daZgU5fX38e9hWBUERGJUJEBcQJhhkBFBUNEExCWKC1GDuOLyxD3RBP+JARMTNRpNwETjCkbFBeIeI6CiAUVkZNgcIopjghJkcUNRGTjPi6ppm6Fn767qnvl9rmsuuqq6q053NXWfvutezN0RERERkcxrFncAIiIiIk2FEi8RERGRiCjxEhEREYmIEi8RERGRiCjxEhEREYmIEi8RERGRiDSPO4Da2GWXXbxbt25xhyEiESouLl7n7p3jjqOhdP0SaXqqu37lROLVrVs3FixYEHcYIhIhM3sv7hjSQdcvkaanuuuXbjWKiIiIRESJl4iIiEhElHiJiIiIRCQn2nilsnnzZlatWsWXX34ZdyiSBq1bt6ZLly60aNEi7lBERDJGZVfjUp+yK2cTr1WrVtGuXTu6deuGmcUdjjSAu7N+/XpWrVpF9+7d4w5HRCRjVHY1HvUtu3L2VuOXX35Jp06d9MVtBMyMTp066RegiDR6Krsaj/qWXTmbeAH64jYiOpci0lToetd41Odc5nTileuGDh2a9vF9zjzzTKZNm7bd+g8++ICTTjoJgNmzZ3PMMcek9bgiItL4qdxqOCVeTcTuu++e8ostIiKSjRpruaXEqx7Kysro1asX5557Lr1792b48OFs2rRpm18C69ato2KakC1btnDFFVfQp08fCgoKmDRp0nb7nDFjBoMGDWL//fdn1KhRbNy4EYDnn3+efv36kZ+fz9lnn81XX30FBKNh/+xnPyM/P58BAwbw9ttvJ/b18ssvc9BBB9GjR4/El7asrIw+ffpsd9zPP/+cs88+mwEDBtCvXz+eeOKJtH5WIiISP5Vb2UOJVz2tWLGCCy+8kGXLltGhQwemT59e5XPvuOMOysrKKCkpYfHixYwePXqb7evWrePaa69l1qxZvPHGGxQVFXHzzTfz5ZdfcuaZZ/Lwww+zZMkSysvLue222xKva9++PUuWLOGiiy7isssuS6xfvXo1c+bM4emnn2bcuHHVvo/f/va3HH744cyfP58XX3yRK6+8ks8//7x+H4qIiGQtlVvZIWeHk4hb9+7dKSwsBKB///6UlZVV+dxZs2ZxwQUX0Lx58HHvvPPO22yfN28eb775JoMHDwbg66+/ZtCgQfz73/+me/fu7LPPPgCcccYZ/PnPf058WU899dTEv5dffnlifyNHjqRZs2bst99+rFmzptr3MWPGDJ588kluuukmIOhx85///IdevXrV7oOQrNVt3DPVbi+7/uiIIpHaSnXOdJ4kXVRuZQclXvXUqlWrxOO8vDw2bdpE8+bN2bp1K0Cdupe6O8OGDWPq1KnbrF+0aFG1r0vuTZH8ODk2d6/x2NOnT2ffffetdbwiIpJ7VG5lB91qTKNu3bpRXFwMsE2DwGHDhvHXv/6V8vJyADZs2LDN6wYOHMjcuXMT97s///xz3nrrLfbdd1/KysoS6//2t79x6KGHJl738MMPJ/4dNGhQvWI+4ogjmDRpUuKLvnDhwnrtR0REco/KrehlLPEys9ZmNt/MFpnZMjO7Jlw/2czeNbOS8K8wUzFE7YorruC2226jX79+rFu3LrF+7NixdO3alYKCAvr27cuDDz64zes6d+7M5MmTOfXUUykoKGDQoEEsX76c1q1bc++99zJq1Cjy8/Np1qwZF1xwQeJ1H330EQUFBfzpT3/illtuqVfMV199NZs3b6agoIDevXtz9dVX1+/Ni4hIzlG5FT2rqUqv3jsO6hB3dPeNZtYCmANcClwAPO3ute4jWlRU5JXHDSktLc2Z+7mZ0K1bNxYsWMAuu+wSdyhp09TPabrlehsvMyt296K442ioVNevqqiNV+PXlK9zjbHcgtTntLrrV8baeHmQ0W0MF1uEf5nJ8kRERERyQEbbeJlZnpmVAB8CM939tXDTb81ssZndYmatqt6DVKWsrKzR/WoQEZHGS+VWIKO9Gt19C1BoZh2Ax8ysD3AV8D+gJXAH8HPg15Vfa2bnAecBdO3aNZNhNmqLV31c7faCLh0iiUMan9Ke1d8u6bW8NKJIRERyRyS9Gt39Y+BFYIS7r/bAV8C9wIAqXnOHuxe5e1Hnzp2jCFNEREQkozLZq7FzWNOFmbUBhgHLzWy3cJ0BI4GlmYpBREREJJtk8lbjbsAUM8sjSPAecfenzewFM+sMGFBC0MtRRCRrmFlr4GWgFcF1cpq7jzezycChwCfhU89095JYghSRnJSxGi93X+zu/dy9wN37uPuvw/WHu3t+uO40d99Y076y2eOPP46ZsXz58hqfO3bsWN58800g6FZbMWbKQQcdlNEYRaTOvgIOd/e+QCEwwswGhtuudPfC8K8krgBFGkJlV3wazZRBNY1ZVFe1HTtn6tSpDBkyhKlTp3LNNddU+9y77ror5fpXXnmlzvGJSOZoOByJisqupkdTBjXAxo0bmTNnDnfffTcPPfQQALNnz2bo0KGcdNJJ9OzZk9GjRyemNRg6dCipBlJs27Ztja8tLi7m0EMPpX///hxxxBGsXr06oncp0jRpOBxprFR2xavR1HjF4YknnmDEiBHss88+dOrUKTHf1cKFC1m2bBm77747gwcPZu7cuQwZMqRW+0z12gMPPJCLL76YJ554gs6dO/Pwww/zi1/8gnvuuSeTb09qoOEUGjcNhyONlcqueCnxaoCpU6dy6aWXAnDKKacwdepUjjnmGAYMGECXLl0AKCwspKysrNZf3lSv7dChA0uXLmXYsGEAbNmyhd122y0D70hEKnP3j82sYjicm8LVX5nZvcAVVbzmDoLEjKKiIt2ilKyisiteSrzqacOGDbzwwgssWbIEM2PLli2YGUcffTStWn1z9yEvLy8xu3ttpHqtu9O7d29effXVtL4HEUkt7Hm9OUy6KobDucHMdnP31RoOR3KVyq74qY1XPU2bNo0xY8bw3nvvUVZWxn//+1+6d+/Ov/71r7Qfa99992Xt2rWJL+/mzZtZtmxZ2o8jIgm7AS+a2WLgdYI2Xk8DD5jZEmAJsAtwbYwxitSZyq74KfGqp6lTp3L88cdvs+7EE09k6tSpaT9Wy5YtmTZtGj//+c/p27cvhYWF6k0ikkFNZTgcaXpUdsXPKnoeZLOioiKv3KOitLSUXr2qb9wsuTVXY66d02xvXF9TN/XadjuvSqbfv5kVu3tRg3aSBVJdv6qS6pw19DxJdsm165zULNU5re76pRovERERkYiocb2IiDRKVdX6qhax8avqbk823OVRjZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiVcD5OXlUVhYSN++fdl///2zbnySsWPH8s5by7db/8QjD/K7X14ZQ0QiIhK3XCi73nzzze3WT548mYsuuiiGiNKr8fRqnNA+zfv7pMantGnThpKSEgCee+45rrrqKl566aX0xtEAd911V43jeImISIxUdm3nrrvuijuEjGo8iVfMPv30Uzp27JhYvvHGG3nkkUf46quvOP7447nmmmsoKyvjyCOPZMiQIbzyyivssccePPHEE3z00UccddRRidcuWbKElStXsnjxYq699lq+/vprOnXqxAMPPMCuu+7KhAkTePfdd1m5ciX/+c9/uOWWW5g3bx7PPvsse+yxB0899RQtWrRg6NChnH/leHr37cfjDz/A3X++hXY7tWff/frQomVLANauXcsFF1zAf/7zHwD++Mc/Mnjw4Gg/vAzK9CCiOa2mC34tLuAiktuytey66aabKCoq4t577+W6666jQ4cO9O3bNzEnZC6XXbrV2ACbNm2isLCQnj17MnbsWK6++moAZsyYwYoVK5g/fz4lJSUUFxfz8ssvA7BixQouvPBCli1bRocOHZg+fTq77747JSUllJSUcO6553LiiSfyne98hyFDhjBv3jwWLlzIKaecwu9///vEsd955x1eeOEFnnzySU477TQOO+wwlixZQps2bXjmmW2TjbVr/sdtN1/HlMf+yZS/P8vKFd/cfrz00ku5/PLLef3115k+fTpjx46N4JMTEZG45ErZtXr1asaPH8/cuXOZM2fONrcfc7nsUo1XAyRX17766qucfvrpLF26lBkzZjBjxgz69esHwMaNG1mxYgVdu3ale/fuFBYWAtC/f3/KysoS+5s7dy533nknc+bMAWDVqlWcfPLJrF69mq+//pru3bsnnnvkkUfSokUL8vPz2bJlCyNGjAAgPz9/m30CLFlYTNGgIezcaRcAhv/gBN5b+TYAs2bN2ubL/Omnn7Jx40batm2bts9JRESyR66UXa+99hpDhw6lc+fOAJx88sm89dZbQG6XXUq80mTQoEGsW7eOtWvX4u5cddVVnH/++ds8p6ysLFFNCkEDx02bNgFBZn/OOefw5JNPJr44F198MT/5yU849thjmT17NhMmTEi8tmI/zZo1o0WLFphZYrm8vLzWcW/dupV58+bRunXrer1vERHJXSq7oqdbjWmyfPlytmzZQqdOnTjiiCO455572LhxIwDvv/8+H374YZWv3bx5M6NGjeKGG25gn332Saz/5JNP2GOPPQCYMmVKvWPL79ef4nlz+fijDWzevJmZTz+e2DZ8+HAmTZqUWK74FSQiIo1fNpddBx54IC+99BLr169n8+bNPProo4ltuVx2qcarASrukwO4O1OmTCEvL4/hw4dTWlrKoEGDAGjbti33338/eXl5KffzyiuvsGDBAsaPH8/48eMB+Mc//sGECRMYNWoUHTt25PDDD+fdd9+tV5ydd/02F1w+jjHHDafdTu3p2Ts/sW3ixIlceOGFFBQUUF5eziGHHMLtt99er+OIiEj2y5Wya7fddmPChAkMGjSIDh06JGKG3C67zN3jjqFGRUVFvmDBgm3WlZaW0qtXr5giyh01DSeRDROGVsjEOc1kr8bSntXH2mt5ab33nQ41vvfWP6p+BzX0asz0+zezYncvatBOskCq61dVUp2zJt3ztoGycZJslV3RiHKS7FTntLrrl241ioiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRDKWeJlZazObb2aLzGyZmV0Tru9uZq+Z2dtm9rCZtcxUDCIiIiLZJJM1Xl8Bh7t7X6AQGGFmA4EbgFvcfS/gI+CcDMYgIiIikjUylnh5YGO42CL8c+BwYFq4fgowMlMxZJqZcdpppyWWy8vL6dy5M8ccc0xa9l9WVkafPn3q9JozzzyTadOCj3fs2LG889byGl4hIiJNSS6UXcnTATU2GR1A1czygGJgL+DPwDvAx+5eMS/AKmCPdBwrf0p+zU+qgyVnLKnxOTvuuCNLly5l06ZNtGnThpkzZyZG662t8vJymjfPzGm46667ahzHS0RE4qOya3t33XVXRvabLTLauN7dt7h7IdAFGAD0rO1rzew8M1tgZgvWrl2bqRAb7KijjkrMqD516lROPfXUxLYNGzYwcuRICgoKGDhwIIsXLwZgwoQJjBkzhsGDBzNmzBgmT57Mcccdx9ChQ9l777255pprEvvYsmUL5557Lr1792b48OGJ+bFKSkoYOHAgBQUFHH/88Xz00UfbxTZ06FCWLVoIwMB9uzDpht8wavgQTjt2GOvXBtNArF27lhNPPJEDDjiAAw44gLlz52bmg8pB+VPyq/0TEclV2V52VQw63LZtW37xi1/Qt29fBg4cyJo1a4DcLrsi6dXo7h8DLwKDgA5mVpEmdwHer+I1d7h7kbsXVcxMno1OOeUUHnroIb788ksWL17MgQcemNg2fvx4+vXrx+LFi/nd737H6aefntj25ptvMmvWLKZOnQrA/PnzmT59OosXL+bRRx9NfOlWrFjBhRdeyLJly+jQoQPTp08H4PTTT+eGG25g8eLF5Ofnb/OFT2XTF5+Tv38Rj86YQ/8DBzH9wfsAuPTSS7n88st5/fXXmT59OmPHjk3r5yMiItknV8quzz//nIEDB7Jo0SIOOeQQ7rzzTiC3y66M3Wo0s87AZnf/2MzaAMMIGta/CJwEPAScATyRqRiiUFBQQFlZGVOnTuWoo47aZtucOXMSX7bDDz+c9evX8+mnnwJw7LHH0qZNm8Rzhw0bRqdOnQA44YQTmDNnDiNHjqR79+6J+an69+9PWVkZn3zyCR9//DGHHnooAGeccQajRo2qNs4WLVty6PdHANArv5B5/5oNwKxZs7a5l/7pp5+ycePGxCzzIk2VmbUGXgZaEVwrp7n7eDPrTnD96kTQlGKMu38dX6QidZcrZVfLli0Tbc/69+/PzJkzgdwuuzLZxms3YErYzqsZ8Ii7P21mbwIPmdm1wELg7gzGEIljjz2WK664gtmzZ7N+/fpavWbHHXfcZtnMUi63atUqsS4vLy9RXVtXzZu3SOwzLy+PLeVBM7utW7cyb948WrduXa/9ijRiFT2zN5pZC2COmT0L/ISgZ/ZDZnY7Qc/s2+IMVKQ+cqHsatFi27KrvBGUXZns1bjY3fu5e4G793H3X4frV7r7AHffy91HuftXmYohKmeffTbjx48nP3/bdj8HH3wwDzzwAACzZ89ml112Yaeddkq5j5kzZ7JhwwY2bdrE448/zuDBg6s8Xvv27enYsSP/+te/APjb3/6W+AVRV8OHD2fSpEmJ5ZKSknrtR6SxaQo9s6VpU9kVj4z2amwqunTpwiWXXLLd+gkTJnD22WdTUFDADjvswJQpU6rcx4ABAzjxxBNZtWoVp512GkVFRZSVlVX5/ClTpnDBBRfwxRdf0KNHD+699956xT5x4kQuvPBCCgoKKC8v55BDDuH222+v175EGpsoe2aLRE1lVzzM3eOOoUZFRUVe0WCvQmlpKb169YopovSaPHkyCxYs4NZbb037vmsaTqKgS4e0H7O+MnFOu417ptrtZdcfXeW2mnouPnJdebXbey0vrXZ7ptX43lv/qPodTPik2s2lPas/Vw19/2ZW7O5FDdpJmphZB+Ax4GpgcjgANGa2J/Csu/ep9PzzgPMAunbt2v+9996r1XFSnbPqvqO5KtV3JxP/X6r6PxDnZ6qyKxpVlX2ZKPNSndPqrl+aq1FEpAZ17ZmdK72yRSR6SryywJlnnpmVvxhEmjIz6xzWdJHUM7uUb3pmQyPomS1SXyq76kdtvEREUmsyPbNFJDpKvEREUnD3xUC/FOtXEszEISJSZ7rVKCIiIhIRJV4iIiIiEVHi1QB5eXkUFhbSp08fRo0axRdffEFZWRl9+vSp+cUN8PHHH/OXv/wlsTx79uzElAq1deSgAj7aULuRiquzYMGClOPAiIhIdsrlsqtbt26sW7euwbHEWXY1mjZeNY0pVFe1GVOmTZs2idFyR48eze23384JJ5yQ1jhSqfjy/vjHP874sWpSVFREUVFWDLUkIpJzVHbFI86ySzVeaXLwwQfz9ttvA7BlyxbOPfdcevfuzfDhwxNzVL3zzjuMGDGC/v37c/DBB7N8+XIg6JJ7ySWXcNBBB9GjRw+mTZuW2O+NN97IAQccQEFBAePHjwdg3LhxvPPOOxQWFnLllVcCsHHjRk466SR69uzJ6NGjcXdeeOEFLjtndGJfr778IpeNPW272EeOHEn//v3p3bs3d9xxR2J927ZtufLKK+nduzff//73mT9/PkOHDqVHjx48+eSTwLa/WCpGO654zsSJExP7uv/++xkwYACFhYWcf/75bNmypeEfuoiINEi2ll0jR45M7GvmzJkcf/zx28VeXdl187VXc/z3BnHeqSNZsrCYc0Ydw1GDC7Oi7FLilQbl5eU8++yzifmuVqxYwYUXXsiyZcvo0KFDYpb38847j0mTJlFcXMxNN920Tda/evVq5syZw9NPP824ceMAmDFjBitWrGD+/PmUlJRQXFzMyy+/zPXXX893v/tdSkpKuPHGGwFYuHAhf/zjH3nzzTdZuXIlc+fO5bDDDuPdd1awYX1QLfvEIw8w8uTRVHbPPfdQXFzMggULmDhxYmKy1M8//5zDDz+cZcuW0a5dO375y18yc+ZMHnvsMX71q1+l/CyWL1/Oc889x/z587nmmmvYvHkzpaWlPPzww8ydO5eSkhLy8vIS84CJiEg8srnsWr58OWvXrgXg3nvv5eyzz94u/urKrgGDD+Gx519lhx3bcuuNv+X2Bx/jljv/lhVlV6O51RiHTZs2UVhYCAS/Gs455xw++OADunfvnljfv39/ysrK2LhxI6+88gqjRo1KvP6rr76ZH3zkyJE0a9aM/fbbjzVr1gDBl3fGjBn06xf0aN+4cSMrVqyga9eu28UyYMAAunTpAkBhYSFlZWUMGTKEY074Ic/8/RGO++FoFr3xOtf+cfu5rCZOnMhjjz0GwH//+19WrFhBp06daNmyJSNGjAAgPz+fVq1a0aJFC/Lz86uci+voo4+mVatWtGrVim9961usWbOG559/nuLiYg444IDE5/atb32rth+ziIikUS6UXWPGjOH+++/nrLPO4tVXX+W+++7b7rXVlV2Dh34fgL177kfLli1p0aIFe/fsnRVllxKvBki+T56sVatWicd5eXls2rSJrVu30qFDhypnUE9+TcX8me7OVVddxfnnn7/Nc1N9cSofs7w8mEfwuB+O5pKzT6VVq1YMP/o4mjff9pTPnj2bWbNm8eqrr7LDDjswdOhQvvzySwBatGiBmQHQrFmzxDGaNWuW2H9t4nB3zjjjDK677rqUrxERkejkQtl11lln8YMf/IDWrVszatSoBpVdLVtmV9mlW40R2WmnnejevTuPPvooEHwxFy1aVO1rjjjiCO655x42btwIwPvvv8+HH35Iu3bt+Oyzz2p13G99ezc67/pt7pj4B4774fa3GT/55BM6duzIDjvswPLly5k3b14d31nNvve97zFt2jQ+/PBDADZs2EBtJw0WEZH4xFV27b777uy+++5ce+21nHXWWdttz+WyS4lXhB544AHuvvtu+vbtS+/evXniieqneBs+fDg/+tGPGDRoEPn5+Zx00kl89tlndOrUicGDB9OnT59EA8XqHDVyFN/efQ967L3vdttGjBhBeXk5vXr1Yty4cQwcOLDe768q++23H9deey3Dhw+noKCAYcOGsXr16rQfR0RE0i+usmv06NHsueee9Oq1fc/PXC67rKJqMJsVFRX5ggULtllXWlqa8mSksnjVx9VuL+jSoZ6RZb/Fqz7md7+8kp59CjjhlDHbbc+m916Xc1pb3cY9U+32stY/qnJbfvft2yMke+S61FXWFWrTrTuTGvLeAZjwSbWba+oG39D3b2bF7p7zY5Wkun5VJdU5K7v+6HSHFLtU351M/H+p6v9AnJ9pJq5zjdVFF11Ev379OOecc+r82qrK/UyUeanOaXXXL7XxauROOWoobdrswBVXXxt3KCIiIrXSv39/dtxxR/7whz/EHUraKfFq5B76x+y4QxAREamT4uLiuEPIGLXxEhEREYlITideudA+TWpH51JEmgpd7xqP+pzLnE28Wrduzfr16/UFbgTcnfXr19O6deu4QxERySiVXY1HfcuunG3j1aVLF1atWpWYUqA6az7aVO320s/apCusrJMr771169aJ0YtFRBqrupRdUn9VlX3pLvPqU3blbOLVokULunfvXqvnHllTt/oauhbnT8mvdvuSM5bUKo44NPS9i4hI+tSl7JL6q6rsy4YyL2dvNYqIiIjkGiVeIiIiIhFR4iUiIiISkYwlXma2p5m9aGZvmtkyM7s0XD/BzN43s5Lw76hMxSAiIiKSTTLZuL4c+Km7v2Fm7YBiM5sZbrvF3W/K4LFFREREsk7GEi93Xw2sDh9/ZmalwB6ZOp6IiIhkVlOZyD2TImnjZWbdgH7Aa+Gqi8xssZndY2Ydo4hBREREJG4ZH8fLzNoC04HL3P1TM7sN+A3g4b9/AM5O8brzgPMAunbtmtkgJ7Svfnv3DB9fREREmoSM1niZWQuCpOsBd/87gLuvcfct7r4VuBMYkOq17n6Huxe5e1Hnzp0zGaaIyDbUOUhEMiVjNV5mZsDdQKm735y0frew/RfA8cDSTMUgIlJP6hwkIhmRyVuNg4ExwBIzKwnX/R9wqpkVEtxqLAPOz2AMIiJ1ps5BIpIpmezVOAewFJv+kaljioikW6XOQYMJOgedDiwgqBX7KMbwRCTH5Owk2SIimZYTnYOSlPbstd26XstLIzu+iNRMUwaJiKSgzkEikglKvEREKqmuc1DS09Q5SETqTLcaRUS2p85BIpIRSrxERCpR5yARyRTdahQRERGJiBIvERERkYgo8RIRERGJiBIvERERkYiocX0apBq0MJkGMBQRERFQjZeIiIhIZJR4iYiIiEREiZeIiIhIRJR4iYiIiEREjetFRESy0YT2KdZ9En0cklaq8RIRERGJiBIvERERkYgo8RIRERGJiBIvERERkYgo8RIRERGJiBIvERERkYhoOAkREWlaNEyDxEg1XiIiIiIRqXPiZWYdzawgE8GIiGSSrl8iErdaJV5mNtvMdjKznYE3gDvN7ObMhiYi0nC6folINqltjVd7d/8UOAG4z90PBL6fubBERNJG1y8RyRq1Tbyam9luwA+BpzMYj4hIuun6JSJZo7aJ1zXAc8Db7v66mfUAVlT3AjPb08xeNLM3zWyZmV0art/ZzGaa2Yrw344NewsiItWq8/VLRCRTajucxGp3TzRIdfeVtWgjUQ781N3fMLN2QLGZzQTOBJ539+vNbBwwDvh5PWIXEamN+ly/soeGPhBpVGpb4zWplusS3H21u78RPv4MKAX2AI4DpoRPmwKMrGUMIiL1Uefrl4hIplRb42Vmg4CDgM5m9pOkTTsBebU9iJl1A/oBrwG7uvvqcNP/gF3rErCISG2k6/olIpJONdV4tQTaEiRo7ZL+PgVOqs0BzKwtMB24LOxZlODuDngVrzvPzBaY2YK1a9fW5lAiIsnqff1SG1URyZRqa7zc/SXgJTOb7O7v1XXnZtaCIOl6wN3/Hq5eY2a7ufvqsKfRh1Uc+w7gDoCioqKUyZmISFUaeP1SG1URyYjaNq5vZWZ3AN2SX+Puh1f1AjMz4G6g1N2TG7I+CZwBXB/++0QdYxYRqYs6X7/C5hCrw8efmVlyG9Wh4dOmALNR4iUidVDbxOtR4HbgLmBLLV8zGBgDLDGzknDd/xEkXI+Y2TnAewRj64iIZEp9rl8JaqMqIulU28Sr3N1vq8uO3X0OYFVs/l5d9iUi0gB1vn5VqNxGNajID7i7m1mVbVSB8wC6du1an0NLFijt2Svl+l7LSyOORBqT2g4n8ZSZ/djMdgsbl+4cznsmIpLt6nX9qq6Nari92jaq7l7k7kWdO3dO1/sQkUagtjVeZ4T/Xpm0zoEe6Q1HRCTt6nz9UhtVEcmUWiVe7t4904GIiGRCPa9faqMqIhlRq8TLzE5Ptd7d70tvOCIi6VWf65faqIpIptT2VuMBSY9bE1x43gCUeIlIttP1S0SyRm1vNV6cvGxmHYCHMhGQiEg66folItmktr0aK/scULsvEclFun6JSGxq28brKb6ZUzEP6AU8kqmgRETSRdcvEckmtW3jdVPS43LgPXdflYF4RETSTdcvEckatbrVGE42uxxoB3QEvs5kUCIi6aLrl4hkk1olXmb2Q2A+MIpg3JrXzOykTAYmIpIOun6JSDap7a3GXwAHuPuHAGbWGZgFTMtUYCIiaaLrl4hkjdomXs0qLlqh9dS/R6SISJQa3fUrf0p+yvXqMSBSgwntU6z7JNIQapt4/dPMngOmhssnA//ITEgiImml65eIZI1qEy8z2wvY1d2vNLMTgCHhpleBBzIdnIhIfen6JSLZqKYarz8CVwG4+9+BvwOYWX647QcZjE1EpCH+iK5fIpJlamrnsKu7L6m8MlzXLSMRiYikh65fIpJ1akq8OlSzrU0a4xARSbcO1WzT9UtEYlFT4rXAzM6tvNLMxgLFmQlJRCQtdP0SkaxTUxuvy4DHzGw031yoioCWwPEZjEtEpKEuQ9ev2KUa+kLDXqRfac9e263rtbw0hkikJtUmXu6+BjjIzA4D+oSrn3H3FzIemYhIA+j6JSLZqFbjeLn7i8CLGY5FRCTtdP0SkWyS06M3i4iIiOQSJV4iIiIiEVHiJSIiIhIRJV4iIiIiEVHiJSIiIhKRjCVeZnaPmX1oZkuT1k0ws/fNrCT8OypTxxcRERHJNpms8ZoMjEix/hZ3Lwz//pHB44uIiIhklYwlXu7+MrAhU/sXERERyTVxtPG6yMwWh7ciO8ZwfBGRGqm5hIhkQtSJ123Ad4FCYDXwh6qeaGbnmdkCM1uwdu3aiMITEUmYjJpLiEiaRZp4ufsad9/i7luBO4EB1Tz3Dncvcveizp07RxekiAhqLiEimRFp4mVmuyUtHg8sreq5IiJZqsbmEqqxF5GqZHI4ianAq8C+ZrbKzM4Bfm9mS8xsMXAYcHmmji8ikgG1ai6hGnsRqUrzTO3Y3U9NsfruTB1PRCTT3H1NxWMzuxN4OsZwRCQHaeR6EZFaUnMJEWmojNV4iYjksrC5xFBgFzNbBYwHhppZIeBAGXB+XPGJSG5S4iUikoKaS4hIJuhWo4iIiEhElHiJiIiIRESJl4iIiEhElHiJiIiIRESJl4iIiEhElHiJiIiIRESJl4iIiEhElHiJiIiIREQDqIqIiOSI/Cn5Kdc/EnEcUn+q8RIRERGJiBIvERERkYgo8RIRERGJiBIvERERkYgo8RIRERGJiBIvERERkYgo8RIRERGJiBIvERERkYgo8RIRERGJiBIvERERkYgo8RIRERGJiBIvERERkYgo8RIRERGJiBIvERERkYgo8RIRERGJSMYSLzO7x8w+NLOlSet2NrOZZrYi/Ldjpo4vIiIikm0yWeM1GRhRad044Hl33xt4PlwWERERaRIylni5+8vAhkqrjwOmhI+nACMzdXwRkYZQrb2IZELUbbx2dffV4eP/AbtGfHwRkdqajGrtRSTNYmtc7+4OeFXbzew8M1tgZgvWrl0bYWQiIqq1F5HMiDrxWmNmuwGE/35Y1RPd/Q53L3L3os6dO0cWoIhINWpVa68fjiJSlagTryeBM8LHZwBPRHx8EZG0qK7WXj8cRaQqmRxOYirwKrCvma0ys3OA64FhZrYC+H64LCKSK2pday8ikkrzTO3Y3U+tYtP3MnVMEZEMq6i1vx7V2otIPWjkehGRFFRrLyKZkLEaLxGRXKZaexHJBNV4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRDSAqoiINHn5U/K3W/dIDHFI46caLxEREZGIKPESERERiYgSLxEREZGIKPESERERiYgSLxEREZGIKPESERERiYgSLxEREZGIKPESERERiYgSLxEREZGIKPESERERiYgSLxEREZGIKPESERERiYgSLxEREZGIKPESERERiYgSLxEREZGIKPESERERiUjzOA5qZmXAZ8AWoNzdi+KIQ0RERCRKsSReocPcfV2MxxcRqRf9eBSR+ooz8RIRyWX68SgidRZXGy8HZphZsZmdl+oJZnaemS0wswVr166NODwRERGR9Isr8Rri7vsDRwIXmtkhlZ/g7ne4e5G7F3Xu3Dn6CEVEqlbtj0f9cBSRqsSSeLn7++G/HwKPAQPiiENEpJ6q/fGoH44iUpXIEy8z29HM2lU8BoYDS6OOQ0SkvvTjUUTqK44ar12BOWa2CJgPPOPu/4whDhGROtOPRxFpiMh7Nbr7SqBv1McVEUmTXYHHzAyCa+iD+vEoIrWl4SREROpAPx5FpCE0ZZCIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEREiZeIiIhIRJR4iYiIiEQklsTLzEaY2b/N7G0zGxdHDCIi9aVrmIjUV+SJl5nlAX8GjgT2A041s/2ijkNEpD50DRORhoijxmsA8La7r3T3r4GHgONiiENEpD50DRORejN3j/aAZicBI9x9bLg8BjjQ3S+q9LzzgPPCxX2Bf0ca6LZ2AdbFePw46b03XXG//++4e+cYj59Sba5hEVy/4j43dZErsSrO9MuVWDMRZ5XXr+ZpPlDauPsdwB1xxwFgZgvcvSjuOOKg99403zvo/TdEpq9fuXRuciVWxZl+uRJr1HHGcavxfWDPpOUu4ToRkVyga5iI1FscidfrwN5m1t3MWgKnAE/GEIeISH3oGiYi9Rb5rUZ3Lzezi4DngDzgHndfFnUcdZQVtzxjovfedDX1959SllzDcunc5EqsijP9ciXWSOOMvHG9iIiISFOlketFREREIqLES0RERCQiSrxEREREIpK143iJiIhI7jGz7wI/Ak5x995xx1PBzLoA3dx9Trj8E6BtuPlBd387ijhU45WCmV1qZjtZ4G4ze8PMhscdV1TMbEczaxY+3sfMjjWzFnHHFYWmfu4rmFkzM9sp7jgEwu/j3knLo8zs9PBv1zhjS8XMCs3sJDPrFXcsVTGznSv9dTQzizuuVMysk5ldbGZ/Dv8uMrNOccdVmZntbmaXm9nrwDKC/OKUmMOq7EagQ9Ly+cDngAPXRBWEEq/Uznb3T4HhQEdgDHB9vCFF6mWgtZntAcwgeP+TY40oOk323JvZg2EhvyOwFHjTzK6MOy7hJmBw0vJ1wAHAIURYWNSGmf0KeAQ4EXjGzM6NOaSqFAMLwn+LgTeAD81slpl1izOwZGHyuhToD7wFrCA490vMrGecsVUws/PM7EVgNtAJOAdY7e7XuPuSWIPb3r7u/nTS8hfu/gd3/w3QNaogdKsxtYpfPkcBf3P3Zdn6ayhDzN2/MLNzgL+4++/NrCTuoCLSlM/9fu7+qZmNBp4FxhEUSjfGG1aTdwDBL/MKn7n7xQBmNieekKp0MlAYXj86Af8E7ow5pu24e/dU683sBOB2YES0EVXpN8Cl7v5I8kozOxH4LUGCG7dbgVeBH7n7AgAzy9ZxqlpXWv5e0uNdogpCNV6pFZvZDILC9zkzawdsjTmmKJmZDQJGA8+E6/JijCdKTfnctwhvKY8EnnT3zQRV8BKv5r7tgItjkh53iDiWmnzl7l8AuPt6cqyMcfe/A9+KO44k+ZWTLgB3nw70iSGeVHYDpgJ/MLN/m9lvgGxtmvKZme1TseDuGwDC2sPPogpCNV6pnQMUAiuTfrmdFW9IkboMuAp4LKzx6QG8GG9IkWnK5/6vQBmwCHjZzL4DfBprRAKw1cy+7e7/A3D3pQBhU4Bs+1HQw8wqpk8y4LtJy7j7sfGEVTtm1pbsShY/r+e2yIQJ9u3A7WHj9ZOBNWZWSlCG/F+sAW5rPPC0mf2W4PYyBLdx/w+4NKogNHJ9FczsWII2FAAvuftTccYTh/AihLtvjDuWKOncf8PMmrt7edxxNGVmdhpBofBTYGG4en+Ctl8T3f1vccVWmZkdWt12d38pqliqE/Zmq6wjcCxwq7tnxe1RM1sF3JxqE3CZu++ZYltWCGuWTnH3X8cdSzIz6wP8DKjobbkM+H3FD5ooqMYrBTO7nqBdxQPhqkvMbFCWZe4ZY2b5wH3AzsGirQVOz4E5NRusKZ97M2tP8IswkXQCvwY+iS0owd3vN7N1wLV8U1gsBX7l7s/GF1lKZ7n7mXEHUQvtKi078D/gtCxrEH4n28da4a4oA6mKmf3M3X8fPh7l7o8CuPtbZla5TVXswgTr9DhjUI1XCma2mKCB6NZwOQ9Y6O4F8UYWDTN7BfiFu78YLg8FfufuB8UZVxSa8rk3s+kEBfqUcNUYoK+7nxBfVJJLzOwNd98/7jgkOsnnvPL5z7bvQ/Jt71SiuhWuGq+qdQA2hI/bxxhHHHasSLoA3H12OMRAU9GBpnnuv+vuyb2krmlCvVmzlplNrG67u18SVSy1sIOZ9eOb3sHbcPc3Uq2PmpntAlwIfATcQ9Bz92DgHeCnUQ2kWZOwxuhkgjifAq4kqJF+B/iNu6+LMbwKVsXjVMtxGwT8l6AzwGvEFJ8Sr9SuAxaGY5MYwRd9XLwhRWqlmV0NVLQdOQ1YGWM8UWrK536TmQ1JGtV5MLAp5pgELiCoiXwE+IDsK8yS7QH8gdQxOnB4tOFU6UGCcbz2BuYD9wJ/Iki+7gKGxhbZtu4DNgM7ErTxW0owfMMQgrEVj4ktsm94FY9TLcft28Aw4FSCkfWfAaZG3YxGtxqrYGa7EbT1AZhf0aOoKTCzjgQDMw4JV/0LmODuH8UXVXSa6rk3s74EF/r2BAXnBuBMd18Ua2BNXNizdhRBzUc58DAwzd0/jjOuVMxsobv3izuOmpjZInfvG47R9567d03aVuLuhfFF9w0zW+rufcysObDK3b+dtG2Ru/eNMbyKOLYCGwmuGW2ALyo2Aa3dPSuHljCzVgQJ2I3ANe5+a1THVo1X1ZoB6wg+o33MbB93fznmmCIRJljZdPsiak3y3IcJVl8LpwoKR/CXmKXorn8KwawCP8+mHo2hXPklvwXA3T3suJAsm4bo+BrA3cvN7INK27bEEE8qi3Ih2a4QJlxHEyRd3YCJwGNRxqDEKwUzu4Hg1+UyvvlP6ART6TR6YTfgKwi+lInviLtny22CjGnK5z68IJ1IeN4rBuzPtu7gTZWZ7U9QWAwjmFmgON6IUoq9BqaWKsYbM7YfeyzlqPYx6RK28bOkx4TLe8QX1jZyJdnGzO4jGHj2HwS1XJENIbFNHLrVuD0z+zdQ4O5fxR1LHMxsEcEv7GKSflW5ezZe6NOqKZ97M/snwdARlc/7H2ILSjCzXxP8Qi8FHgL+ma1jq+XQrcZcGW/sjOq2u/uU6rZHoZqxxgBw9yq3RS28LVox8Gxy8mMEFaA7RRGHarxSW0kw5UGTK3xD5e5+W9xBxKQpn/su7p4tc9TJN34JvEtQm9QX+F1YG1lRWGTTUCftw/kOUwqn5IldcmJlZp3DdWvji6hK++bAGIJ5QFuyu9NHhay4LarEK4mZTSLIgr8ASszseZIK4Czrtp12ZrZz+PApM/sxwX3v5Pe/IeULG4Gmfu5Dr5hZfpYNICnZdeurJu0JetpV1asxKxKvsFH9r4CLCdp0mpmVA5Oy7Nb6CILpbLLZ6iz7zKqTFbf4lHhta0H4bzFQ7UBrjVTlW4lXJj12oEeEsUStyZ57M1tCcH6bA2eZ2UqCpDMba1SaojvdfXjcQdTSe+5+dtxB1MLlBL22D3D3dwHCOWlvM7PL3f2WWKP7Rl7Yy7yqcdGy4cdwLtR0VfhWFdNFAdHdFlUbr0rMrBDYC1jm7qUxhyMRaqrnPpwMu0ru/l5Uscj2cqXdFOROrGa2EBhWeQDS8LbjjGx5D2b2FfA+VdQgunvsP4bNbOcsSQBrZGargduoOpG9JpI4lHh9Ixw0dAxBrceBwHXZMllqFMxsb4IxTfYClgBXuPv78UYVjaZ87sPRsS/gm/N+d7Y23m6KwhrIK6rani3tpiCYgLhyT7FwlPj1nkWFTcX4WHXdFrVcSWRzRbZMYaRbjds6hWCevi/CQQv/STBJaVNxD8EAmi8DxwKTgKYyT19TPvdTCEbH/hdwJLAfcGmsEUmynGg3FWprZrMJBt/9DcHsF7sAzczsdHf/Z5zBJfm6ntskt2XFbVElXtv6yt2/gGDQQjNrFndAEWuXVMtzo5llxbxqEWnK534/d88HMLO7CaZQkeyRK+2mIJjO5v8IksUXgCPdfZ6Z9SSYHy9bEq++ZpZqgGADWkcdTDX+FHcAjcz34g4AlHhVVnkgve8mz2Ye1czlMWpdaYLbNsnL2TLBbYY05XO/ueJBOEJ2nLHI9nLphDR39xkQjD/m7vMA3H15Nn2v3D0v7hhq6YQahudozNeltMuWtmhq45UkVwbVy5TwFkFVXwhvzCPXN+Vzb2Zb+GZQweT51iIdVFBSy5V2U7BtG5rK7WmypX1NLjGztcB/CWoLX6NSEt6Yr0uNmRIvkSRmdqm7/6mmdSJRMbOBwPWkaDcFZFO7qeQkPqcmTM5WZpZHMEXUqUAB8Aww1d2XxRqYNEhTasdSIzNbYmaLU/wtCafRadTM7GdJj0dV2va76COKRaopOs6MOogomdkB1WwbE2UsktKtwO8Iaj1eAMa6+7eBQ4Dr4gysMnfPc/ed3L2duzcPH1csK+mqI3ff4u7/dPczgIHA28BsM7so5tCkAVTjlaSK8YwM2BO4yt2PijikSDXl2wRmdirwI4JBFf+VtKkdsNXds6JRZiaY2WJgLsF3/ONwXR/gL8AGdx8ZX3RiZiXuXhg+LnX3XknbNNxAIxdOXn80Qa1XN4IBnu9pKkP9NEZqXJ8keaDIsFH5j4BRBPOkTY8rrghZFY9TLTc2rwCrCW7hJE8K/RmwOJaIorM/wSwFC83sN0A+cBTwU3d/OtbIBGBr0uNNlbbpl3MjZmb3AX2AfwDXVG7rJ7lJiVcSM9uH4FfFqcA64GGCWsHDYg0sOl7F41TLjUqYdL9nZi9XbrBqZjcAP48nsswLB0u9Lpyr7i7gA2CAu38Qb2QSqhj6wAh6GlcMg5BtQx9I+p1G0GbuUuCSpJ6h6viSw3SrMYmZbSW4zXSOu78drluZDdMyREENY1PfUjWzxY15vkIz+y7wZ4Lk+jKCQVQvAn7r7vfGGJqISKOjGq9tnUAwgvmLZvZP4CEa/y22hBwa2ybtzOz/AT8mGL8r+dZiO4L2T43Zc8A4d58WLv/bzB4Bbjazse4+OMbYREQaFdV4pWBmOwLHEdxyPJxgGp3HKgYGlMbHzNoDHQl6iY1L2vRZtgy6lylm1tbdN1ax7fvuPivqmEREGislXjUws44EDexPbsw92+QbZjYE2Nvd7w0Hqmzn7u/GHVemmdkhqda7+8tRxyKSrcysG/B0tkykLblHiZdIEjMbDxQB+7r7Pma2O/BoU7jdZmZPJS22BgYAxY15xgKRulLiJQ2lAVRFtnU8cCzhFDphz752sUYUEXf/QdLfMIJu7B/FHZdIFmpuZg+YWamZTTOzHczsV2b2upktNbM7LOyCaGaXmNmb4WDcD4XrdjSze8xsvpktNLPj4n07EiUlXiLb+jqc/84h0d6vqVoF9KrxWSJNz77AX8LBbD8l6Jhzq7sfENaEtQGOCZ87DugX9oy+IFz3C+AFdx8AHAbc2MSvNU2KejWKbOsRM/sr0MHMzgXOBu6MOaZImNkkvhmvrRlQCLwRW0Ai2eu/7l7R2/l+4BLg3XDatR2AnYFlwFMEAzA/YGaPA4+HrxkOHGtmV4TLrYGuQGkk0UuslHiJhMJbAw8DPQl+xe4L/MrdZ8YaWHQWJD0uJ5iMt7EPpSFSH6kGmP4LUOTu/zWzCXwzuO3RBPNq/gD4hZnlEwxTdKK7/zuieCWLqHG9SBIzW+Lu+XHHISLZKWxc/y5wkLu/amZ3EdRU/YxgLsU8YB4wDfg10NXdy8ysBfAesF/43J2Ai93dzayfuy+M/M1ILNTGS2Rbb5jZAXEHESUz29vMJpvZzWbWxcyeNbONZraoqX0WIrX0b+BCMyslGP/vNoImCUsJBiR+PXxeHnC/mS0BFgITw4nofwO0ABab2bJwWZoI1XiJJDGz5cBeBL9MK6ZP8kY+ZdAcgkGCdwIuJ5g26CngYOBadz8wvuhERBoXJV4iSczsO6nWh5NoN0pmVuLuheHjt919r1TbRESk4dS4XiRJRYJlZjsQtMV4z93XxhtVxm1NevxpNdtERKSBVOMlApjZscBEYAPwS+DPwBqCxrI/d/cp8UWXWWb2BfB2uLhX0mMDeri7xhcSEUkT1XiJBH5DMLZOe+BFoMDdV5rZt4DngUabeBEMkmrA7wm6vFcw4IZYIhIRaaSUeIkEtrr7WwBm9q67rwRw9w/NrDze0DIr6fbqXpXbspmZRq4XEUkjJV4igWZm1pFgiJWt4WOr2BZfWJlnZv+PYMqTHma2OGlTO0ADqIqIpJHaeIkAZlZG0JDcUmx2d+8RbUTRMbP2BGMRXUcwr1yFz9x9QzxRiYg0Tkq8RERERCKiW40iSczskFTr3f3lqGMREZHGRzVeIknM7KmkxdbAAKDY3Q+PKSQREWlEVOMlksTdk4dTwMz2BP4YTzQiItLYNOreWiJpsIpgnCsREZEGU42XSBIzmwRU3H9vBhQCb8QWkIiINCpq4yWSxMzOSFosB8rcXWNZiYhIWijxEhEREYmI2niJAGa2t5lNNrObzayLmT1rZhvNbJGZHRB3fCIi0jgo8RIJ3Au8AnwAvAbcA+wCXAHcGmNcIiLSiOhWowhgZiXuXhg+ftvd90q1TUREpCFU4yUS2Jr0+NNqtomIiNSbarxEADP7Ang7XNwr6bEBPdx9x1gCExGRRkXjeIkEehEkWb8HkkevN+CGWCISEZFGR4mXCODu7wGY2V4VjyuYmUauFxGRtFDiJQKY2f8Dfgz0MLPFSZvaARpAVURE0kJtvEQAM2sPdASuA8YlbfrM3TfEE5WIiDQ2SrxEREREIqLhJEREREQiosRLREREJCJKvCRWZjbUzA6qxfPONLM6T91T2/2LiIhEQYmXxG0okMnEKNP7FxERqTUlXpIRZna6mS02s0Vm9jcz+4GZvWZmC81slpntambdgAuAy82sxMwOTvW8SvttZ2bvmlmLcHmnimUzu8TM3gyP+1Cq/Uf9OYiIiCTTOF6SdmbWG/glcJC7rzOznQEHBrq7m9lY4Gfu/lMzux3Y6O43ha/tWPl5wE8r9u3un5nZbOBo4HHgFODv7r7ZzMYB3d39KzPr4O4fV96/iIhInJR4SSYcDjzq7usA3H2DmeUDD5vZbkBL4N0qXtulFs+7iyAhexw4Czg3XL8YeMDMHg+3iYiIZBXdapSoTAJudfd84HygdX2f5+5zgW5mNhTIc/el4aajgT8D+wOvm5l+WIiISFZR4iWZ8AIwysw6AYS3GtsD74fbz0h67mcE0/JUqOp5ld0HPAjcGx6jGbCnu78I/DzcT9sU+xcREYmNEi9JO3dfBvwWeMnMFgE3AxOAR82sGFiX9PSngOOTGr9X9bzKHiCY4mdquJwH3G9mS4CFwER3/zjF/kVERGKjKYMkJ5nZScBx7j4m7lhERERqS21gJOeY2STgSOCouGMRERGpC9V4iYiIiEREbbxEREREIqLES0RERCQiSrxEREREIqLES0RERCQiSrxEREREIqLES0RERCQi/x8cL+LkcHhcugAAAABJRU5ErkJggg==\n", - "text/plain": [ - "

" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(1,2, figsize=(10,5))\n", - "fig.subplots_adjust(wspace=0.2)\n", - "# Counts of different catalysts grouped by nucleophile\n", - "(b_df.\n", - " groupby(\"nucleophile\").\n", - " catalyst.\n", - " value_counts().\n", - " unstack(0).\n", - " plot.bar(ax=axes[0])\n", - ")\n", - "# Counts of different bases grouped by nucleophile\n", - "(b_df.\n", - " groupby(\"nucleophile\").\n", - " base.\n", - " value_counts().\n", - " unstack(0).\n", - " plot.bar(ax=axes[1])\n", - ")\n", - "for ax in axes:\n", - " ax.set_ylabel(\"Counts\")" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": false, - "inputHidden": false, - "jupyter": { - "outputs_hidden": false + "cell_type": "markdown", + "source": [ + "# Multi-Task BO NIPS Paper\n", + "\nThis is a paper for the [ML4Molecules workshop](https://ml4molecules.github.io/) at NIPS 2020." + ], + "metadata": {} }, - "outputHidden": false - }, - "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAF0CAYAAABrBu7+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABD80lEQVR4nO3daZhU1bn28f9Ni6CCYBTfoyKCBpWpBWlQnIJGETXBkRM8zopootGYqMGTqGhM4pCYRENi1DgkRhzwxIPRKE7EgBoBQZBBQW0j6lEEJxSVhuf9UNVt0VR3F01V7erq+3ddfVF7qF1P1S7WemrttddSRGBmZmZmxdUm6QDMzMzMWiMnYWZmZmYJcBJmZmZmlgAnYWZmZmYJcBJmZmZmlgAnYWZmZmYJ2CjpANbXVlttFd27d086DDMropkzZ74XEV2SjmNDufwya30aK79aXBLWvXt3ZsyYkXQYZlZEkl5POoZ8cPll1vo0Vn75cqSZmZlZApyEmZmZmSXASZiZmZlZAlpcn7BsVq1axZIlS/jss8+SDsXyoH379nTt2pW2bdsmHYqZWcG47iovzam7yiIJW7JkCR07dqR79+5ISjoc2wARwbJly1iyZAk9evRIOhwzs4Jx3VU+mlt3lcXlyM8++4wtt9zSX+IyIIktt9zSvwzNrOy57iofza27yiIJA/wlLiM+l2bWWri8Kx/NOZdlk4S1dEOHDs37+EEnn3wyEydOXGf9W2+9xTHHHAPAlClT+MY3vpHX1zUzs9bBddeGcRLWCm277bZZv+BmZmalqhzrLidhG6i6uppevXpx+umn06dPH4YNG8bKlSvX+nXw3nvvUTtVyerVqzn//PPp27cvlZWVXH/99escc/LkyQwZMoTdd9+dkSNHsmLFCgAef/xxBgwYQL9+/Tj11FP5/PPPgdQo3BdeeCH9+vVj8ODBLF68uO5YTz31FHvttRc77rhj3Ze3urqavn37rvO6n3zyCaeeeiqDBw9mwIAB/O///m9ePyszMysNrrtKg5OwPFi0aBFnnXUW8+bNo3Pnztx3330N7nvjjTdSXV3N7NmzmTNnDscdd9xa29977z2uuOIKHnvsMZ5//nmqqqq49tpr+eyzzzj55JO5++67mTt3LjU1Nfz+97+ve16nTp2YO3cuZ599Nt/73vfq1r/99ttMnTqVv/3tb4wdO7bR9/HTn/6UAw44gOeee44nn3ySCy64gE8++aR5H4qZmZU0113JK4shKtbHnCUfNLq9smvn9T5mjx496N+/PwADBw6kurq6wX0fe+wxzjzzTDbaKPXRf+UrX1lr+7PPPsv8+fPZe++9Afjiiy8YMmQIL730Ej169GDnnXcG4KSTTmL8+PF1X9pjjz227t/zzjuv7nhHHHEEbdq0oXfv3rzzzjuNvo/JkyczadIkfvGLXwCpO3f+/e9/06tXr9w+CDPLm+5jH1xnXfWVhyUQiZUr113Ja3VJWCG0a9eu7nFFRQUrV65ko402Ys2aNQDrdctqRHDQQQcxYcKEtda/8MILjT4v866MzMeZsUVEk6993333scsuu+Qcr5mZtUyuu5Lny5EF0r17d2bOnAmwVkfCgw46iD/84Q/U1NQAsHz58rWet+eeezJt2rS6a+OffPIJL7/8MrvssgvV1dV16//85z/zta99re55d999d92/Q4YMaVbMBx98MNdff33dF37WrFnNOo6ZmbVMrruKy0lYgZx//vn8/ve/Z8CAAbz33nt160ePHk23bt2orKxkt912484771zreV26dOG2227j2GOPpbKykiFDhrBw4ULat2/PrbfeysiRI+nXrx9t2rThzDPPrHve+++/T2VlJb/5zW/41a9+1ayYL774YlatWkVlZSV9+vTh4osvbt6bNzOzFsl1V3GpqWa+UlNVVRX1xyRZsGBBztd+C9EnLGndu3dnxowZbLXVVkmHkjfrc06t/EmaGRFVScexobKVXw1xn7Dy19rLudZSdzVWfrklzMzMzCwB7phfBhq7o8XMzKwUue5yS5iZmZlZItwSZmZmiVmw67p9onotXJBAJGbF55YwMzMzswQ4CTMzMzNLgJOwPLr//vuRxMKFC5vcd/To0cyfPx9I3aZbOx7LXnvtVdAYzczMMrnuSk5Z9gnLNr7Ohsh1bJ4JEyawzz77MGHCBC677LJG97355puzrn/66afXOz4zyz9Jw4HfABXAzRFxZb3t3YDbgc7pfcZGxEPFjtPKh+uu1sctYXmyYsUKpk6dyh//+EfuuusuAKZMmcLQoUM55phj2HXXXTnuuOPqplUYOnQo2QZt7NChQ5PPnTlzJl/72tcYOHAgBx98MG+//XaR3qVZ6yCpAhgPHAL0Bo6V1Lvebj8G7omIAcAo4HfFjdJsw7nuSpaTsDz53//9X4YPH87OO+/MlltuWTf31qxZs/j1r3/N/PnzefXVV5k2bVrOx8z23FWrVvHd736XiRMnMnPmTE499VR+9KMfFeptmbVWg4HFEfFqRHwB3AUcXm+fADZPP+4EvFXE+MzywnVXssrycmQSJkyYwLnnngvAqFGjmDBhAt/4xjcYPHgwXbt2BaB///5UV1ezzz775HTMbM/t3LkzL774IgcddBAAq1evZptttinAO7Jy0tRlDk+Hs47tgDcylpcAe9TbZxwwWdJ3gc2AA7MdSNIYYAxAt27d8h6o2YZw3ZUsJ2F5sHz5cp544gnmzp2LJFavXo0kDjvsMNq1a1e3X0VFRd0M9LnI9tyIoE+fPjzzzDN5fQ9mtt6OBW6LiF9KGgL8WVLfiFiTuVNE3AjcCKm5IxOI0ywr113JK+jlSEnDJb0kabGksQ3s85+S5kuaJ+nObPuUuokTJ3LCCSfw+uuvU11dzRtvvEGPHj345z//mffX2mWXXVi6dGndF3nVqlXMmzcv769j1sq9CWyfsdw1vS7TacA9ABHxDNAeKJ+ZiK3sue5KXsGSsFw6tkrqCVwE7B0RfYDvFSqeQpowYQJHHnnkWuuOPvpoJkyYkPfX2njjjZk4cSI//OEP2W233ejfv7/vSjHLv+lAT0k9JG1MquP9pHr7/Bv4OoCkXqSSsKVFjdJsA7juSp5q71rI+4FTzfPjIuLg9PJFABHx84x9rgZejojs97xmUVVVFfXvzFiwYAG9eq079UU2c5Z80Oj2yq6dcw3FCmh9zqk1raX3CZM0MyKqivyahwK/JjX8xC0R8VNJlwMzImJS+kflTUAHUp30L4yIyY0dM1v51ZBs56zUz1NztOZpi1zOlZ9s57Sx8quQfcJy6di6M4CkaaQKunER8XD9A7ljq+VDS09ErLjSY349VG/dJRmP5wN7FzsuMysfSQ9RsRHQExhKqpPrTZI6198pIm6MiKqIqOrSpUtxIzQzMzMrgEImYbl0bF0CTIqIVRHxGvAyqaTMzMzMrKwVMgnLpWPr/aRawZC0FanLk68WMCYzMzOzklCwJCwiaoCzgUeABaSm95gn6XJJI9K7PQIskzQfeBK4ICKWFSomMzMzs1JR0MFac+jYGsD3039mZmZmrUbSHfPLRkVFBf3792e33XZj9913L7nxT0aPHs38+fPXWX/bbbdx9tlnJxCRmZklzXVXsspz2qJxnRrcVNms433Y5C6bbLIJs2fPBuCRRx7hoosu4h//+EdzXq0gbr4556HYzMwsCY3UXc07nuuuUueWsAL46KOP2GKLLeqWr7nmGgYNGkRlZSWXXnopANXV1fTq1YvTTz+dPn36MGzYMFauXMlbb71F//796/4qKip4/fXXeeCBB9hjjz0YMGAABx54IO+88w4A48aN46STTmLfffdlhx124H/+53+48MIL6devH8OHD2fVqlUADB06lNpBIm+99VZ23nlnBg8ezLRp0+riXLp0KUcffTSDBg1i0KBBa20zM7Py5rqr+JyE5cnKlSvp378/u+66K6NHj+biiy8GYPLkySxatIjnnnuO2bNnM3PmTJ566ikAFi1axFlnncW8efPo3Lkz9913H9tuuy2zZ89m9uzZnH766Rx99NHssMMO7LPPPjz77LPMmjWLUaNGcfXVV9e99iuvvMITTzzBpEmTOP7449l///2ZO3cum2yyCQ8+uPYApW+//TaXXnop06ZNY+rUqWs185577rmcd955TJ8+nfvuu4/Ro0cX4ZMzM7OkuO5KVnlejkxAZpPuM888w4knnsiLL77I5MmTmTx5MgMGDABgxYoVLFq0iG7dutGjRw/69+8PwMCBA6murq473rRp07jpppuYOnUqAEuWLOFb3/oWb7/9Nl988QU9evSo2/eQQw6hbdu29OvXj9WrVzN8+HAA+vXrt9YxAf71r38xdOhQage9/da3vsXLL78MwGOPPbbWF/ujjz5ixYoVdOjQIW+fk5mZlQ7XXclyElYAQ4YM4b333mPp0qVEBBdddBFnnHHGWvtUV1fTrl27uuWKigpWrlwJpDL+0047jUmTJtV9ib773e/y/e9/nxEjRjBlyhTGjRtX99za47Rp04a2bdsiqW65pqYm57jXrFnDs88+S/v27Zv1vs3MrOVy3VV8vhxZAAsXLmT16tVsueWWHHzwwdxyyy2sWLECgDfffJN33323weeuWrWKkSNHctVVV7HzzjvXrf/www/ZbrvtALj99tubHdsee+zBP/7xD5YtW8aqVau4995767YNGzaM66+/vm659teRmZmVP9ddxeeWsDypva4OEBHcfvvtVFRUMGzYMBYsWMCQIUMA6NChA3fccQcVFRVZj/P0008zY8YMLr300rqOkA899BDjxo1j5MiRbLHFFhxwwAG89tprzYpzm222Ydy4cQwZMoTOnTvXxQxw3XXXcdZZZ1FZWUlNTQ377bcfN9xwQ7Nex8zMSp/rrmQpNV5qy1FVVRW1d0rUWrBgAb169crp+XOWfNDo9squnZsZmeXT+pzTXHUf+2Cj26uvPCyvr1dKWvp7lzQzIqqSjmNDZSu/GpLtnJX6eWqOBbuu+/+818IFCURSfIUo5yxZ2c5pY+WXL0eamZmZJcCXI/Ns5YsvNrp9k759ixSJmZmZlTK3hJmZmZklwEmYmZmZWQKchJmZmZklwEmYmZmZWQKchOWJJI4//vi65ZqaGrrttx9HnXVWXo5fXV1N3/Xs1H/yySczceJEAEaPHr3WtA5mZmbZ6q4uXbrwjW98Iy/Hd93VuLK8O7Lf7f3yery5J81tcp/NNtuMF198kZWffcYm7dvz+DPPsM3WW6/X69TU1LDRRoU5JTfffHNBjmtWriQNB34DVAA3R8SV9bb/Ctg/vbgpsHVEdC5qkFZWEq27Vq5kk0024dFHH60b4T5Xrruazy1heXTooYfycHqW+Xv//nf+85BD6rYt//BD/vOcc6isrGTPPfdkzpw5AIwbN44TTjiBvffemxNOOIHbbruNww8/nKFDh9KzZ08uu+yyumOsXr2a008/nT59+jBs2LC6+bpmz57NnnvuSWVlJUceeSTvv//+OrENHTqU2kEiO3TowI9+9CN222039txzT9555x0Ali5dytFHH82gQYMYNGgQ06ZNK8wHZVbiJFUA44FDgN7AsZJ6Z+4TEedFRP+I6A9cD/xP0QM1y4NDDz2UBx9MDQ48YcIEjj322Lpty5cv54gjjnDdVSBOwvJo1KhR3Pvww3z2+efMffllBlVW1m27Yvx4duvVizlz5vCzn/2ME088sW7b/Pnzeeyxx5gwYQIAzz33HPfddx9z5szh3nvvrfsCLlq0iLPOOot58+bRuXNn7rvvPgBOPPFErrrqKubMmUO/fv3W+vJn88knn7DnnnvywgsvsN9++3HTTTcBcO6553Leeecxffp07rvvPkaPHp3Xz8esBRkMLI6IVyPiC+Au4PBG9j8WmFCUyMzybNSoUdx111189tlnzJkzhz322KNu26WXXsqAAQNcdxVIWV6OTEplZSWvv/km9zz0EAfvu+9a256eNYsJ114LwAEHHMCyZcv46KOPABgxYgSbbLJJ3b4HHXQQW265JQBHHXUUU6dO5YgjjqBHjx5182UNHDiQ6upqPvzwQz744AO+9rWvAXDSSScxcuTIRuPceOON6673Dxw4kEcffRSAxx57bK1r7x999BErVqygQ4cOzf1IzFqq7YA3MpaXAHtk21HSDkAP4IkixGWWd5WVlVRXVzNhwgQOPfTQtbZNnTq1Lmly3ZV/TsLy7LChQ/nvX/6Sh2+5heUffpjTczbbbLO1liVlXW7Xrl3duoqKirom3fXVtm3bumNWVFRQU1MDwJo1a3j22Wdp3759s45r1kqNAiZGxOpsGyWNAcYAdOvWrZhxmeVsxIgRnH/++UyZMoVly5bl9BzXXRvOlyPz7MQjj+S/v/1t+u6881rr9959d+5KX3OfMmUKW221FZtvvnnWYzz66KMsX76clStXcv/997P33ns3+HqdOnViiy224J///CcAf/7zn+t+WayvYcOGcf3119ctz549u1nHMSsDbwLbZyx3Ta/LZhSNXIqMiBsjoioiqrp06ZLHEM3y59RTT+XSSy+lX7+1bw7Yd999+ctf/gK47ioEt4TlWdf/+A++c9xx66z/0Xe+w5kXX0xlZSWbbropt99+e4PHGDx4MEcffTRLlizh+OOPp6qqiurq6gb3v/322znzzDP59NNP2XHHHbn11lubFft1113HWWedRWVlJTU1Ney3337ccMMNzTqWWQs3HegpqQep5GsU8F/1d5K0K7AF8ExxwzPLr65du3LOOeess37cuHGceuqprrsKRBGRdAzrpaqqKmo7+9VasGABvXr1yun5c5Z80Oj2yq6dmxlZyoZO4H3bbbcxY8YMfvvb325QHC3d+pzTXHUf+2Cj26uvPCyvr1dKWvp7lzQzIqqK/JqHAr8mNUTFLRHxU0mXAzMiYlJ6n3FA+4gYm8sxs5VfDcl2zkr9PDXHgl3X/X/ea+GCBCIpvkKUc0lx3ZWS7Zw2Vn65JczMLIuIeAh4qN66S+otjytmTGZWXpyElZiTTz6Zk08+OekwzMzMcua6q3ncMd/MzMwsAU7CzMzMzBLgJMzMzMwsAU7CzMzMzBJQ0CRM0nBJL0laLGmdW7glnSxpqaTZ6b+WM+FTPRUVFfTv35+qI4/kuO9/n09XruT1N9+k6sgjC/q6H3zwAb/73e/qlqdMmVI3rUOuunfvznvvvbfBscyYMSPrODNmZlaaauuuvn37MnLkSD799FOqq6vp28RwShvKdVdKwe6OlFQBjAcOIjXv2nRJkyJifr1d746Is/P52tnGnanVtqnnZlmXy5g1m2yyCbNnz2bliy9yyg9/yM333MPhBx7Y5PM2VO0X+Tvf+U7BX6spVVVVVFUVdSgnM7Oy0Vjd1RzrU3cBHHfccdxwww0cddRReY0jG9ddKYVsCRsMLI6IVyPiC+Au4PACvl7J2GvgQF55IzX37+rVq/nOuHEMPOIIvjlmTN2cWa+88grDhw9n4MCB7LvvvixcuBBI3eZ7zjnnsNdee7HjjjsyceLEuuNec801DBo0iMrKSi699FIAxo4dyyuvvEL//v254IILAFixYgXHHHMMu+66K8cddxwRwRNPPMERRxxRd6xHH32UI7O00h1xxBEMHDiQPn36cOONN9at79ChAxdccAF9+vThwAMP5LnnnmPo0KHsuOOOTJo0CVj7l0ztKMu1+1x33XV1x7rjjjsYPHgw/fv354wzzmD16qxT7pmZWRHtu+++LF68GEjVXaeffjp9+vRh2LBhrrsoTN1VyCRsO+CNjOUl6XX1HS1pjqSJkrbPsr1FqampYfI//0mfnj0BWPzvf3PGqFHMvP9+OnXsWDcb/ZgxY7j++uuZOXMmv/jFL9b6NfD2228zdepU/va3vzF2bOoq7uTJk1m0aBHPPfccs2fPZubMmTz11FNceeWV7LTTTsyePZtrrrkGgFmzZvHrX/+a+fPn8+qrrzJt2jT2339/Fi5cyNKlSwG49dZbOfXUU9eJ/5ZbbmHmzJnMmDGD6667rm4i108++YQDDjiAefPm0bFjR3784x/z6KOP8te//pVLLrlkneMALFy4kEceeYTnnnuOyy67jFWrVrFgwQLuvvtupk2bxuzZs6moqKibl8zMzJJRU1PD3//+97q5IxctWsRZZ53FvHnz6Ny5s+uuAtVdSQ/W+gAwISI+l3QGcDtwQP2dJI0BxgB069atuBHmaOXKlfTv3581n33G3rvvzslHHcXb775L9+22Y7dddwVgQO/eVFdXs2LFCp5++mlGjhxZ9/zPP/+87vERRxxBmzZt6N27N++88w6Q+iJPnjyZAQMGAKlfDIsWLcr6eQwePJiuXbsC0L9/f6qrq9lnn3044YQTuOOOOzjllFN45pln+NOf/rTOc6+77jr++te/AvDGG2+waNEittxySzbeeGOGDx8OQL9+/WjXrh1t27alX79+Dc4Ndthhh9GuXTvatWvH1ltvzTvvvMPjjz/OzJkzGTRoUN3ntvXWW6/XZ21mZvlRW3dBqiXstNNO46233qJHjx516wcOHOi6q0B1VyGTsDeBzJatrul1dSJiWcbizcDV2Q4UETcCN0Jq7rX8hpkfmX3CMrXbeOO6xxUVFXxeU8OaNWvo3LlzgzO9t2vXru5x7dyeEcFFF13EGWecsda+2b5Emc+vqKigpqYGgFNOOYVvfvObtG/fnpEjR7LRRmuf/ilTpvDYY4/xzDPPsOmmmzJ06FA+++wzANq2bYskANq0aVP3Gm3atKk7fi5xRAQnnXQSP//5z7M+x8zMiiezT1im+uX3ypUrXXcVoO4q5OXI6UBPST0kbQyMAiZl7iBpm4zFEWTvF192Nt98c3r06MG9994LpL6kL7zwQqPPOfjgg7nllltYsWIFAG+++SbvvvsuHTt25OOPP87pdbfddlu23XZbrrjiCk455ZR1tn/44YdsscUWbLrppixcuJBnn312Pd9Z077+9a8zceJE3n33XQCWL1/O66+/nvfXMTOz/HLdlf+6q2AtYRFRI+ls4BGgArglIuZJuhyYERGTgHMkjQBqgOXAyYWKp9T85S9/4dvf/jZXXHEFq1atYtSoUey2224N7j9s2DAWLFjAkCFDgFRnwzvuuIOddtqJvffem759+3LIIYdw2GGHNfq6xx13HEuXLl1nlneA4cOHc8MNN9CrVy922WUX9txzzw17k1n07t2bK664gmHDhrFmzRratm3L+PHj2WGHHfL+WmZmmbqPfXCdddVXNl5m2tpcd+W37lJtk2FLUVVVFTNmzFhr3YIFC7KemGzmLPmg0e2VXTs3M7KU+pcj69ukwGOvNOXss89mwIABnHbaaYnG0ZT1Oae5ylYAZyrnwrilv3dJMyOixY9/kq38akhrSRiyDcuQy9AKzVFqn2khyrly1ZLrrsbKr6Q75lsRDRw4kM0224xf/vKXSYdiZmaWk3Kuu5yEtSIzZ85MOgQzM7P1Us51l+eONDMzM0tA2bSERUTdbajWsrW0foq1GptypFB9XMysZXPdVT6aU3eVRUtY+/btWbZsWYutvO1LEcGyZcto37590qGYmRWU667y0dy6qyxawrp27cqSJUvqpjVozDvvr2x0+4KPN9mgWFalRwluSNuKig06fmvQvn37ulGTzczK1frUXVb6mlN3lUUS1rZtW3r06JHTvocU+Fb9BUc2Pvu8L0uZmRmsX91l5aksLkeamZmZtTROwszMspA0XNJLkhZLGtvAPv8pab6keZLuLHaMZtaylcXlSDOzfJJUAYwHDgKWANMlTYqI+Rn79AQuAvaOiPclbZ1MtGbWUrklzMxsXYOBxRHxakR8AdwFHF5vn9OB8RHxPkBEvFvkGM2shXMSZma2ru2ANzKWl6TXZdoZ2FnSNEnPShqe7UCSxkiaIWmG74Izs0xOwszMmmcjoCcwFDgWuElS5/o7RcSNEVEVEVVdunQpboRmVtLcJ6y+cZ2a2P5hceIwsyS9CWyfsdw1vS7TEuBfEbEKeE3Sy6SSsunFCdHMWjq3hJmZrWs60FNSD0kbA6OASfX2uZ9UKxiStiJ1efLVIsZoZi2ckzAzs3oiogY4G3gEWADcExHzJF0uaUR6t0eAZZLmA08CF0TEsmQiNrOWyJcjzcyyiIiHgIfqrbsk43EA30//mZmtN7eEmZmZmSXASZiZmZlZApyEmZmZmSXASZiZmZlZApyEmZmZmSXAd0ea1fJAvWZmVkRuCTMzMzNLgJMwMzMzswQ0eDlS0u6NPTEins9/OGZm+eEyzMxKXWN9wn6Z/rc9UAW8AAioBGYAQwobmpnZBnEZZmYlrcHLkRGxf0TsD7wN7B4RVRExEBgAvFmsAM3MmsNlmJmVulz6hO0SEXNrFyLiRaBX4UIyM8srl2FmVpJyGaJijqSbgTvSy8cBcwoXkplZXrkMM7OSlEsSdgrwbeDc9PJTwO8LFpGZWX65DDOzktRkEhYRnwG/Sv+tF0nDgd8AFcDNEXFlA/sdDUwEBkXEjPV9HTOzhmxIGWZmVkiNDVExF4iGtkdEZWMHllQBjAcOApYA0yVNioj59fbrSOoX6r/WI24zs0ZtaBlmZlZojbWEfWMDjz0YWBwRrwJIugs4HJhfb7+fAFcBF2zg65mZZdrQMszMrKAaG6Li9dq/9Kqe6cfvAstzOPZ2wBsZy0vS6+qkB1PcPiIeXL+wzcwal4cyzMysoJocokLS6aT6a/0hvaorcP+GvrCkNsC1wA9y2HeMpBmSZixdunRDX9rMWpFClWFmZhsql3HCzgL2Bj4CiIhFwNY5PO9NYPuM5a6sPUBiR6AvMEVSNbAnMElSVf0DRcSN6YEWq7p06ZLDS5uZ1WluGWZmVlC5JGGfR8QXtQuSNqKRzq4ZpgM9JfWQtDEwCphUuzEiPoyIrSKie0R0B54FRvjuSDPLs+aWYWZmBZVLEvYPSf8NbCLpIOBe4IGmnhQRNcDZwCPAAuCeiJgn6XJJIzYkaDOz9dCsMkzScEkvSVosaWyW7SdLWippdvpvdAFiN7MylstgrWOB04C5wBnAQ8DNuRw8Ih5K75+57pIG9h2ayzHNzNbTepdhuQ6xA9wdEWfnP2Qzaw1yGax1DXBT+s/MrEVpZhmW6xA7ZmbN1thgrfdExH82NOChBzo0s1K2gWVYtiF29siy39GS9gNeBs6LiDfq7yBpDDAGoFu3buvxDsys3DXWElY7z5oHPDSzlqjQZdgDwISI+FzSGcDtwAH1d4qIG4EbAaqqqnxDgJnVaTAJi4i30w9HAH+OiA+KEpGZWR5sYBnW1BA7RMSyjMWbgaubEaaZtWK53B35/4AZku5J3y2kQgdlZpZHzSnDGh1iB0DSNhmLI0jdBW5mlrMmk7CI+DHQE/gjcDKwSNLPJO1U4NjMzDZYc8qwHIfYOUfSPEkvAOekj21mlrNchqggIkLS/wH/B9QAWwATJT0aERcWMkAzsw3VnDKsqSF2IuIi4KLCRZ3FuE4NrP+wqGGYWX40mYRJOhc4EXiPVL+HCyJiVXrux0WAkzAzK1kuw8ysVOXSEvYV4KiIeD1zZUSskeQ7J82s1LkMM7OSlMtgrZc2ss0dUc2spLkMM7NSlVOfMDOzxizYtVej23stdK5jZlZfLkNUmJmZmVme5ZSESdpB0oHpx5tI6ljYsMzM8sdlmJmVoiaTMEmnAxOBP6RXdQXuL2BMZmZ54zLMzEpVLi1hZwF7Ax8BRMQiYOtCBmVmlkcuw8ysJOWShH0eEV/ULkjaCPAktGbWUrgMM7OSlEsS9g9J/w1sIukg4F7ggcKGZWaWNy7DzKwk5ZKEjQWWAnOBM0hN4/HjQgZlZpZHLsPMrCTlMljrGuCm9J+ZWYviMszMSlUuc0fOZd3+Ex8CM4ArImJZIQIzM8sHl2FmVqpyGTH/78Bq4M708ihgU+D/gNuAbxYkMjOz/HAZZmYlKZck7MCI2D1jea6k5yNid0nHFyowM7M8cRlmZiUpl475FZIG1y5IGgRUpBdrChKVmVn+uAwzs5KUS0vYaOAWSR0AkRrwcLSkzYCfFzI4M7M8cBlmZiUpl7sjpwP9JHVKL3+YsfmeQgVmZpYPLsPMrFTl0hKGpMOAPkB7SQBExOUFjMvMLG9chplZKcpliIobSN1JtD9wM3AM8FyB4zIzywuXYWatW/exD2ZdX33lYUWOZF25dMzfKyJOBN6PiMuAIcDOhQ3LzCxvXIaZWUnKJQn7LP3vp5K2BVYB2xQuJDOzvGpWGSZpuKSXJC2WNLaR/Y6WFJKq8hSvmbUSufQJe0BSZ+Aa4HlSI097+g8zaynWuwyTVAGMBw4ClgDTJU2KiPn19usInAv8qwBxm1mZazQJk9QGeDwiPgDuk/Q3oH29u4vMzErSBpRhg4HFEfFq+jh3AYcD8+vt9xPgKuCCvAZuZq1Co5cj0xPfjs9Y/nx9ErCmmvMlnSlprqTZkqZK6r1e0ZuZNWIDyrDtgDcylpek19WRtDuwfURk7/VrZtaEXPqEPZ7u86D1OXBGc/4hQG/g2CxJ1p0R0S8i+gNXA9euz2uYmeWgWWVYY9ItbNcCP8hh3zGSZkiasXTp0nyFYGZlIJck7AzgXuALSR9J+ljSRzk8r645PyK+AGqb8+tEROZxNiPVV8PMLJ+aU4a9CWyfsdw1va5WR6AvMEVSNbAnMClb5/yIuDEiqiKiqkuXLhvyPsyszOQyYn7HZh47W3P+HvV3knQW8H1gY+CAbAeSNAYYA9CtW7dmhmNmrVEzy7DpQE9JPUglX6OA/8o45ofAVrXLkqYA50fEjA2L1sxakyZbwpRyvKSL08vbZ06Gu6EiYnxE7AT8EPhxA/v4l6SZNUtzyrCIqAHOBh4BFgD3RMQ8SZdLGlH4qM2sNchliIrfAWtItVL9BFhBqq/XoCae11Rzfn13Ab/PIZ5E9bu9X6PbPRGdWclpVhkWEQ8BD9Vbd0kD+w7NR6Bm1rrkkoTtERG7S5oFEBHvS9o4h+c12pwPIKlnRCxKLx4GLMLMLL+aW4a1aAt27bXOul4LFyQQiZk1JJckbFX6TscAkNSF1K/KRkVEjaTa5vwK4Jba5nxgRkRMAs6WdCCpEazfB05q5vswM2tIs8ows5IyrlOWdR6ys6XLJQm7DvgrsLWkn5Ka/DZr3636mmrOj4hzcw/VzKxZml2GmZkVUi53R/5F0kzg64CAIyLCbdpm1iK4DDOzUtVkEibpOuCuiBjf1L5mZqXGZZiZlapcLkfOBH4saRdSTfp3eSyclqn72MZnV6m+8rAiRWJWVC7DrFXxTRktR5PjhEXE7RFxKKnbuV8CrpLkuxjNrEVwGWZmpSqXaYtqfRXYFdgBWFiYcMzMCsZlmJmVlFxGzL86/avxcuBFoCoivlnwyMzM8sBlmJmVqlz6hL0CDImI9wodjJlZAbgMM7OSlMsQFX+QtEV6rrX2GeufKmhkZmZ54DLMzEpVLkNUjAbOJTX342xgT+AZUvOwmZmVNJdhZlaqcumYfy6pu4pej4j9gQHAB4UMyswsj1yGmVlJyiUJ+ywiPgOQ1C4iFgK7FDYsM7O8cRlmZiUpl475SyR1Bu4HHpX0PvB6IYMyM8sjl2FmVpJy6Zh/ZPrhOElPAp2AhwsalZlZnrgMM7NSlUtLWJ2I+EehAjEzKzSXYWZWStZnxHwzMzMzyxMnYWZmZmYJcBJmZmZmlgAnYWZmZmYJcBJmZmZmlgAnYWZmWUgaLuklSYsljc2y/UxJcyXNljRVUu8k4jSzlstJmJlZPZIqgPHAIUBv4NgsSdadEdEvIvoDVwPXFjdKM2vpnISZma1rMLA4Il6NiC+Au4DDM3eIiI8yFjcDoojxmVkZWK/BWs3MWontgDcylpcAe9TfSdJZwPeBjYEDsh1I0hhgDEC3bt3yHqiZtVxuCTMza6aIGB8ROwE/BH7cwD43RkRVRFR16dKluAGaWUlzEmZmtq43ge0zlrum1zXkLuCIQgZkZuXHSZiZ2bqmAz0l9ZC0MTAKmJS5g6SeGYuHAYuKGJ+ZlQH3CTMzqyciaiSdDTwCVAC3RMQ8SZcDMyJiEnC2pAOBVcD7wEnJRWzNNq5TlnUfFj8Oa5WchJmZZRERDwEP1Vt3Scbjc4selJmVFV+ONDMzM0uAkzAzMzOzBDgJMzMzM0tAQZOwHOZe+76k+ZLmSHpc0g6FjMfMzMysVBQsCctx7rVZQFVEVAITSc2/ZmZmZlb2CtkSlsvca09GxKfpxWdJDYhoZmZmVvYKmYRlm3ttu0b2Pw34e7YNksZImiFpxtKlS/MYopmZmVkySqJjvqTjgSrgmmzbPfeamZmZlZtCDtaa09xr6RGnfwR8LSI+L2A8ZmZmZiWjkC1hucy9NgD4AzAiIt4tYCxmZmZmJaVgSVhE1AC1c68tAO6pnXtN0oj0btcAHYB7Jc2WNKmBw5mZmZmVlYLOHZnD3GsHFvL1zczMzEpVSXTMNzMzM2ttnISZmZmZJcBJmJmZmVkCnISZmZmZJcBJmJmZmVkCnISZmZmZJcBJmJmZmVkCnISZmZmZJcBJmJmZmVkCnISZmWUhabiklyQtljQ2y/bvS5ovaY6kxyXtkEScZtZyOQkzM6tHUgUwHjgE6A0cK6l3vd1mAVURUQlMBK4ubpRm1tI5CTMzW9dgYHFEvBoRXwB3AYdn7hART0bEp+nFZ4GuRY7RzFo4J2FmZuvaDngjY3lJel1DTgP+XtCIzKzsbJR0AGZmLZmk44Eq4GsNbB8DjAHo1q1bESMzs1LnljAzs3W9CWyfsdw1vW4tkg4EfgSMiIjPsx0oIm6MiKqIqOrSpUtBgjWzlslJmJnZuqYDPSX1kLQxMAqYlLmDpAHAH0glYO8mEKOZtXBOwszM6omIGuBs4BFgAXBPRMyTdLmkEendrgE6APdKmi1pUgOHMzPLyn3CzMyyiIiHgIfqrbsk4/GBRQ/KzMqKW8LMzMzMEuAkzMzMzCwBvhxpZmbWAvW7vV/W9fcUOQ5rPidhZmZWFNmSBicM1pr5cqSZmZlZApyEmZmZmSXAlyPNzFo4X+Yza5ncEmZmZmaWACdhZmZmZglwEmZmZmaWACdhZmZmZglwEmZmZmaWgIImYZKGS3pJ0mJJY7Ns30/S85JqJB1TyFjMzMzMSknBkjBJFcB44BCgN3CspN71dvs3cDJwZ6HiMDMzMytFhRwnbDCwOCJeBZB0F3A4ML92h4ioTm9bU8A4zMzMzEpOIS9Hbge8kbG8JL3OzMzMrNVrESPmSxoDjAHo1q1bwtGYlaFxnZrY/mFx4jAza0UK2RL2JrB9xnLX9Lr1FhE3RkRVRFR16dIlL8GZmZmZJamQSdh0oKekHpI2BkYBkwr4emZmZmYtRsGSsIioAc4GHgEWAPdExDxJl0saASBpkKQlwEjgD5LmFSoeMzMzs1JS0D5hEfEQ8FC9dZdkPJ5O6jKlmZmZWaviEfPNzMzMEuAkzMwsC8/4YWaF5iTMzKwez/hhZsXQIsYJMzMrMs/4YWYF55YwM7N15W3GD0ljJM2QNGPp0qV5Cc7MyoOTMDOzAvJg02bWECdhZmbrytuMH2ZmDXESZma2Ls/4YWYF5yTMzKwez/hhZsXguyPNzLLwjB9mVmhuCTMzMzNLgJMwMzMzswQ4CTMzMzNLgJMwMzMzswS4Y76ZmZmtt+5jH1xnXfWVhyUQScvlJMzMzKwJC3btlXV9r4ULihyJlRNfjjQzMzNLgJMwMzMzswT4cqSZmZm1PuM6ZVn3YVFDcEuYmZmZWQKchJmZmZklwEmYmZmZWQKchJmZmZklwEmYmZmZWQKchJmZmZklwEmYmZmZWQKchJmZmZklwEmYmZmZWQI8Yr5Zjvrd3q/R7fcUKQ4zMysPbgkzMzMzS4CTMDMzM7MEFDQJkzRc0kuSFksam2V7O0l3p7f/S1L3QsZjZpYrl19mVmgF6xMmqQIYDxwELAGmS5oUEfMzdjsNeD8ivippFHAV8K1CxWRmlguXX61btv6f7vNphVDIlrDBwOKIeDUivgDuAg6vt8/hwO3pxxOBr0tSAWMyM8uFyy8zK7hC3h25HfBGxvISYI+G9omIGkkfAlsC72XuJGkMMCa9uELSSwWJGGi6BH1xK+rFl6l3ky9QumW0rmpyl0bfe0tX0HNfwucdcnjvl2nDzv2Gv/8dNvQA66kky6+GP8V1v5tZv4/Jfw9LLs7sr5Tj5wkJf6bZy6QkP9NG6pGSqz+yfiIbWtZl12D51SKGqIiIG4Ebk44DQNKMiKhKOo4ktOb3Dq37/bfm976hilF+tZTz4zjzq6XECS0n1mLHWcjLkW8C22csd02vy7qPpI2ATsCyAsZkZpYLl19mVnCFTMKmAz0l9ZC0MTAKmFRvn0nASenHxwBPREQUMCYzs1y4/DKzgivY5ch0H4mzgUeACuCWiJgn6XJgRkRMAv4I/FnSYmA5qYKu1JXEZdGEtOb3Dq37/beq994Cy6+Wcn4cZ361lDih5cRa1DjlH25mZmZmxecR883MzMwS4CTMzMzMLAFOwszMzMwS0CLGCTMzM7OWSdJOwH8BoyKiT9LxAEjqCnSPiKnp5e8DHdKb74yIxcWIwy1hTZB0rqTNlfJHSc9LGpZ0XMUiaTNJbdKPd5Y0QlLbpOMqhtZ+7mtJaiNp86TjsJT0d7JnxvJISSem//5fkrHVJ6m/pGMk9Uo6loZI+kq9vy1KdfopSVtK+q6k8em/syVtmXRc2UjaVtJ5kqYD80jlG6U0AsI1QOeM5TOAT4AALitWEE7CmnZqRHwEDAO2AE4Arkw2pKJ6CmgvaTtgMqn3f1uiERVPqz33ku5MV/abAS8C8yVdkHRcBsAvgL0zln8ODAL2o4iVR1MkXUJq3uujgQclnZ5wSA2ZCcxI/zsTeB54V9JjkronGVimdCL7IjAQeBlYROq8z5W0a5KxZZI0RtKTwBRS03idBrwdEZdFxNxEg1vbLhHxt4zlTyPilxHxE6BbsYLw5cim1f4iOhT4c3qsoJL8lVQgiohPJZ0G/C4irpY0O+mgiqQ1n/veEfGRpOOAvwNjSVVQ1yQblpGqeM/IWP44Ir4LIGlqMiFl9S2gf7r82BJ4GLgp4ZjWERE9sq2XdBRwAzC8uBE16CfAuRFxT+ZKSUcDPyWV7JaC3wLPAP8VETMAJJXiWFjt6y1/PePxVsUKwi1hTZspaTKpivgRSR2BNQnHVEySNAQ4Dngwva4iwXiKqTWf+7bpy85HAJMiYhWpZnpL3kb1RuY/IeNx5yLH0pjPI+JTgIhYRgurbyLif4Ctk44jQ7/6CRhARNwH9E0gnoZsA0wAfinpJUk/AUqxC8vHknauXYiI5QDpVsWPixWEW8KadhrQH3g14xfdKcmGVFTfAy4C/ppuCdoReDLZkIqmNZ/7PwDVwAvAU5J2AD5KNCKrtUbSf0TE/wFExIsA6S4DpfQjYUdJtVM9CdgpY5mIGJFMWLmR1IHSShw/aea2okon3DcAN6Q7v38LeEfSAlL1yH8nGuCXLgX+JumnpC5BQ+pS738D5xYrCI+YnwNJI0j1twD4R0Q8kGQ8SUgXSETEiqRjKSaf+y9J2igiapKOo7WTdDypSuIHwKz06t1J9RW7LiL+nFRsmSR9rbHtEfGPYsXSmPRdcfVtAYwAfhsRJXEJVdIS4Npsm4DvRcT2WbaVjHSr06iIuDzpWGpJ6gtcCNTesTkPuLr2h00xuCWsCZKuJNUH4y/pVedIGlJC2XxBSeoH/An4SmpRS4ETI2JespEVXms+95I6kfqlWJeAApcDHyYWlAEQEXdIeg+4gi8rjxeBSyLi78lFto5TIuLkpIPIQcd6ywH8H3B8iXUkv4l1Y611czEDaYykCyPi6vTjkRFxL0BEvCypfj+sRKWTrROTjMEtYU2QNIdU59I16eUKYFZEVCYbWXFIehr4UUQ8mV4eCvwsIvZKMq5iaM3nXtJ9pCr229OrTgB2i4ijkovKWhJJz0fE7knHYcWVed7rfwdK6TuReWk8m2JdLndLWG46A8vTjzslGEcSNqtNwAAiYkp62ILWojOt89zvFBGZd1td1oruii1pkq5rbHtEnFOsWJqwqaQBfHmX8Voi4vls64tN0lbAWcD7wC2k7gDeF3gF+EGxBu1sSroV6Vuk4nwAuIBUS/UrwE8i4r0Ew8ukBh5nW07SEOANUjcR/IuEYnMS1rSfA7PS456I1Jd+bLIhFdWrki4GavuZHA+8mmA8xdSaz/1KSftkjCa9N7Ay4Zgs5UxSrZT3AG9RWhVbpu2AX5I9vgAOKG44DbqT1DhhPYHngFuB35BKxG4GhiYW2dr+BKwCNiPVH/BFUsNB7ENq7MZvJBbZ2qKBx9mWk/QfwEHAsaRG838QmFDsrja+HJkDSduQ6hsE8FztXUmtgaQtSA0AuU961T+BcRHxfnJRFU9rPfeSdiNV6HciVYkuB06OiBcSDcxI36U7klSrSA1wNzAxIj5IMq76JM2KiAFJx9EUSS9ExG7pMQBfj4huGdtmR0T/5KL7kqQXI6KvpI2AJRHxHxnbXoiI3RIMr46kNcAKUuXGJsCntZuA9hFRcsNVSGpHKhm7BrgsIn5brNd2S1hu2gDvkfq8dpa0c0Q8lXBMRZFOtkrl8kYSWuW5Tydbuyk9XVF65gArAVmGABhFakaDH5bKnZFpLeUX/mqAiIj0DQ+ZSmnIjy8AIqJG0lv1tq1OIJ6GvNASkm+oS74OI5WAdQeuA/5azBichDVB0lWkfnHO48v/kEFqOp+yl76t+HxSX9C670tElMqlhIJpzec+XTgdTfq8104UUEq3l7d2knYnVXkcRGpWg5nJRrSOkmiZyUHteGZi3bHNso6mn5Cu6f6AynhMenm75MJaR4tIviX9idQgtw+Rav0q2rAUa8Xhy5GNk/QSUBkRnycdSxIkvUDqV/dMMn5tRUSpFfh515rPvaSHSQ1HUf+8/zKxoAwASZeT+vW+ALgLeLgUx29rQZcjW8p4Zic1tj0ibm9se7E0Mp4ZABHR4LZiSl82rR3kNjMREqmG0c2LEYdbwpr2KqkpF1pdRZxWExG/TzqIhLTmc981Ikplzjxb24+B10i1NO0G/CzdUllbeZTKECqd0vMvZpWeFihxmUmWpC7pdUuTi6hBu7SQMQorgA6U7g0jtUrisqmTsAZIup5UdvwpMFvS42RUxiV0G3hBSPpK+uEDkr5D6jp55vtfnvWJZaC1n/u0pyX1K7HBKi2llC6RNaYTqTv2Gro7siSSsHSH/EuA75LqAypJNcD1JXb5fTipKXVK3dsl9rk1pCQuAzoJa9iM9L8zgUYHdStT9S83XpDxOIAdixhLsbXacy9pLqnzuxFwiqRXSSWgpdbK0prdFBHDkg4iB69HxKlJB5GD80jd/T0oIl4DSM+R+3tJ50XErxKN7ksV6bvVGxp3rVR+GJd6C1itrRuYsgoo3mVT9wlrhKT+wFeBeRGxIOFwrIha67lPT9TdoIh4vVixWHYtqK9Vi4kTOKj+YKfpS5OTS+U9SPoceJMGWhYjoiR+GEv6SgklhA2S9DbwexpOai8rShxOwrJLD1B6AqnWkD2An5fKRK7FIKknqTFTvgrMBc6PiDeTjao4WvO5T4/KfSZfnvc/lmKn79Ys3Tp5fkPbS6WvlaS+9e84S49OvyxKqOKpHX9rfbcVW0tJaluKUplCyZcjGzaK1LyBn6YHR3yY1ASqrcUtpAbrfAoYAVwPtJZ5A1vzub+d1Kjc/wQOAXoD5yYakdXXIvpaAR0kTSE10O9PSM26sRXQRtKJEfFwksFl+KKZ26xlK4nLpk7CGvZ5RHwKqcERJbVJOqAi65jR+nONpJKY561IWvO57x0R/QAk/ZHUNC5WWlpKX6vfkupI3gl4AjgkIp6VtCup+fpKJQnbTVK2wYgFtC92MI34TdIBlJmvJx0AOAlrTP1B+3bKnHW9WDOsJ6h9vcl3N8lcLpXJdwukNZ/7VbUP0iNzJxmLZddSTspGETEZUmObRcSzABGxsJS+VxFRkXQMOTqqiSE/yrlcyrtS6bfmPmENaCkD+BVK+jJCQ1+OKOcR81vzuZe0mi8HMMyc+62oAxhaw1pQX6u6Pjf1+9+USn+clkTSUuANUq2I/6JeMl7O5VI5cxJm1gBJ50bEb5paZ1ZMkvYEriRLXyugZPpaZST0LWYi51ImqYLUFFXHApXAg8CEiJiXaGC2QVpTX5f1ImmupDlZ/uamp/Ipa5IuzHg8st62nxU/okRkmybk5GIHUUySBjWy7YRixmIN+i3wM1ItIk8AoyPiP4D9gJ8nGVimiKiIiM0jomNEbJR+XLvsBGw9RcTqiHg4Ik4C9gQWA1MknZ1waLYB3BLWgAbGSxKwPXBRRBxa5JCKqjVfSpB0LPBfpAZw/GfGpo7AmogoiQ6dhSBpDjCN1Hf8g/S6vsDvgOURcURy0RmApNkR0T/9eEFE9MrY5mEMypikdqTmDT0W6E5qMOlbWsvwQeXIHfMbkDkoZbpD+n8BI0nN2XZfUnEVkRp4nG253DwNvE3qEk/mhNUfA3MSiah4dic1O8IsST8B+gGHAj+IiL8lGpnVWpPxeGW9bf5VXaYk/QnoCzwEXFa/X6C1TE7CGiBpZ1K/No4F3gPuJtVyuH+igRVPNPA423JZSSfgr0t6qn5nV0lXAT9MJrLCSw/M+vP03Hk3A28BgyPirWQjswy1QyqI1F3LtcMrlNqQCpZfx5PqY3cucE7GHaa+aaYF8+XIBkhaQ+pS1GkRsTi97tVSmRqi0NypNvtlV0lzynn+REk7AeNJJdrfIzVg69nATyPi1gRDMzMrO24Ja9hRpEZOf1LSw8BdlP9luDotaOycvJP0beA7pMYHy7z82JFUf6ly9ggwNiImppdfknQPcK2k0RGxd4KxmZmVFbeENUHSZsDhpC5LHkBqKp+/1g5CaOVHUidgC1J3mo3N2PRxqQzwVyiSOkTEiga2HRgRjxU7JjOzcuUkbD1I2oJU5/xvlfMdcvYlSfsAPSPi1vSAmB0j4rWk4yo0SftlWx8RTxU7FrNSJak78LdSmeTbWh4nYWYNkHQpUAXsEhE7S9oWuLc1XJKT9EDGYntgMDCznGdKMFtfTsJsQ3mwVrOGHQmMID2NT/oOwY6JRlQkEfHNjL+DSN0a/37ScZmVoI0k/UXSAkkTJW0q6RJJ0yW9KOlGpW9llHSOpPnpgb/vSq/bTNItkp6TNEvS4cm+HSsmJ2FmDfsiPRdfQF3/wNZqCdCryb3MWp9dgN+lB839iNRNPb+NiEHpFrJNgG+k9x0LDEjfYX1met2PgCciYjCwP3BNKy9rWhXfHWnWsHsk/QHoLOl04FTgpoRjKgpJ1/PleHBtgP7A84kFZFa63oiI2rum7wDOAV5LT/22KfAVYB7wAKnBnv8i6X7g/vRzhgEjJJ2fXm4PdAMWFCV6S5STMLMs0pcP7gZ2JfXrdhfgkoh4NNHAimdGxuMaUhMFl/vwHGbNkW0w698BVRHxhqRxfDmI7mGk5vj8JvAjSf1IDX10dES8VKR4rYS4Y75ZAyTNjYh+ScdhZqUp3TH/NWCviHhG0s2kWrAuJDW3YwXwLDARuBzoFhHVktoCrwO90/tuDnw3IkLSgIiYVfQ3Y4lwnzCzhj0vaVDSQRSTpJ6SbpN0raSukv4uaYWkF1rbZ2GWo5eAsyQtIDW+4O9JdVt4kdTgx9PT+1UAd0iaC8wCrouID4CfAG2BOZLmpZetlXBLmFkDJC0EvkrqF2vtFE5R5tMWTSU1IPHmwHmkpi56ANgXuCIi9kguOjOz8uIkzKwBknbItj49wXdZkjQ7IvqnHy+OiK9m22ZmZhvOHfPNGlCbbEnalFTfjdcjYmmyURXcmozHHzWyzczMNpBbwszqkTQCuA5YDvwYGA+8Q6qj7Q8j4vbkoissSZ8Ci9OLX814LGDHiPD4RWZmeeKWMLN1/YTU2D2dgCeByoh4VdLWwONA2SZhpAZkFXA1qdvoawm4KpGIzMzKlJMws3WtiYiXASS9FhGvAkTEu5Jqkg2tsDIuwX61ft83SR4x38wsj5yEma2rjaQtSA3hsib9WLXbkgur8CR9m9S0KztKmpOxqSPgwVrNzPLIfcLM6pFUTaoTurJsjojYsbgRFY+kTqTGOvo5qXnuan0cEcuTicrMrDw5CTMzMzNLgC9HmjVA0n7Z1kfEU8WOxczMyo9bwswaIOmBjMX2wGBgZkQckFBIZmZWRtwSZtaAiMgcogFJ2wO/TiYaMzMrN2V9p5dZni0hNY6WmZnZBnNLmFkDJF0P1F6vbwP0B55PLCAzMysr7hNm1gBJJ2Us1gDVEeGxsszMLC+chJmZmZklwH3CzOqR1FPSbZKuldRV0t8lrZD0gqRBScdnZmblwUmY2bpuBZ4G3gL+BdwCbAWcD/w2wbjMzKyM+HKkWT2SZkdE//TjxRHx1WzbzMzMNoRbwszWtSbj8UeNbDMzM2s2t4SZ1SPpU2BxevGrGY8F7BgRmyUSmJmZlRWPE2a2rl6kEq6rgcxR8wVclUhEZmZWdpyEmdUTEa8DSPpq7eNakjxivpmZ5YWTMLN6JH0b+A6wo6Q5GZs6Ah6s1czM8sJ9wszqkdQJ2AL4OTA2Y9PHEbE8majMzKzcOAkzMzMzS4CHqDAzMzNLgJMwMzMzswQ4CbOSIWmopL1y2O9kSes9fVCuxzczMysGJ2FWSoYChUySCn18MzOznDkJs4KTdKKkOZJekPRnSd+U9C9JsyQ9Jun/SeoOnAmcJ2m2pH2z7VfvuB0lvSapbXp589plSedImp9+3buyHb/Yn4OZmVkmjxNmBSWpD/BjYK+IeE/SV4AA9oyIkDQauDAifiDpBmBFRPwi/dwt6u8H/KD22BHxsaQpwGHA/cAo4H8iYpWksUCPiPhcUueI+KD+8c3MzJLkJMwK7QDg3oh4DyAilkvqB9wtaRtgY+C1Bp7bNYf9biaVnN0PnAKcnl4/B/iLpPvT28zMzEqKL0daEq4HfhsR/YAzgPbN3S8ipgHdJQ0FKiLixfSmw4DxwO7AdEn+wWFmZiXFSZgV2hPASElbAqQvR3YC3kxvPylj349JTQ1Uq6H96vsTcCdwa/o12gDbR8STwA/Tx+mQ5fhmZmaJcRJmBRUR84CfAv+Q9AJwLTAOuFfSTOC9jN0fAI7M6Djf0H71/YXUNEMT0ssVwB2S5gKzgOsi4oMsxzczM0uMpy2yFk/SMcDhEXFC0rGYmZnlyv1krEWTdD1wCHBo0rGYmZmtD7eEmZmZmSXAfcLMzMzMEuAkzMzMzCwBTsLMzMzMEuAkzMzMzCwBTsLMzMzMEuAkzMzMzCwB/x8hgfE4wE5IRgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(1,2, figsize=(10,5))\n", - "fig.subplots_adjust(wspace=0.2)\n", - "# Counts of different catalysts grouped by nucleophile\n", - "(b_df.replace(\"≥90%\", 0.9).\n", - " groupby([\"nucleophile\", \"catalyst\"])\n", - " [\"yield\"].\n", - " mean().\n", - " unstack(0).\n", - " plot.bar(ax=axes[0])\n", - ")\n", - "# Counts of different bases grouped by nucleophile\n", - "(b_df.replace(\"≥90%\", 0.9).\n", - " groupby([\"nucleophile\", \"base\"])\n", - " [\"yield\"].\n", - " mean().\n", - " unstack(0).\n", - " plot.bar(ax=axes[1])\n", - ")\n", - "for ax in axes:\n", - " ax.set_ylabel(\"average yield\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Differing Substrates" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Optimize aniline case with auxiliary data from benzamide case." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#Single-Task Bayesian Optimization\n", - "for i in range(N_REPEATS):\n", - " print(f\"Repeat {i}\")\n", - " exp = get_pretrained_baumgartner_cc_emulator()\n", - " result = run_stbo(exp, max_iterations=MAX_ITERATIONS)\n", - " result.save(f\"data/cross_coupling_different/stbo_cn_noise_repeat_{i}.json\")\n", - " clear_output(wait=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#Multi-Task Bayesian Optimization\n", - "pt_data = datasets[\"Benzamide\"]\n", - "pt_data[\"task\", \"METADATA\"] = 0\n", - "# Drop base=MTBD because not in other dataset\n", - "pt_data = pt_data[pt_data[\"base\"] != \"MTBD\"]\n", - "# Clean data\n", - "pt_data = pt_data.replace(\"≥90%\", 0.9)\n", - "for i in range(N_REPEATS):\n", - " print(f\"Repeat {i}\")\n", - " exp = get_pretrained_baumgartner_cc_emulator()\n", - " result = run_mtbo(exp, pt_data, max_iterations=MAX_ITERATIONS)\n", - " result.save(f\"data/cross_coupling_different/mtbo_cn_repeat_{i}.json\")\n", - " clear_output(wait=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "scrolled": true - }, - "outputs": [ + "cell_type": "code", + "source": [ + "from summit.strategies import STBO, MTBO, Transform, LHS, Chimera\n", + "from summit.benchmarks import (\n", + " MIT_case1,\n", + " MIT_case2,MIT_case3,\n", + " MIT_case4,\n", + " MIT_case5,\n", + " BaumgartnerCrossCouplingEmulator,\n", + " get_pretrained_baumgartner_cc_emulator,\n", + " ExperimentalEmulator\n", + ")\n", + "from summit.utils.dataset import DataSet\n", + "from summit.domain import *\n", + "import summit\n", + "import pathlib\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from typing import List\n", + "from IPython.display import clear_output\n", + "from copy import deepcopy\n", + "import pathlib" + ], + "outputs": [], + "execution_count": 3, + "metadata": {} + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n" - ] + "cell_type": "code", + "source": [ + "def run_stbo(exp, max_iterations=10, categorical_method=\"one-hot\"):\n", + " exp.reset()\n", + " strategy = STBO(exp.domain, \n", + " categorical_method=categorical_method)\n", + " r = summit.Runner(strategy=strategy, \n", + " experiment=exp, \n", + " max_iterations=max_iterations)\n", + " r.run()\n", + " return r\n", + "\n", + "def run_mtbo(exp, pt_data, max_iterations=10):\n", + " strategy = MTBO(exp.domain, \n", + " pretraining_data=pt_data,\n", + " categorical_method=\"one-hot\", \n", + " task=1)\n", + " r = summit.Runner(strategy=strategy,\n", + " experiment=exp, \n", + " max_iterations=max_iterations)\n", + " r.run()\n", + " return r\n", + "\n", + "def make_average_plot(results: List[summit.Runner], ax, label=None, color=None):\n", + " objective = results[0].experiment.domain.output_variables[0].name\n", + " yields = [r.experiment.data[objective] for r in results]\n", + " yields = np.array(yields)\n", + " mean_yield = np.mean(yields, axis=0)\n", + " std_yield = np.std(yields, axis=0)\n", + " x = np.arange(0, len(mean_yield), 1).astype(int)\n", + " ax.plot(x, mean_yield, label=label, linewidth=2)\n", + " ax.fill_between(x, mean_yield-std_yield, mean_yield+std_yield, alpha=0.1)\n", + "\n", + "def make_comparison_plot(*args):\n", + " fig, ax = plt.subplots(1)\n", + " for arg in args:\n", + " make_average_plot(arg['results'], ax, label=arg[\"label\"], color=arg.get(\"color\"))\n", + " fontdict = fontdict={\"size\":12}\n", + " ax.legend(loc = \"lower right\", prop=fontdict)\n", + " ax.set_xlim(0,20)\n", + " ax.set_xticks(np.arange(0, 20, 2).astype(int))\n", + " ax.set_ylabel('Yield', fontdict=fontdict)\n", + " ax.set_xlabel('Reactions', fontdict=fontdict)\n", + " ax.tick_params(direction='in')\n", + " return fig, ax" + ], + "outputs": [], + "execution_count": 4, + "metadata": {} }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEGCAYAAACD7ClEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABIeElEQVR4nO29eZxcZZXw/z331tZVvSXd2RcSIIGwB4EEkEVABEcBdzaFeUVEB9DRd3zFcRBnRl8dh/mNis7oKIgbjMrAMAoCwgvIEvawJSwhCdmXTnrvru3e8/vj3qqu3qt6qfX5fj71qbs8997T1VXnPM85z3OOqCoGg8FgqE2sUgtgMBgMhtJhjIDBYDDUMMYIGAwGQw1jjIDBYDDUMMYIGAwGQw1jjIDBYDDUMIFSC1Aora2tumTJklKLYTAYDBXDc88916aqs0Y6V3FGYMmSJTz77LOlFsNgMBgqBhF5e7Rzxh1kMBgMNYwxAgaDwVDDGCNgMBgMNYwxAgaDwVDDGCNgMBgMNYwxAgaDwVDDGCNgMBgMNYwxAoaJ4zrey2AwVCwVt1jMUEJcF5wEpBPgJAcMgBWAQHjgVVR5kuCmwAqCHQLL9GsMhkIwRsAwOhkl6yQgnQQ3PUq7NCTTkOwFEU8ZByKeQbDsKZbHN0CjyWMFIBDyZLBDU/t8g6EKMUbAMIDqQC/fSYKTmvg90glv3w56xsAOe8q5EPJR+sOu8Q0Sfd6+ZQ8YhKk2SgZDFWCMQClI9nnKbRAyvJ2McCy3rYi3nWkn1sD5QeeGvGfaqw4o/LT/PtU4Kd+Y9HjyBfxRgh0e7rpxncHy5KP0x8N1wO2HVL+3b9meYbJDngy2+QlUG8m0SzztkEy7gPdrEREsAUGyPwNLxD/nbeNvC35bGXivZswvoNjEOz0jUGpyDUGxUBdSce8Ffu885Cv/1NQo/fHIBLMzMojlGYVQfeEjFUPZkHJc4imHeMrFHfE7PbHvuW0JjZEgoUD1xpqMESgWqtDfPuAmKTXFVP6j4UzT6KMQ1B1wgdXNKG5ge5pR/3+c+Vfr0OPZ/cx5b0MQApZgWeXdA047LvG0p/wdd3q+z46rtPcliYZs6sOBqhwVGCNQDFwH+vYXp6drmBgZI11GhsB1FVcVV8n2bnP31fUUd2bfVQWdaJ93OJYIQVuwLSFoW9iWZxxKqQiLofhHoi/pkEi7VTkqMEZgukknPeWibqklMYxHxhBEmiEYmZJb5ipyRVEdUOSa8z70eBmM03BVSaQzknjTgQWwLCFoWQSGGIjpwnHVd/U4pIuo+EeSo70vSV3IpqGKRgXGCEwnyT5IdJWH66VMcVRRVWxLvKBdqVGFeAfQPMgQqA7ucWeUtuMOV+jlpMinGsVTho7rQM7AVgQCvmEIWJINtOaez27n/J8HHx9M0nGJp1xSTnl1oPqTDomUS2NdgHCg8mebGSMwXcS7vHnzZYiiJNIuqlAXLM2XWFH6kg79SSerLC3xepa2RdYnHbAs7GnocWXcKI47WKln3Cxu3x6ccBOuHalahT6VqHrB2VSNLCB3VenoSxEJujRGKntUYIzAVFNuAWCfjOJPplySrpsdnPSnHGJhm7BdPGOQcBx6E8N9uq4qrqPDFEnGBREQwbYzhsL3Tw/pPyoDvXPXH2UM7A/uyY9LXwdupMmb0mowjEA85U1FreRRgTECU4nreAZgIouspoFBit9xR+zNOq7S1Z8mZLvURwLT0uvO4KrSE0+TKHB4n3VBoBnXdBYRsC3Lc8O4U91jV6x4B264CYJ1U3pnQ/WQOypoCAfKflbVUIwRmCqclGcASpxQLaP4E74vNV+lmHRc2nuTRIIWsXBgyv3z/SmH3mR6ysMjqt6MkenESnTigjEEhjHJjAoaIgEiJXKzTgRjBKaCVNwLJpYoAOzN4nBJpgtT/ENRoD/lkkiniIbsKYkXpFyXnoQz7Yp6ujGGwJAPriqd/SkSKc8YVMKowBiBCaC5yj7RjUxDAHgkx0buYxVveXwi7ZKehOIfCVeVnkSaeNolFrIJ2YXPi1aU3kSa/lRlK/9cPEOgEIyWWhRDmRNPOyR6HRojQcIBq6wDx8YIFEDacemOp0k6LqgiiU4kHR/zmnz+9eU68yTtuHT2u4Rti1gB8YJ42gv8jrx8v7KxEl3+iMAYAsPYqEJn/0B8MJPDyMtPVFg+I1u8abfTMbIwRiAPXFfpSabpT/r+fnWReDuSRwC4GtRgwnFJ9nqLZKIhe9R4gaNK7wQCv5WGMQSGiaD4XgTNPVIYmZlytm8QbMszJNnp1RMwFEUxAiJyM/A+YI+qHjHCeQG+C7wXLwfw5ar6fDFkG4++ZJqeRE5AUxWrr63mVgAr3tL5eMolFraJDJkO159K05twqsLo5YNnCBSCsVKLYqghxpoplyEzyhgwCmPfs1hJMH4GnDPG+XOBZf7rSuDfiiDTmCTSDvt6EnTHB89okVRfzRmAXFxVuuNp2vtTpFyXlOuyvy9JTw0ZgAxWohtS5bkg0FC7KN7vNOV4KbX7kmPPWCzKSEBVHxWRJWM0OR/4uXoR1zUi0iwi81R1ZzHky8Vxle54ikR6BEWvipgfPeDFCzr6atcYZrAS3b5ryIwIDJVJucQEFgBbc/a3+ceGGYG9e/dy3HHHZfevvPJKrrzyykkLoP6MmNw0BsNIx2t6FGAYGWMIJomql2FXHcR1stsF+8xHmogwaDLDKNujtRlWc0NH3h903E/HPcakCB02wSIPWbIFoayBbcS/18jnEGuMwlQDlIsRyJtZs2bx7LPPTuk9+5MOPYn0uLNZzCjAMBpWohsSPYN+dIN+oNkf9NBqb4zQRsdWPHkooQyjKqNhx4fsi4WKBWL7ysRCLQuwvOps2XN5BiHV9ZS76yDqF/bRtKf0a6xjJVPoN83v0x+7VbkYge3Aopz9hf6xaSWZdumOp/JLT5tOIKYegGFMdJByncofe9FRF1GX3FShI6sS8YzDIINhA37v3k1796kxRV9ejP1FLBcjcDdwtYjcDqwCOqczHuC4Xg6beDr/FA9mFGAwjIR6vXkcoDxyZhkKo1hTRG8DTgdaRWQb8DUgCKCq/w7cgzc9dAPeFNG/HP1uk+te9SXT9MTThd3FSSGlLoNoMBjKF3VzXFxpv5a17+4CEPHda5IzYhLA8tyGuccG+fann2LNDrponPMK/FVeN5tEgrbMCKBQM2JGAYaqZZDy8n31Imio3ldG04ske7B6dmH17sbu3T2w3bfXL8fqK0JfQSqZeApARpFm9gcUaCb4mnVF5bwGjjnejD//3dsfoU1GmQ+KaWSUvR/QngZ3l4qV/Rs1EPFewToI1KGBuuy+BnJe/j5Dzo1FubiD8kfVS9g2gfJ/fcnCDQBuetzUEAaD1bmFwP43Rjk7So9uhJ6eOClwkt7I00kgThJxEv5oNIGkE/75hN82t41/3VClro6nsPyArPjncR1klF+EioWGm3DDTWgk896MG25Ew824kSbvfKR5UBsCdQN/V6ovq9htX7lbvbsHtnt2Y6V6JvBplycqAbACqGWDFQDLRjPBc9URDJICLuK6wMAxUb+Up2aOgyRTkOyeFrkrzwgAJLoLNgKuqwNpHwpAUn0FX2OoLcJv/oGGR66v2IkDagVAMsrLBjeNlepD4u1Y8XboLOBedgg33ISk41h5KC21Izj1s3Fjc3Hr5+LE5uDG5uDGZqN2iNxgu6cUM/uZ9AvukH0d1E6tgdlN2VlOGcWcO/NpSJtB7ayg9xlZNojtbwf8z81X+HlOx8z/g1Q/mO6N1MRJIql+JO29SPcP7Kf6kXQ8e05S/ZDZ99vA70d9VGUaATft1e8N5Z+7pT81gRWt6nofqMEwEqrUvXgL9U9/F4Dk/BM8N8rgRqNcO8pBK4jaITQQBjvkbduZ7TBqB8EOD2uTPWaHfKVkD1FcNojfO83ZHtXl46SQRBdWogMr3okkOrHiHdljEu/ESnQi8Q7vPdHptXMSnisHzyA4sbm4sdm+gp+LW+8peSc2B7d+LhpuKprvu6LwjZTjWnQlhZRr42odailuENyA4obJKYvKQI1rvE6vq+CSyXpcbUYAINnj5XbP4wukqvQmC++leaOASp7nZ5g2XIf6J/+JuldvRxF6T/zf9B95aamlmjrsIBptwYm2jJaiZmTScax4J2oH0cgMo+BHIJl22d/v0N6fZn9fmn193nt7n8M+/5i3n6Yj7pDPDPbJULlGwHU8QxBuGLdpf8opvN6LqnEFGUYmHafxoesIb34ItYJ0nfFNkgeeXWqpyoNABLfe1GQGbyLKbWv38cqufk+x+wq+O5F/EFmApohNyJZsSulMmmkrJ/20l0kUBH/bEiwGzr89xjMq1wgAJHu9pfrjpMkbL4HSiKRrO1GcYWQk3kHTfZ8juHstbqiBrrP/ldT848a/0FCBjDxNcyDtw0jpHrz3tKN87f63eeCN9mHX2wIzogFmRoPMjAaYEQ3Q4m/PjAaYGfPP1QVojgYIWJKNe2RXgI+wOnwsZn9+9HOVbQRUvYh5pGnUJvGUgzOB8ZQ1DdXCDJWN1b2dpns+S6BzM05sLp3n/gBn5sGlFmsSZKZfjuKyKVDRFP74kQKytj9vfkjHbtBQfvSUFyOt0tbM9NHxUnbkpu6YhBsrkXb429+/wp/fbCcasvn8WctY0FzHzFiImbEQjXXBbMGYfBjrLx/0P8oGyEd6H53KNgLgBYiDMbBH/lMmNApI9ZtRgGEQgbb1NN57NXZ/G+mZy+g89we4sTmTvOvgnubwXEMjKKhs4jDGaZM5zxj7eZCrSHJn52S2M73TbDt/tk5GkcvQxVA5r2mg1BG8vmSaL/3uJZ7Z3E5jXYDvfmwlh81vnL4HDjJcE7tF5RsBgEQXRGcOP5x2SE2gypVZHGbIJbjtCRof+CJWqo/k/BPoOvtf0NCQWJRYuOFGBivaMZLEVUrAdNBiLHvEJqVWvOVCdzzFF37zIi9t62RmLMRNF63koNlDZ4uVH9VhBNIJSCchEBp0uC8xkViASRRnGCD8xt00PPJ1RNPED34v3af9PdjBYe0yqzQNtUl7b5LP3b6W13d3M6cxzE0XH8vimZVRfrQ6jAB4o4FAa3Y35bheQfgCMaMAAwCqRNf+lNgz3weg7+jL6T3hc6O6MdQYgJplT3eca379Apv39bFwRh0/uPhY5jZVzveheoyAk/J8+UEvT8aERgEmUZwBwE1T//i3qFv/WxSh56QvET/i4lGbq2WPODowVD87Ovq5+tcvsL2jn4Nmxfj+RStpqQ+XWqyCqB4jAF46iUAERykoTXQGMwowkO6n8U//h/CWR1A7RNe7/i/JA88a+5pAZQz7DVPL5rZerr7tBfZ2J1gxr4HvfmwlTdHK6wxUlxFwHUj20qsTsMSuYxLF1TjSv5+m+64luOdl3HAjne/5Lum5x457nXEF1R5v7O7m2tteoL0vxTGLmrnxo0dTH65MdVqZUo+Bm+ghroVPQTOjgNrG6tpK072fJdC5Bad+Hp3n/hBnxoHjXufl6hl51oyhOnl5eyd//Z9r6Y6nWbV0Jv/04aOIBCv3O1B1RqA/mQLtzSudRBaTKK42URe7ayuBPS9Tv+ZGrP79pFsOofOcm3Bjs/O7hRkF1BTPbt7P//7tS/SnHE5fPot/uOAIQoHpr7swnVSVEVCU/pSDaB8ajObdQzOJ4moA18Hu2kJg7zoCbesItL1GoO21QfnskwtW0/XuG0fIBDoa4uXPN9QEj29o47r/eplE2uWcI+byd+9bQWCclDXFQgDbEmxLsCzBFsnu2+OsSakqIxDPJopTJNmNRprHv8gkiqs+3DR2xyZf0a8j2LaeQNtrfl71wTjRWaRbV5Cadxz9R1xc0CwfDYQrZ9GXYVI8uH431//3q6Rd5YMrF/A35xxSUOqHySJ4SeECoyh5y5q4LFVlBPpTA+sCJB1HndT4P2qTKK40pOMEdz5HaMczkI57qYutkPduB8EK+bnzQ6gV9M8HB/LnW147tYKIutj73yC4dx2Bfa8RaHsdcYYH+Z3YXNKtK0jPWuEp/tbD0GjrCMLlh3EF1Qa/f2kH3/jDelyFS1Yt5pozDkam0QAIELAtgrYQtC2CtoU9CSU/HlVjBOLp4YniJNmN1g1PJzGojRkFFAdV7PYNhLY9QWjrEwR3PT+tazKchvmkW1aQnnUYqdYVpFsPRetapu4BYpkVwjXAb5/dyj/f75UN/dQpS/nkO5dOuQEQgZCv7IO+8p9OIzOUqjECIyWKEyeJpuOj/1jTca/eqmFakHgHoe1rCG59gtD2J7F79ww6n2o9jNTCE3GjLeCk/fq4Sb92bgpx/Xq7mXcnBa63oG/gXBrUJd281Ovltx7mKfx8XIGTwIwCyhNV5a29vfz5zb28vL0Td7xB/hi6NpV2efZtLxX0589axkUnLJ4SGQOWEAxYhGyLgCUE7NLGFarCCCSc0dNFS7J71B9sTU8LTfVh9bWh4UYvGdpUTHN00wT2vJzt7Qf2vjqokLlT10pq4YkkF51EcsHqcUdp5YyagHDZkHZc1m7t4NE32/jzm3vZ0TF1630E+PK5h3LBygUTvj5oWwQDXg8/ZFtF7eXnQ1UYgf7k6OZeXAdN9UFwyKrOTM+yBpB4p+8rf81/X4/d+bZfkBsUQcMNaLgJN9yEG2lGw43+u3dMI8244Ub/vQmNNKHBeqyenQMunh1PDyourlaQ5NyVJBeeRHLRSTgzl1dFINWkiSg9PYk0a97ax5/fbOPxt9rojg8kfZwRDfLOZa2sWtpCNDS5zs3CGXUc0BKb8PXhgF32q4gr3gikXHfcdNFWsgc3MLgesVRj0RhVrL69BNrWZ5V9oO117J4dw5tKAKd+LpLqwUp0IYkuSHRhszX/x4mN6GB3WrrpAJILTyK16CSS844bbnyrgQodBagqibRLX9KhL5n23/3thLfdm0wjwPzmOhbOqGN+c13ZLITa3RXn0Tf28uc323ju7XbSOaP/JS1RTlk2i1OXt3L4/KZpDaQWQiRUHlNIx6LijUB/Poni1EVSvQPzv9004iSmV7DpRl2srm0E9r1GsO21rOK3+vcPb2pHSLcsJ916KOmWQz3f+YyDIOCn13AdJNmFFe9EEp1Y8Q4k0eW/d2IlOpF4h2csMu+JDqxUH26wntSCE7K9fbdhYsPmSqLUrqBk2qW9L8n+3uTAe2+K/b1JOvqT9CYGlHxvwnvvTzn0JRycgottQ0ssxALfICzIMQ4LmutoqQ9N21RJVeWN3T38+c29PPpGG6/vHhhlWgLHLGrmlGWtnLpsFotbyq+zYVtCOFAeBnQsKtoIOKok8kwXLclebwGZWJU9CnDT1L30C6Iv3oyV6Bp+OtQwWNm3HorTtGRsn79lo5EZOJEZhcniJL2KUTWUNsGbvjr1f2885bC3OzFIsWde7X0pX9En2d+XHOT6KJSQbREN2dSFbGKhANGwTTRkEw0F/Hcbx1V2dMTZ3tHPjo5+9vUm2deb5KVtncPuFw5YzGuKsGCGZxQWNNexYEYd0VCAtOuSdtR7uS5p19tOOZltl5SrOP75VKado/Qm0zy9aT+7uwY6a5GgxeqlLZy6fBYnHdTCjFhomDzlRF2ZjKDGo2hGQETOAb6LV57oJ6r6rSHnFwO3As1+my+r6j1j3bMvWciPQZFkDxqMVWyiOLvtNRoevYFg23rAX+jUcqin9H3F7zYsKJ7f3S7vH+F0UOgoIKPc23oStPUk/fcEbd052z1JehL5f5dtEZqjwWzN2hn++8xoiOZokPqwr9yDvmIPe0o+FrILnoniuEpbT4Lt7f1s6+hnR3s/2zv6swaivS/F5n19bN43PVOtW2IhTlnWyinLZ3H8khkV0bPOYIxADiJiAz8A3g1sA54RkbtVdV1Os68Cv1HVfxORw4B7gCWj3dNVJZEqbJGXpPq8TKOVliIinSD6/I+JvngLog5O/Ty6T/k7UotOLrVkNYYMmm7cHU+xszPOzs44uzrj7OmOT1i5B22htT6cVewzYyFmRHO3gxMuVD4ZbEuY0xhhTmOEYw8YPlLsSaTZ4RuE7R39bPeNRCLlErC96Y8Bf6Vr0La8Y5Y3U8b2p0cG/WPedEm/nSUcNr+RFfMai7oyd6oIB6xJreItJsUaCZwAbFDVjQAicjtwPpBrBBTIVGRuAoZHM3PoTzkTUuWVFgsI7Hqehke+TqBzM4rQd/hF9B1/DRqa+IwFw/ioKu39Dju7U+zqSrKjO8XOHpddvbvY2RFnZ1c/vXnEozLK3XuFvPeGge1Z/rnGukDZTR3Mh/pwgOVzGlg+p4CEjTVAuQTT86FYRmABDJp2sg1YNaTNDcD9InINEANGreSRSRRXzUiyh9jT36Nu3X8CkG5eSvepN5Cee0xpBasy4mmXF3f0sW53P7u6U+zoSrGrO8nO7hSJ9NjdjLqgzdymCHObIsxvijC7IUJrQ3Uod8PEsUSMEZggFwE/U9UbReRE4BcicoTq4MQ+e/ft4x2nnkNmdtjHL7mQT1w6eum/SiS05c/U//kfsXt3oRKgb+X/om/lp2rSBz/VqCob9iVYs6WHp97uYe2OPhLOyMq+IWwxtyHE/MYgcxtDzG2ZwbymOuY2RZjXFKGpLmgUvGEYdZNcm1BsimUEtgOLcvYX+sdy+SRwDoCqPikiEaAVGJRrYFZLC/fdczfuBKa6lTsSb6f+iX8issGLh6dmHU73qTfgtCwvsWRTj6vK/W908usX9hGwhGWtEQ5ujbCsNczBLRHqw1P3Q2rrTfH0ll7WbOnh6a297Osb7Kc/ZFaElQuiLGoKMbchxLzGIPMagoNk0GAUDTcOvbXBMIxKCQhnKJYReAZYJiJL8ZT/hcDQ7vsW4EzgZyKyAogAe4feSFWrzwCoEn7rj9Q/8W2seDtqR+g9/rP0H3EJWOU0WJsa1rzdw/cf380bbQOztF7eNTjN87yGoG8YwlkDsagplNcioHjK5YUdfTy1pYentvSwYd/gONCsWIBVi+tZvbie4xfFmBkd/zM2uYIM+RCa5oyf00FRNIyqpkXkauA+vOmfN6vqqyLy98Czqno38EXgP0Tkr/GCxJerDtf2o4zcKxarZxf1j/0j4S1/BiA5/3i6T/0abuOica6cOLu7Uzy/vZeOuMO7DmpgbkNx3Ezr9/Rz0+O7eXqrt05jdizAlatnM78xyJttCTbsi/Pm3jgb9yfY2Z1iZ3eKRzcNLBAK28KBLQNGYXlrhINawjRGbN5si/PUll6e2uK5eJI5X5RIQDh2QcxX/DGWzgwX5Mbx0kQYV5xhfCrNFQQgI+jZsuaYo4/SB+69u9RiTB51iaz/HbGn/hUr1YsbaqB39ReIH/KBKZ/nv6MryfPb+3h+ey/Pb+tle9dAziRL4KQD6rng8BmcvLSBwDT0YrZ1JPm3Nbu5/w1vcVtD2OLy42bx0aNnEhmhNF/aVbZ2JHmzLc6Gtrj3vi/Bru6Rcz1FAkI8J4grwKGzI5ywyOvtHzWvblIlADVUX0C1MUOtIgKz6gvrYBQLEXlOVY8b6Vz1+RoqALtjM/WPfp3QrucBSCx5Fz0nfyXvurZjoaps68xR+tv7hinPWMjimPlRIgGLRzd289jmHh7b3MOsWID3H9bM+YfPYH7j5Hu++/vS/PTpvdzxyn4cF0K28LGjZ3LZca00RUb/6gUsYenMMEtnhjl7eVP2eFfcYcO+jGFIsKEtzoZ9ceJpZXZ9gNWL61m1uJ7jF8aYkYeLJ1+MK8iQD5GgXZYGYDzMSKCISLyT6NqfUPfKbYibwq1rofvk60guPWvCvX9V5e32ZFbhP7+9l729gwOfjWGbY+ZHOXZBlGMXxljeGsn6Ldv70vzhtQ7ufKWdLR1ekRcBVvujg1OXNhCwC5OtN+nw6xf28cvn99GXchHgL1Y08+nVs6bc9eSq0tHvMKNuen6AagenthiNoWppiYVKXhtgNMYaCRgjUAzSCepevZ3oC/+RTbXcv/x8eld/EY00jXPxAMm0y66eFDs6U7zdkWDt9j6e39HH/iGzXZojNisXRDl2QYxjF8Q4uDU87qpLVeWFHX3c+Uo7D23oyvrUZ0YDnOePDhY2ja3A045y56vt/OSpPezv99ZxvHNJPX910hwObq3M3rQbboCgWZhnGJugbTGzjHMZGSNQKtQlvOFeYs/clE3nnJx/Ar2rv0C6dcWw5o6r7O1Nsb0zxY6uJDu6Br/v7UmPuEq6JRrwevkLYhy7IFpw4HMoHf1p7nmtk7teaWdT+8DMmlWLYnzgiBmcemADwZwej6vKg2928W9P7mFrpzeaOHJuHVefPIdjF1SyAhXc2CyvlKTBMAaNkWBZB4WNEZgiehIOt7+4jw1tCb8ItBCyvbwoIX8/Uz1oac8LnLL1R8zqexOAjtiBvLzss+yftYpAwKK9z2FHV5LtvpLf2ZViV3dqUI70oVgCc+qDzG8MsqApxBFz6zh2QYzFzaHpcYWo8tLOfu58ZT9/erMru6hqRp2djR3s7k7x/cd3s36PN91zcXOIvzppDu86qKEi/aO5qB1G6wrMrGqoOQSY1VCeAeEMxghMkmTa5Xcv7+fmZ9rojI+druIQ2cJ1gds43X4RgJ06kxvTH+G/nFNwGb9H2RINML8xyPzG0MB7k/c+tz5YsH9+quiKO9z7uhc7eGvf8PxLLdEAV66exXmHzZiWGUalwI00m2LyhnGJBG2a6sq7epiZHTRBHFf54+ud/GjNHnb6M2xWzo9yweFe7zDlKkk/P3q4fw8nbv8ZR7Xfj6DErSgPNn+UPzWcR5+GOd1Rkn4e9aSjNEXsrKJf0BRifmOIeQ1BIsHydD00Rmw+dnQLHz1qJq/s6ufOV9u5/41OApZw2TtaufCYFurKVPYJIRbY4VJLYagAKm2F8FCMERgBVeWJt3u46fHd2dWmB7WEufqkOZy8pH7QsE+S3UTX3kLd+l8iTsLL9XP4R+lb+SlOqJvJCaX6I6YJEeHIeVGOnBfl/5w+D0sYFB+oFtQOV0U9ZMP0ErBkUmtQygFjBIbw8s4+vv/4bl7Y4RXJmNsQ5KrVsznnkCF1S50UkfW/Jfb8j7Hi7QDEDzyb3uOvwW1aXArRi064wr/8Y6HByqwjbCgu5RwMzhdjBHw270/wgyd38/Bb3hTOpojNXx7XyoePmjlY2akS2vQA9U9/D7vLy46dmruSntVfID37qFKIbphqxDJpIgzjIkCkgiqdjUbNG4E9PSn+46m93L2uHVchHBAuPqaFT7yjdcRMlg0PfonIxvsBL8d/7wmfJ3nAacZ1UEVosPyKlhvKj3DArpjqYWNRs0agK+5w63Nt/OfafSQcxRb44BEzuOKEWcyqHznSb3dsIrLxfjRQR8/qLxI/9ANVmeWz1jFpIgz5EAlVhzu05jRYIu3ym5f287Nn2ujyywOeeXAjnzlxNgfMGHs2SPit+wDP9x8/7CPTLquh+KgVMIbdMC62JRVV9H4saurb/uLOPr5y71b29HhpFt6xIMo1J8/h8Ll5DP9Vs0YgcdB7plNMQwkxAWFDPlT6tNBcasoI3PjITvb0pFnWGuHqk2Zz4gH1ea/ys9s3EOjYiBtuJrWg2iZ+GrIEjBEwjE8l1RAej5oxAru7U6zfEyccEG7+yNKCF2VlRwFLzwSrvFcHGiaGtzagOvy8hukjHKi86mFjUTPf+EyFqhMX1xe+Kte4gmoCExA25EM1jQKghozAI295Va1OO6jwYuGBfa8R6NqCW9dCat6I6TcMFY+YPEGGcbFEjBGoRLoTDs9u78USL799oYTf+iMAiaVngVVdXwCDhwYiZq2HYVzKNbfXZKi+v2gEntjcg+PCMfOjNNcVGAZRJewvDkscdM40SGcoOWKZBWKGvKimWUEZaiIw/MhG3xV04ARcQXtfxu7egRObTWruMVMsmaHUaCCChhtNQNgwLiHbKtvykZOh6o1AMu3yxOYeAE47sKHg68MbMrOCzjaKopoQCzfcaOIAhryphmRxI1H1RuDZbb30plyWtYZZME6N3GGoS3hTxhVkZgVVCxqMoqEGEwMw5I1I9WbNrXojkJkaOhFXUHDXWuzePTj180nPPnKqRTMUGbVsNNxkMoQaCiYStMu6fORkqGoj4KryyMaMEZiAKygzK+igs02vsaIRNBRDgzHzfzRMiGoMCGeoaiOwbnc/bb1p5tQHOWRWgb5f1yG86U+AmRU0nWioHhBw4oiTmvr720Gv92+SwhkmSNC2qrJ6XoZRfxki8gtg3Cr0qvqJKZVoCskdBRQ6lAvufBarfx/pxsWkWw6dDvFqHMGNNOUEZmOoupBOIE4CSSfI4+s39v3D9RCMTYGshlqmmkcBMPY6gQ3AW/6rE7gAsIFt/nXnAx35PkhEzhGR10Vkg4h8eZQ2HxWRdSLyqoj8esQbuel8H8kjfpWw0w6aiCsoJ02EcSFMLWLh1s0cPjNHLAjWoZFm3Nhs3MgML4hb4AI9tcO40VZjAAyTRqjOBWK5jDoSUNWvZ7ZF5D7gL1T1zznH3gn8XT4PEREb+AHwbjwj8oyI3K2q63LaLAOuA05W1XYRmT3Svay+tnweydvtCTa1J2gIWxw7v0Bl4KYIb3oQMLOCphq1Amhkxvgrr0UgEEYDXo0HddPe6GAst5FYuKEGMOmgDVNEuIoDwhnydZSuBtYMOfYUcGKe158AbFDVjQAicjveSGJdTptPAT9Q1XYAVd0z0o2s+H6s7u24DQvGfOCjvivo5CUNBOwCXUHbn8ZKdJBuPhBnxsEFXWsYHW9hVtPERlZWAA0FGOY2cpKgLhqoQ8MNZi2HYUIIICKIDGxbAtEqXRuQS75G4AXgmyJyvar2i0gd8HVgbZ7XLwC25uxvA1YNabMcQEQex3M73aCqfxx2J1We+PZH+LvnWgH4+CUX8olLLx7W7GF/lfDpE5oVZFxBU42G6v0g8BSQcRsF67yogeuYnE6GLIIfzA1YWAKCr9xzti0RX9lT9T398cjXCFwO/BroFJF2YAbwLDBc+05OlmXA6cBC4FEROVJVOwa1EuF9i/s4+Qs34sxcNuKN9vWleXlnPyFbWH1AgYrHSRLe/BBgXEFTg3grc6fTRWMMQM0TsIRQwPJetlXzir0Q8jICqroZOElEFgPzgJ2quqWA52wHFuXsL/SP5bINeEpVU8AmEXkDzyg8k9vIjcxASBJ75ia63vPdER/2543dKHD8ohixAodzoW1PYCW7Sc9cjtO8tKBrKwqxUCvguVOm8RlupNkszjJMOZYI4aCn8EO2hVVFRV6KzVhTREdyrm7zX9nzqurm8ZxngGUishRP+V/I8FHEXcBFwC0i0ornHto49EZudBYa2E/47YcJ7FpLeoSkbgMJ4ybpCqpC1Ap4GTMDdSCCug6S7kdSfZDXvzLf59hoZKbppRumBBEI23a2t19Nlb1KzVgjgTRjT9QW//y4v3JVTYvI1cB9fvubVfVVEfl74FlVvds/d7aIrAMc4G9Udd+wm1kB+o68lNgL/0Hs6e/S+f6bB/nt+5IOT2/tRYBTlhZoBNJxQm8/DEC8qoyAeEHZYBTsIaUxLXvAX5+OI6m+SY8O1A6hkWYTpC1TcgOflojnH7cy257f3FXFUUVdstuuKjqZpRsFyhi0razSr+bFWqVmLCMwpb4QVb0HuGfIsetzthX4gv8ak/6jL6Nu3W8I7Xqe0NbHSS5+Z/bcmi29JB3lyLl1tMYKqwUc2voYVqqP1KzDcRsXjX9BuSMWGoyhwbr8FHIg4hkLN42k+pF0f8GjAw1GvdTMhqIiArav0C1riIKXAQWfOT9RVBVXPcPgquLmGIlcgwHDg69DA7KW33mzRjhnfPrFY6x1Am8PPea7gOao6s5plWocNNRA38pPUr/mX4g98z2Si07KKrmH/TKSp0+gjGTWFXRgZY8C1A75Lp8Jpkm2Ami4YWB0kO7Pa3TghhvMAq1pwBLBzih2S7Cz+94x25KiKU0RwRawMUq6WsgrMCwizcAPgQ8DKSAmIucBJ6jqV6dPvNHpP+xj1L38KwL7Xif81n0kDj6XtKM87tcOOLXQeECqj/CWRwE/YVzFId6UyWB06vLkiAxMxRxzdCBeANhf2GXIH8FT4rmvTA8+s28wTCf5Otr+HS91xAFApkv4JPCx6RAqLwIR+t5xFQCxZ24CJ8ULO3rpSjgsmRFiyYzCFFJ4y6NIOk5qztG49fOmQ+JpQS0bN9yAG5vtuWGmK1GaPzpwo7Nww01oJrYgFm60xRiAMbBECNkWkaBNLBygqS7IjGiIWfVhZjdGaKkP0xwN0RAJEg0FiARtE/w0FI18NcaZwHxVTYmIAqjq3tFSOxSL+PLzqHvxVgKdm4m8fieP7D0FmFjtgEpzBakdRIP1xVe+Q0YHiFXzAWDBc9MEhvToM24b4982lDP5GoFOoBXIxgL8NQMljQ1gBeg9/hqa/vRFos/9iKdShwJ2wVNDJdlDaOtjKELiwHdPj6xTSHb6ZamVS42lZ84o+6BlYdue0s8ofqPoDZVKvl24nwB3iMi7AEtETgRuxXMTlZTk0jNJzTocu7+N9/b/npZogMPnFrY6NfT2w4iTJDXvWNxYSQc3eSBeAjajdKYNwVuBGgkMuG9aYiFmN0ZorQ/TFA1SH/bcNgGzOtVQ4eTblfs20I+XCTQI3Az8CBh5yW4xEaH3hM/R/IcruSrwP3Qd8KHs1LN8qSRXkDudfv8axbbEU+h+zz5g5qQbaoh800YonsIvvdIfgdSCVTxnH807nBf5hN4F/J+8r5VEF6FtT6BikVh61rTJOBVoMGrSJE8hIduiLmQTqfKiIQbDWIyVNuJUVX3U3z5jtHaq+tB0CFYI2zuT3ND3Ef4n/CLLtt7B/t7LcWNz8ro2vOlBxE2TXLAKjbZMs6QTR60AGio8DYZhMAKEAzbRsG1WoRoMjD0S+KGInOHn9f/pKG0UOHDqxSqMRzd187IeyDN17+T4/seIPvcjek69fvwLgfDGCnAFiWXiAJNExCsTGA0FzNRLgyGHsVYMHyEibSLy16pa1uk0H/FXCe844tPos08Sef0u+o/6BE7zkjGvk/79BLc/jUqAxNIziyDpxPDiANXnssj0ygGSjos7DYlpbEuIhmzqaqBClMEwEcYbD38I+KqI/F5E5hdDoELp6E/zwo4+bAuOPOxw4odcgKhD9NkfjHtteNODiDokF672Ep6VIRqqn3j6hzJF/IpNLf5Mm6ZokFkNYWbVh2mOBomFA4QD1qQGPkHboqkuSGt9mGgoYAyAwTAKYwaGVfURETkKuAF4UUS+zuCSkCWPCTy+uQdX4YSFMRrCNn3HfprIm78nsvF++vdeTnrW4aNem3UFlWnGULVDU1eNqwywxOuVR0Mj98otSwhbNuGcb6XjKinH9V9K2nHHTG0bCdjUhbwVtwaDYXzGnR2kqgkR+QfgMOD/ArmV3kseE3h4SO0At34O/YdfRPSlnxF7+nt0/sWPRrxO+toI7nwOtYIkl7yraPLmjVhlOzoplIAlOb37wnrk3urbwTN40r5BSLkuqbSLo2r8/QbDBBnXCIjImcCPgeeBg0YrAF8K4mmXNW9nEsYNpIroO+Z/EXntDkLb1xDc/hSpBUPLGUN44wOIuiQWn1qGs278hGzTkI4hk7AsYFmIBek8etcTJWRbRMN21u8/VQRsi4ANdeOXsjAYDOMwphEQkZuBc4BrVfV3xREpf57e0ks8rayYHWFuw0DtAI000X/05cSe+T6xp79LxwW/GjazJlLGriA3XD/pkoy5yj5ge6kNgvbISclU1XO1uC6ptE46SBsxUzANhophvJFAEDhCVfcXQ5hCGSgjOTxhXN8RF1P3yq8J7n2V0OYHSeYsBLN6dhPc9QJqh0kuPq1o8uaDBiIF5eTPKnvbyuaxGU3Zj3oPEUIBIYQFvu1xXc8YpByXtOP55ccrMxcJ2cSMS8ZgqCjGCwx/vFiCFIrjKn/e1A3AaQeN4M4JRuk99tM0PP5NYs/cRPKA07PpFsIb7wcgufgUNFQ+RVDUstFw05htApZky+0VquwLwbKEyBBffG6ANuW4OK76M30CRIO2KfZtMFQgFZuE5uVdfbT3OyxoDHLQzJHTKccP/SDRl35OoGMTkTf+h/ihHwAg/NYfvfNl5QoaOTFcrtKfSGB1KskYngyubwTM9EuDoXKpWKftw29lRgGNoyshO0jv8X8FQPS5f4N0AqtrG8G9r6CBOpKLTymWuOOSSQwXtC2iIZumuiCzG8K01IdpiASJlOFiJ8ukUDYYKp6KHAmoKo9s9I3AOLUDEgedQ3rtLQT2v0Hduv8EN+0dP+A0CBSejE0EgpaF68vhyQOKMpFYasC2CIRjhOobCZm0xAaDochUpBHYuD/Bts4kzRGbo+ZFx24sFr0nXEvTH68m+sJPvFKIFD4rSASiQW8hkoxRZDtjDBTPSLhDDIT3rliWV3JQ7BBEy6BAjMFgqEkq0ghkRgGnHNhAII9gZHLRO0nOPZbQruexEp24wXqSC0/O61n5Kv9se2RAn4+n2MWCOpMYzmAwlI6KjAlkXUFL81zk5ReeyZBccvq4tXlFIBayaYmFvNwzeRiAgok0VWViOIPBUDlUnBFIOcq63f2EA8Kqxfnn1UnPPYbEUq9+cPyQ80dtVxTlDxCuh2B1JYYzGAyVR8W5g3qSDgKcuLieSLAwG9Z1xjexu/8Kp3l4ZuyM8o8E83P7TAgRsIIQCEG43FJVGAyGWqRoIwEROUdEXheRDSLy5THafUhEVESOG+l8d8IB4NRxZgWNiB0aZgAsEerDXs+/LjgNPX87BKGYF/ytnwOxFmMADAZD2VCUkYCI2HhF6t8NbAOeEZG7VXXdkHYNwOeAp0a7V1/SpVnglHzjAaPgpTW2pr7nbwc9xR8Ie+8m6GswGMqYYrmDTgA2qOpGABG5HTifIbUJgH8Avg38zWg3UuDoeVGa6yYm+pQrfzvov3ylb1VcmMVgMNQwxdJYC4CtOfvb/GNZRORYYJGq/mG8m50+Uq6gPGmsC0ze7ROKelM76+dArNWb5ROMGANgMBgqjrIIDIuIBfwLcHk+7X/yD1/klv52AD5+yYV84tKL83sO3mrfSWEFPKVvMBgMVUCxjMB2YFHO/kL/WIYG4AjgYT9twlzgbhE5T1Wfzb1R2BYe+q9bJyREYCry2wcml+ffYDAYyoli+S+eAZaJyFIRCQEXAndnTqpqp6q2quoSVV0CrAGGGQCAhsjEF1cF7amIAYy9yMxgMBgqiaIYAVVNA1cD9wHrgd+o6qsi8vcicl4h92qOTHzwEpisERAZd6WxwWAwVBJFiwmo6j3APUOOXT9K29NHu89kevOhybqDrKCZ8mkwGKqKmpnOYlsy+SmhJh5gMBiqjJoxAiYeYDAYDMOpISMwyT9VLDMSMBgMVUfNGIFJxwPs4NQIYjAYDGVETRgB2xKsyQZ0zawgg8FQhdSEEcin+ti4mHiAwWCoQmrCCEw6HmDZYJdFhg2DwWCYUmrECBhXkMFgMIxE1RsBEQhMNmmccQUZDIYqpeqNwKSzhoJXJ8BgMBiqkOo3ApN1BZlCMQaDoYqpeu026fTRZoGYwWCoYqraCAhTMRIw8QCDwVC9VLURCNjW5JLGiZiVwgaDoaqpaiMwJfEAkzraYDBUMVVtBCZdRMasDzAYDFVOVRuBySeNM0bAYDBUN1VrBCZdRMakijAYDDVA1RqBKYkHGAwGQ5VTxUZgsusDjCvIYDBUP8YIjIaJBxgMhhqgKo2AJYI9mamddtCkijAYDDVBVWq64GSLyJh4gMFgqBGq0wgEzPoAg8FgyIfqNAKTiQeImJGAwWCoGSrQCIzdy590ERmTKsJgMNQQFWcEdBwFP+kiMmYUYDAYaoiiGQEROUdEXheRDSLy5RHOf0FE1onISyLyoIgcMPKdLHSM6ZumnrDBYDDkT1HyIoiIDfwAeDewDXhGRO5W1XU5zV4AjlPVPhH5DPBPwMdGup+G6pH+xIjPmlQRGbFM6mhDTZBKpdi2bRvxeLzUohimiEgkwsKFCwkGC9NhxUqOcwKwQVU3AojI7cD5QNYIqOr/y2m/Brh01LvZQdQOI85gQzDpIjKmipihRti2bRsNDQ0sWbIEMTGwikdV2bdvH9u2bWPp0qUFXVssd9ACYGvO/jb/2Gh8Erh3rBtquGHYMXuyRWTMKmFDjRCPx2lpaTEGoEoQEVpaWiY0siu7NJkicilwHHDaSOf379vL2aed7LXVNB+/+GN84tKLAQhO1qSZeIChhjAGoLqY6P+zWEZgO7AoZ3+hf2wQInIW8LfAaao6otN/Zsss7n/kcW/HTWP1tWXPTSoeYAW89NEGg8FQQxTLHfQMsExElopICLgQuDu3gYisBH4EnKeqe/K6qxVAA3XZ3UkVkTHxAIPBUIMUxQioahq4GrgPWA/8RlVfFZG/F5Hz/GbfAeqB34rIWhG5e5TbDb53qB4QbEuwJpU0zriCDIZy4bHHHuOkk06iqamJmTNncvLJJ/P1r3+d+vp66uvriUQi2Lad3T/88MMBzyUSi8Wor6+ntbWViy66iI6Ojux9VZXvfOc7LFu2jLq6OhYvXsx1111HIjHybMNaoGjrBFT1HlVdrqoHqeo3/GPXq+rd/vZZqjpHVY/xX+eNfUcfy0aDdWZ9gMFQJXR1dfG+972Pa665hv3797N9+3a+9rWv8YEPfICenh56enr493//d0488cTs/quvvpq9/sUXX6Snp4eNGzfS3t7ODTfckD137bXX8uMf/5if//zndHd3c++99/Lggw/y0Y9+tAR/aXlQdoHhiaDBGEE3NfEbmFQRBkPZ8MYbbwBw0UUXAVBXV8fZZ59d8H0aGxs577zzuOuuuwB48803+eEPf8iTTz7JCSecAMDhhx/OHXfcwcEHH8xDDz3EGWecMTV/RAVRFUYAyyYYikG6f2LXm3iAocZZ8uU/FOU5m7/1F+O2Wb58ObZtc9lll3HhhReyevVqZsyYUfCz2tvbueuuu1i9ejUADz74IAsXLswagAyLFi1i9erVPPDAAzVpBCoud9BIWCLYkcaJ9+ZNPMBgKBsaGxt57LHHEBE+9alPMWvWLM477zx2796d1/XHHnsszc3NtLa2smXLFj796U8D0NbWxrx580a8Zt68ebS1tY14rtqpipFAyLa8SmDBKCR7C7tYxIwEDDVPPj30YrJixQp+9rOfAfDaa69x6aWX8vnPf57bbrtt3Guff/55Dj74YFKpFD/84Q855ZRTWLduHa2trezcuXPEa3bu3FnwSttqoSpGAtkiMqH6wkcDJmuowVDWHHrooVx++eW88sorBV0XDAa54oor2LRpE6+88gpnnHEGW7du5emnnx7UbuvWraxZs4YzzzxzKsWuGKrDCGTWB1gWhGKFXWxmBRkMZcVrr73GjTfeyLZt2wBPSd92221Z336+OI7DLbfcQl1dHQceeCDLly/nqquu4pJLLmHNmjU4jsOrr77Khz70Ic466yzOOuus6fhzyp6KNwIiQyqJBWNeNtB8MfEAg6GsaGho4KmnnmLVqlXEYjFWr17NEUccwY033pjX9UcffTT19fXMmDGDW2+9lTvvvJOZM2cCcNNNN3HFFVdw6aWXUl9fzznnnMPpp5/OHXfcMZ1/UlkjqlpqGQri6JXv0GzaCLx4wIzYEJdOohsSPePfzLKhfvYUS2gwlD/r169nxYoVpRbDMMWM9n8VkedU9biRrqn4kUAoMMKfEKrPbzRg4gEGg6HGqXgjMGJReZH8YgMmHmAwGGqcijYCYxaRCcXGzwpq4gEGg6HGqWgjELCt0XNojzcasIPebCKDwWCoYSpaC46bNC4YHX00YOIBBoPBUOlGYBzxRbwg8UiYeIDBYDBUthHIq4hMKOpVDctFxIwEDAaDgQo2ArYlWFaeKSKGxgZM6miDwWAAKtgIjOsKymXoaMCMAgwGgwGoYCNQcD3hcE5swMQDDIayZcmSJYRCoWGpnVeuXImIsHnzZs4999xsaclgMEgoFMruX3XVVTz88MNYlpU9tmDBAr72ta8Nul9HRwef+cxnmDt3LtFolCOPPJJbbrmlmH/qIJLJJCtWrGDhwoXZY21tbZx88sm0tLTQ3NzMiSeeyOOPPz7GXQqnYlNJj7hSeCyCdV6aadfxpocaDIayZenSpdx2221cc801ALz88sv09fVlz997773Z7csvv5yFCxfyj//4j9ljDz/8MPPnz88modu0aROnnHIKK1eu5IILLiCZTHLWWWcxe/ZsnnzySRYuXMiDDz7IZZddRnt7O1/4wheK9JcO8J3vfIdZs2bR3d2dPVZfX8/NN9/MsmXLEBH++7//m/e///3s2bOHQGBq1HdFjgQs8QrLF0yo3tQOMBgqgI9//OP8/Oc/z+7feuutfOITn5jw/ZYuXcpJJ53EunXrAPjFL37Bli1b+O1vf8vSpUsJBoOcc845fO973+P666+nq6tr3Hs+/PDDLFy4kBtvvJHZs2czb968CY8kNm3axC9/+Uuuu+66QccjkQiHHHIIlmWhqti2TXt7O/v375/Qc0aiIkcCBbuCMgQj468iNhhqkRuaivSczryarV69ml/84hesX7+e5cuXc/vtt/P444/z1a9+dUKPffPNN3n88ce56qqrAHjggQc499xzicUGTxr50Ic+xCWXXMKTTz7Je97znnHvu2vXLjo7O9m+fTsPPPAAH/7wh7nggguYMWMG3/rWt/jWt7416rUdHR3Z7WuuuYZvfvOb1NXVjdj2qKOO4rXXXiOVSnHFFVcwe/bUJb6syJFAtojMRDCuIIOhIsiMBh544AFWrFjBggULCrp+x44dNDc309jYyPLly1m1ahXvfOc7gdFLTQYCAVpbW/MuNRkMBrn++usJBoO8973vpb6+ntdffx2AL3/5y3R0dIz6ynDnnXfiOA4f+MAHRn3OSy+9RFdXF7/+9a+zf8NUUZEjgYJmBhkMhvHJs4deTD7+8Y9z6qmnsmnTpgm5gnJjAp2dnXz2s5/lsssu47bbbhu11GQ6naatrY3W1ta8ntHS0jLINx+NRunpySONvU9vby9f+tKXuOeee8ZtG4lEuOiii1ixYgXHHHMMRx99dN7PGYuK06Ze0riKE9tgMBTIAQccwNKlS7nnnnv44Ac/OKl7NTU1cfHFF/M///M/AJx11lnce++99PYOrkl+xx13EA6HC65iNhLf/OY3s7OTRnqB56bavHkzp5xyCnPnzuWDH/wgO3fuZO7cuWzevHnE+6ZSKTZu3Dhp+TJUnDY1a7wMhtrhpz/9KQ899NAw332h9PT0cPvtt3P44YcD3ihj4cKFfOQjH2Hz5s2kUinuu+8+rr32Wm644QaamrwYyeWXX87ll18+oWd+5StfoaenZ9QXwBFHHMHWrVtZu3Yta9eu5Sc/+Qlz5sxh7dq1LFq0iDVr1vDYY4+RTCbp7+/n29/+Nrt372bVqlWT+jxyqTh3kDECBkPtcNBBB0342h07dmR73Jne/a9+9avs/p/+9Ceuu+46Vq1aRVdXFwceeCDf+MY3uOKKK7L32Lp1KxdeeOHk/ogxCAQCzJ07N7s/c+ZMLMvKHkskElx77bVs3LiRYDDIkUceyR/+8Afmz58/ZTIUrbykiJwDfBewgZ+o6reGnA8DPwfeAewDPqaqm4fe5x3vOE6fe+7Z6RfYYKhiTHnJ8Ukmkxx99NG89NJLBIOVMaGkbMtLiogN/AA4FzgMuEhEDhvS7JNAu6oeDPx/wLdHvtd0SmowGAweoVCI9evXV4wBmCjFigmcAGxQ1Y2qmgRuB84f0uZ84FZ/+3fAmTJqxRiDwWAwTAXFMgILgK05+9v8YyO2UdU00Am0FEU6g8FgqFEqLjC8d+9ejjtuwLV15ZVXcuWVV5ZQIoPBYKhcimUEtgOLcvYX+sdGarNNRAJAE16AeBCzZs3i2WdNYNhgmCyqOnqNbkPFMdFJPsVyBz0DLBORpSISAi4E7h7S5m7gMn/7w8BDWqypSwZDjRGJRNi3b9+EFYehvFBV9u3bRyQSKfjaoowEVDUtIlcD9+FNEb1ZVV8Vkb8HnlXVu4GfAr8QkQ3AfjxDYTAYpoGFCxeybds29u7dW2pRDFNEJBIZVIsgX4q2TmCqOO6449S4gwwGgyF/Sr5OwGAwGAzlScUZgXIYvv74xz8utQhAechhZBigHOQoBxmgPOQoBxmgfOQYjYozAvnm+Z5OyuWfWg5yGBkGKAc5ykEGKA85ykEGKB85RqPijIDBYDAYpo6KCwyLSDfweonFaAVKPyQpDzmMDAOUgxzlIAOUhxzlIAOUhxwHqOqskU5UnBEwGAwGw9Rh3EEGg8FQwxgjYDAYDDVMxRgBETlHRF4XkQ0i8uUSybBIRP6fiKwTkVdF5HOlkMOXxRaRF0Tk9yWUoVlEficir4nIehE5sQQy/LX/v3hFRG4TkcLXzU/suTeLyB4ReSXn2EwReUBE3vTfZ5RAhu/4/4+XROROEWmeThlGkyPn3BdFREUkv8rtUyyDiFzjfx6visg/TacMo8khIseIyBoRWSsiz4rICdMtRyFUhBHIsyhNMUgDX1TVw4DVwF+VSA6AzwHrS/TsDN8F/qiqhwJHF1seEVkAXAscp6pH4KUkKVa6kZ8B5ww59mXgQVVdBjzo7xdbhgeAI1T1KOAN4LpplmE0ORCRRcDZwJZSyCAi78KrU3K0qh4O/HMp5AD+Cfi6qh4DXO/vlw0VYQTIryjNtKOqO1X1eX+7G0/pDa2LMO2IyELgL4CfFPvZOTI0Aafi5XxCVZOq2lECUQJAnZ95NgrsKMZDVfVRvBxXueQWRroVuKDYMqjq/X49DoA1eBl7p5VRPgvwKgR+CZj22SejyPAZ4FuqmvDb7CmRHAo0+ttNFOk7mi+VYgTyKUpTVERkCbASeKoEj/9XvB+XW4JnZ1gK7AVu8d1SPxGRWDEFUNXteL27LcBOoFNV7y+mDEOYo6o7/e1dwJwSygLwv4B7S/FgETkf2K6qL5bi+T7LgVNE5CkReUREji+RHJ8HviMiW/G+r8UYneVNpRiBskJE6oE7gM+raleRn/0+YI+qPlfM545AADgW+DdVXQn0Mv3uj0H4Pvfz8QzSfCAmIpcWU4bR8NOgl2z+tYj8LZ778lcleHYU+Aqe66OUBICZeK7bvwF+U6KStZ8B/lpVFwF/jT96LhcqxQjkU5SmKIhIEM8A/EpV/6sEIpwMnCcim/HcYmeIyC9LIMc2YJuqZkZCv8MzCsXkLGCTqu5V1RTwX8BJRZYhl90iMg/Af59298NIiMjlwPuAS0pUk+MgPMP8ov89XQg8LyJziyzHNuC/1ONpvJHztAaoR+EyvO8mwG/x3NtlQ6UYgXyK0kw7fi/ip8B6Vf2XYj8fQFWvU9WFqroE73N4SFWL3vtV1V3AVhE5xD90JrCuyGJsAVaLSNT/35xJaYPluYWRLgP+u9gCiMg5eK7C81S1r9jPB1DVl1V1tqou8b+n24Bj/e9MMbkLeBeAiCwHQpRm5e4O4DR/+wzgzRLIMDqqWhEv4L14sx3eAv62RDK8E2+I/xKw1n+9t4SfyenA70v4/GOAZ/3P4y5gRglk+DrwGvAK8AsgXKTn3oYXh0jhKblPAi14s4LeBP4EzCyBDBvw4meZ7+e/l+KzGHJ+M9Bags8iBPzS/248D5xRou/FO4HngBfxYojvKMZ3NN+XSRthMBgMNUyluIMMBoPBMA0YI2AwGAw1jDECBoPBUMMYI2AwGAw1jDECBoPBUMMYI2AwTCMi0iMiB5ZaDoNhNIwRMFQtIrJZRPp9RbxLRH7mp/yYruc9LCJX5B5T1XpV3ThdzzQYJosxAoZq5/2qWo+3sG0lZZa8y2AoNcYIGGoC9VIW3IdnDBCR1SLyhIh0iMiLInJ6pq2I/KVfJKdbRDaKyKdz7yUi5/sFQrpE5C3xCh59AzgFuMkfedzkt1UROdjfbhKRn4vIXhF5W0S+KiKWf+5yEXlMRP5ZRNpFZJOInJvzzMt9Wbr9c5dM6wdmqBkCpRbAYCgGfg2Gc4GH/GI0fwA+DvwRL+fQHSJyqKruxUv89j5gI17NhHtF5BlVfd6vCvVz4MN4KSLmAQ2q+kcRORn4paqOVufh+3j55A/ESzFxP16KgUxWyVV4dQhagSuBn/qyRoHvAcer6ut+crqZU/XZGGobMxIwVDt3iUg3Xj6dPcDXgEuBe1T1HlV1VfUBvBxI7wVQ1T+o6lvq8Qiesj7Fv98ngZtV9QH/2u2q+tp4QvjV8S4ErlPVblXdDNyIZ4gyvK2q/6GqDp4xmMdATQIXOEJE6tQrbvTqZD4UgyGDMQKGaucCVW3AS7Z3KF4v+wDgI74rqENEOvCSfGXSQJ/r14Td7597LwMpiBfhJTEslFYgCLydc+xtBhdHymbZ1IEMoPWq2gt8DLgK2CkifxCRQycgg8EwDGMEDDWB36P/GV5lp63AL1S1OecVU9VviUgYr17EP+NVCmsG7gEyxUi24uXLH/ExY4jQhpdZ8oCcY4vJsy6Gqt6nqu/GM1SvAf+Rz3UGw3gYI2CoJf4VeDfwBPB+EXmPiNgiEhGR0/24QQgI45XOTPvB2bNz7vFT4C9F5EwRsURkQU6vfDeev38YvovnN8A3RKRBRA4AvoCX6nhMRGSOH4yOAQmgh9KWFjVUEcYIGGoGP+j7c+BavLKUX8FT9lvxyg9aqtrtn/8N0A5cTE4BI/UqVP0lXhH1TuARBnr33wU+7M/u+d4IIlyDV4ZzI/AY8Gvg5jxEt/AMxg68Iuan4ZUsNBgmjaknYDAYDDWMGQkYDAZDDWOMgMFgMNQwxggYDAZDDWOMgMFgMNQwxggYDAZDDWOMgMFgMNQwxggYDAZDDWOMgMFgMNQwxggYDAZDDfP/AzR2e1d0U4zKAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "stbo_results = [summit.Runner.load(f\"data/cross_coupling_different/stbo_cn_noise_repeat_{i}.json\") \n", - " for i in range(10)]\n", - "mtbo_results = [summit.Runner.load(f\"data/cross_coupling_different/mtbo_cn_repeat_{i}.json\") \n", - " for i in range(10)]\n", - "fig, ax = make_comparison_plot(\n", - " dict(results=stbo_results, label=\"STBO\"),\n", - " dict(results=mtbo_results,label=\"MTBO, n=43\"),\n", - ")\n", - "fig.savefig(\"figures/stbo_mtbo_cn_different.png\", bbox_inches='tight', dpi=300)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ + "cell_type": "code", + "source": [ + "N_REPEATS = 10\n", + "MAX_ITERATIONS = 20" + ], + "outputs": [], + "execution_count": 39, + "metadata": {} + }, { - "data": { - "text/plain": [ - "tBuXPhos 20\n", - "tBuBrettPhos 1\n", - "Name: (catalyst, DATA), dtype: int64" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mtbo_results[0].experiment.data.catalyst.value_counts()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "stbo_results" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "source": [ + "## Kinetic Models" + ], + "metadata": {} + }, { - "data": { - "text/plain": [ - "BTMG 11\n", - "TEA 8\n", - "TMG 2\n", - "Name: (base, DATA), dtype: int64" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mtbo_results[6].experiment.data.base.value_counts()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Similar Substrates" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What if our auxiliary data is similar to the task being optimized? In this case primary amine to secondary amine.\n", - "\n", - "Since we don't have a benchmark for this, we first need to train a model." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ + "cell_type": "markdown", + "source": [ + "![](figures/baumgartner_mechanisms.png)" + ], + "metadata": {} + }, { - "data": { - "text/html": [ - "
NameTypeDescriptionValues
catalystcategorical, inputCatalyst type3 levels
basecategorical, inputBase4 levels
base_equivalentscontinuous, inputBase equivalents[1.0,2.5]
temperaturecontinuous, inputTemperature in degrees Celsius (ºC)[30,100]
t_rescontinuous, inputresidence time in seconds (s)[60,1800]
yieldcontinuous, maximize objectiveYield[0.0,1.0]
" + "cell_type": "markdown", + "source": [ + "We will use MIT case 1 as the auxiliary task for pretraining." ], - "text/plain": [ - "" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Create the domain based on Baumgartner, but with different bases\n", - "bases_primary = pd.unique(datasets[\"Phenethylamine\"][\"base\"])\n", - "bases_secondary = pd.unique(datasets[\"Morpholine\"][\"base\"])\n", - "assert bases_primary.all() == bases_secondary.all()\n", - "domain = BaumgartnerCrossCouplingEmulator.setup_domain()\n", - "new_domain = deepcopy(domain)\n", - "bases = list(pd.unique(datasets[\"Morpholine\"][\"base\"]))\n", - "new_domain[\"base\"] = CategoricalVariable(name=\"base\", description=\"Base\", levels=bases)\n", - "new_domain" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ + "metadata": {} + }, { - "data": { - "text/plain": [ - "(
,\n", - " array([],\n", - " dtype=object))" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" + "cell_type": "code", + "source": [ + "exp_pt = MIT_case1(noise_level=1)\n", + "exp_pt.domain" + ], + "outputs": [], + "execution_count": null, + "metadata": {} }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAFJCAYAAADaCVr3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABKuElEQVR4nO3dd3Sc133n//dFH/ROkAC72DsFiZ2okqhCUY1qlCXLjmXHVs46iZ145azXJSdx4nVynJ+dYnsVyVnZWmddIieSLQEzKOwEexc7CbCAJACizKAM5v7+AECDFSCIwcwAn9c5OMA8c+d5vsNh+fA+txhrLSIiIiISWGGBLkBEREREFMpEREREgoJCmYiIiEgQUCgTERERCQIKZSIiIiJBQKFMREREJAgolInIsGWM+cAY80o/21pjzD23eO6Txpj1g1udiMi1IgJdgIiIv1hrHw50DSIi/aWeMhEREZEgoFAmIiHNGPNlY8wvrjv2D8aY7xljyowxf9Dr+KeMMQeNMfXGmN8ZY8bf4pxpxpj3jDGNxpitwGQ/vw0REYUyEQl5/wdYZYxJBjDGRADPAz/p3cgYswZ4A3gKyAAqgZ/d4pw/AFqB0cCnur9ERPxKoUxEQpq19hxQAaztPrQKuGSt3X5d088Bf22tPWit9QJ/Bcy/vrfMGBMOPA18zVrbYq3dB7zt1zchIoJCmYgMD28DL3X//BLwbzdpMx74njGmwRjTANQBBsi+rl0GXZOgzvQ6dmpQqxURuQmFMhEZDn4NzDXGzAYeA965SZszwGettcm9vhzW2o3XtbsIeIGxvY6N80fRIiK9KZSJSMiz1rYC/w/4KbDVWnv6Js3+GfjvxphZAMaYJGPM2usbWWs7gV8CXzfGxBpjZgL9WutMRORuKJSJyHDxNjCHm9+6xFr7K+BvgHeNMY3APuBW65i9DsQD54G3gH8d7GJFRK5nrLWBrkFE5K4ZY8YBh4Asa21joOsREblT6ikTkZBnjAkD/gR4V4FMREKV30KZMeZNY0ytMWbfLZ433Qs8HjXG7DHGLPRXLSIyfBlj4oBG4AHgfwa4HBGRAfNnT9lbdK0XdCsPA1O6v14D/smPtYjIMNW9lli8tXaWtfZM368QEQlOfgtl1toKutYBupU1wE9sl81AsjFmtL/qEREREQlmgRxTls21izNWc+MijiIiIiIjQkSgC+iP+Ph423uWaHp6OhkZGQGsSERERPzlyqUr+Dp9hIX/vu+o53FSepJfrll37jLhEeFgzO8PWkunt5PU0Wm3fJ3b7aah/go+6yPMGKIioqg5W+Pu6OyIu9MaAhnKarh2xeyc7mM3mD59OlVVVUNSlIiIiATWT7/1FsmZqZiw3wck67M01Nbx4v/4pF+u+cGPfoO7yU1sQuzVYz2PH/7M6mvadnZ2smP7TpzOMi5dukxMWBSTMsczKjEdYwzPvv7ClYHUEMhQ9h7wujHmXWARcKV7Y2EREREZwVKy0m4ISJ4WDylZt+6xultz8xfgeudDABxxDjwtHjyNLSxevQyAmiPV7HJu59iZE1z0NtDqbSM7ewwvv7KOM5uO42n2YHr3sg2AP5fE+BmwCZhmjKk2xnzaGPM5Y8znupu8DxwHjgI/Aj7vr1pEREQkdMzNX4CnsQV3kxvrs7ib3HgaW5ibv8Bv18yekkPBugeJTYilobaO2IRYCtY9SPaUHE4eOMHP//XnbDy2nTOtF4gw4UyMGcMzjz7BnDmzmVew8Jp6DSZ8IDWExIr+ubm5VrcvRURERo6aI9XsKdtJ/fnLpGSlMTd/AdlTcoa0hra2Nn773u/YuGkzvjBLdGcE41NyyM4ajafZc82tzd71fvYvXz/b1NZ8x5MXQ2Kg/634fD6qq6tpaWkJdCkSRCIjI8nMzCQxMTHQpYiIyABlT8kZ8hDWw+NpZeOGTZSVVdDa2kpEuyGtM4GINkNd7QWSouKJT0mg/vzlm9a77muvDmg4VkiHskuXLmGMYdq0aYSFaccoAWstHo+HmpquOSMKZiIi0l9ut5vKig2sX7+R1tZW0uJSmJw+lqaTdXS0dRAZHQnAhZPnCI+KGPQxbiEdyhoaGpgwYYICmVxljCE2Npbs7GzOnj2rUCYiIn1qbmqmvLySTZs209bWzuzZsygqLqDiXz8iOSUVB1Gc2nscgPDICJrqm66ZBDBYQjqUdXZ2EhkZGegyJAg5HA46OjoCXYaIiASxK1euUF5WyebNW/F6vcybN4eiogKyRmcBv58FChAWEU79+Tp8nZ2kZKVenQQwmEI6lAF3Pf1Uhif9vhARkVupr6vH5Spn69YqrLUsWDifwsJ8MjOvXZh+bv4C/uuffsWl6otExzpIzkqhtaWVxPRkv9QV8qFMREREpD8uXbqE01nO9qodGGPIzV1IQWE+aWmpV9tcP+szMjqKmDgH3g4vjngHY6eNJzwqgj1lO9VTNtI8/PDDPP/887zyyiuBLkVERCQkXbhQi7PUxc6duwkPD2fJkkXkF6wkOTn5mnY1R6pxvfMhjsQ4kjNTcTe5qT58mqn3zSCx1/ZO1mevmXk5WIZVKPsfD3+ZprpGv50/ITWRb33wnT7bxcfHX/3Z7XYTHR1NeHjXOnL/8i//wrp16/p9zQ8++ODOC+02YcIELly4QHh4OPHx8axatYrvf//7V+v7zne+w9tvv82pU6dIT0/n85//PF/+8pcHfL1bKS0t5Qtf+AKnT59m0aJFvPXWW4wfP/6mbTdu3MgXv/hFDh48yMSJE/nHf/xHli9fDsBf/dVf8Vd/9VdX23Z2dtLW1kZtbS3p6emDXreIiIS2s2fPUVriYu/efURERLBi5XLy8pbfchLYnrKdOBLjru4kEJsQS1xyPDUfn7kmlPlrd4FhNW3Rn4HsTs7f3Nx89WvcuHH85je/ufq4dyDzer3+KvWqnmvv2rWLnTt38td//ddXn7PW8pOf/IT6+np++9vf8v3vf5933313UK9/6dIlnnrqKb71rW9RV1dHbm4uzz333E3b1tXVsXr1ar785S/T0NDAn/3Zn7F69Wrq6+sBeOONN675tf3zP/9z8vPzFchEREaQmiPVfPCj3/DTb73FBz/6DTVHqm9oc+ZMNW/967/x93/3Dxw+/DEFBXm88dU/Y/XqR247K7/+/GUccY5rjo25J4eWK81DsrvAsAplwa6srIycnBz+5m/+hqysLF599VXq6+t57LHHyMjIICUlhccee4zq6t//BsvPz+fHP/4xAG+99RbLly/nS1/6EikpKUycOLHfPWlZWVk89NBD7Nq16+qxP/uzP2PhwoVEREQwbdo01qxZw4YNGwb1Pf/yl79k1qxZrF27lpiYGL7+9a+ze/duDh06dEPbjRs3kpWVxdq1awkPD+ell14iIyODX/7ylze07QmUuq0rIjJy9NxedDe5r95edL3z4dVgdvLkKX78o3/lH773A44fP84DDxbxxlf/nIcfeeiau1i3kpKVhqfFc82xyJgopt4/46bbLw22YXX7MhScP3+euro6Tp06hc/nw+128+qrr/Lzn/+czs5OPvWpT/H666/z61//+qav37JlC6+88gqXLl3ihz/8IZ/+9Kepqanpc7ZhdXU1H3zwAYWFhTd93lpLZWUln/3sZ295juvvvff2la98ha985Ss3HN+/fz/z5s27+jguLo7Jkyezf/9+pk+fftM6rn+8b9++G9pVVlZSW1vL008/fcuaRERkeLnZ7UVrLeXvl9EY5eHYsePExcXx8CMPsXTpYmJiYu7o/D2zLU81NONt9xIRFUF8cjyP/uGTQ7K7gELZEAsLC+Mb3/gG0dHRQNd6Wr2DxVe/+lUKCgpu+frx48fzmc98BoBXXnmFz3/+81y4cIGsrKybtn/iiScwxtDc3ExhYSHf+MY3btru61//Oj6fj1dfffWW125oaOjr7d2gubmZjIxrpxgnJSXR1NR0Q9slS5Zw9uxZfvazn/HMM8/w05/+lGPHjuF2u29o+/bbb/PMM8/0638+IiIyPNSfv0xyZtdMSWstde4GTtZXc6W1iYSEBB5b/QhLFi8iKjrqLq5iwHZ3Etjux0NEoWyIZWRkXJPc3W43f/zHf8xvf/vbq2Onmpqa6OzsvDo5oLfe4Ss2tut/Cs3Nzbe83q9//WuKi4spLy/nxRdf5NKlSzf0eH3/+9/nJz/5CZWVlVfD4mCJj4+nsfHasXiNjY0kJCTc0DYtLY3/+I//4Etf+hJf+MIXeOihhyguLiYn59r/nbjdbv793/+d//iP/xjUWkVEJLilZKXR0tiCO6yNk5eraWptJio8kqmZE/nkH7961wvK7ynbSVpOBmNn/H4ymrvJ7ZflL25GoWyIXX+b8bvf/S6HDx9my5YtZGVlsWvXLhYsWHDDbby7lZeXxyc/+Um+9KUvXXNr9M033+Tb3/42FRUVN4Sf692uV+qNN97gjTfeuOH4rFmzePvtt68+bmlp4dixY8yaNeuWdW7btg3omggxadIk/vRP//SaNr/61a9ITU0lPz//tvWKiMjw4fP5iBmbwEZnFa2+dmIiopmYNJZ4bzRFTz40KDv89O6J6+GIc/S5/MX1a5tFhEU4bvuCW1AoC7CmpiYcDgfJycnU1dXd8vbiYPjiF7/IhAkT2L17N/PmzeOdd97hjTfewOVyMWnSpD5ff7seuVt58skn+fKXv8wvfvELHn30Ub75zW8yd+7cm44nA9i5cyezZ8/G4/Hwta99jbFjx/LQQw9d0+btt9/m5Zdf1qr9IiIjQGdnJ7t376G0pIza2lpSkpKZ6BhHtDuM1Kx05uYvGLRerJ5tlXrGrEHfy1/cbG2zuMjYUQO5/rCafZmQ6t/Np/1x/i9+8Yt4PB7S09NZvHgxq1atGvRr9MjIyODll1/mm9/8JgB/8Rd/weXLl7nvvvuIj48nPj6ez33uc4N+zV/84hd89atfJSUlhS1btlyz7MbnPve5a675t3/7t6SnpzN27FjOnTvHr371q2vOV1NTg9Pp5OWXXx7UOkVEJLh0dnaydWsV/+s7f8/PfvpzwsIM6156ga989ct86kufZt3XXuXhz6we1NuKc/MX4Glswd3k5srFBg5u2seB9Xtoutx406U34NrJBybMEJsQi8/6OgdyfTPYt8n8ITc311ZVVd1w/ODBg8yYMSMAFUko0O8PEZHQ4/V62bZ1Oy5XGfX1DWRnj6GouJBZs2YQFub/vqSaI9Ws/0UZH289SGR0FOGR4XS0dRAREc4Dn3qUBUX3XtP+p996i+TMVEzY7+/ePPv6C+ea2prH3Om1dftSREREAq69vZ0tW7ZR5qqgsbGRcePH8uRTa5g+fVq/h6tcP7ZrILc2s6fkkJiWxPhZEzl3/CzhEeFEO2JobXHz4Zv/Rea4Udec82a3PA3mxpl6/aBQJiIiIgHT2trGpk2bqShfT3NzM5MmTeS559cyZcrkOxo7fLOxXa53PhzQQq/15y/TUFtPZHQkkVFdEwhi4hy0NDTfMBNzbv4CXO98CHRNCvC0eAgzYQplIiIiEho8Hg8bNmyismI9breHKVPvobiokEmTJw7ofDdbWLbn+O1C2c1611Ky0ji57wTxyb9fvsnb7iUuOeGGmZjZU3IoWPfgNedo6XBfGMh7UCgTERGRIdPS0kJl5QY2rN9Ia2sbM2ZMp7i4gHHjx93VeQeynMWtetdmrZhHREQ4rS1uYuIceNu9eNs7SMvJuOlMzOwpOdcEP+9rXs8Njfoh5EOZtVZLI8gNfD5foEsQEZFempqaKC9fz6aNm2lvb2f2nFkUFxeSnX3H4+FvaiDLWdyqd+388bM88KlH+fDN/6KloZm45ATScjIIDw/zy0bkPUI6lMXExHD58mXS0tIUzAToCukdHR1cuHCBuLi4QJcjIjLiXblyhbKyCrZs3obX62Xe/LkUFRWQlTWgpbxu6WZjuzyNLSxeveyWr7ld79rDn1lN5rhRdz1x4E6EdCjLycmhurqaixcvBroUCSIREREkJSWRnp4e6FJEREas+rp6nK5ytm2twlrLwoULKCzKu2E/5IG41SzL68d2LV697LYhqq/etetvS/pbSIeyyMhIJk4c2IBAERERGXyXLl3C6Sxne9UOjDHk3ncvhQV5pKal9v3ifuhrluWdhKiB9K75U0iHMhEREQkOFy7UUlrqYtfO3YSHh7Nk6SLy8/NITk4a1OsMdJblzQykd82fFMpERERkwM6ePUdpiZO9e/cTERHBypXLWZm3gsTEhL5fPAAD3TT8Vob6FuXtKJSJiIjIHTtz+gwlpS4O7D9IdHQ0BYV5rFy53O+TrAYyyzJUKJSJiIhIv504cZKSEicfHz6Cw+HgwQeLWbZ8KbGxjiG5frCNAxtMCmUiIiJyW9Zajh09TkmJk2PHjhMXF8fDjzzE0qWLiYmJGdJagm0c2GBSKBMREQlRg7EB9+1Yazl8+GNKSlycOnmKxMQEVj/+KIsX3U9UdNSgXedOBdM4sMGkUCYiIhKCBnMD7utZa9m//yClJU6qq2tITk7iyScf5777c4mMjBykdyDXUygTEREJQYO5NEQPn8/H3r37KS1xcu7ceVLTUnlm7VPce+8CIiJCNzL4u0dxsITur7CIiMgINphLQ3R2drJr1x6cpS5qay+SkZHB8y+sZf78eYSHhw9WyQHhzx7FwaZQJiIiEoIGY2kIr9fLju07cTrLuHy5jqysUax76QXmzp1NWFiYP8oecv7oUfQXhTIREZEQdDdLQ3R0dLBt23ZcznIaGhrIzh7DK598iZkzZwybMNZjsBeb9SeFMhERkRA0kKUh2tvb2bJ5K2VllTQ2NjJ+/DiefvoJpk2fijFmCKsfOqG02KxCmYiISIjq79IQra1tbNq4mfLySlpaWpg0aSLPv7CWe+6ZPGzDWI9QWmxWoUxERGSY8ng8rF+/kfWVG3C7PUydOoWi4gImTZoY6NKGTCgtNqtQJiIiMsy0tLRQWbGBDRs20traxsyZMygqLmDcuLGBLi0gQmWxWYUyERGRYaKpqYny8vVs2riZ9vZ25syZTVFxAdnZY6g5Us0HP/pN0K/VNZIplImIiIS4K1euUOaqYPPmrXR2djJ//lwKiwrIyhoFBOdaXaGyoOtQUigTEREJUXV19bicZWzbth1rLffeu4CCwjwyMjKuabenbCe+Th9nPz6Dp9mDI95BUkZywNbqCsaQGAwUykRERELMvqp9fPj+R5xrrMUYw+zpM3nsyUdJTU25afuaj89wqeYiUTFRxMQ56Gjv4OyxGtpb24e48i6htKDrUFIoExERCREXzl/gN7/+Lw4fPYLBkJOcRUZ0Kr4z7Xgut8AtQpmnyU1YmCEyqmsz8cioSLztHXia3ENZ/lWhtKDrUFIoExERCXI1NWcpLXGxb99+wjCMjstgUtZ4oiOiAHCHu2/byxQT78Dd6KajrYOIqAi87V6sr+t4IITSgq5Dya+hzBizCvgeEA782Fr77eueHwe8DSR3t/mKtfZ9f9YkIiISKk6fPkNpiYsDBw4SExNNYWE+tVtPk56ViQn7/aKvffUy5UwbR5QjmsaLDVfHlKXlZJA5btRQvI0bhNKCrr35e3KC30KZMSYc+AHwAFANbDPGvGetPdCr2V8AP7fW/pMxZibwPjDBXzWJiIiEghMnTlLykZOPPz6Cw+HgwYeKWb58KQ6Hgw+qf3PHvUw9IWjM1LHXhKC5+QuG4u3cIJQWdO0xFJMT/NlTdj9w1Fp7HMAY8y6wBugdyiyQ2P1zEnDWj/WIiIgELWstx44ep6TEybFjx4mLi+ORR1axZOliYmKir7YbSC9TMIagUFnQtcdQTE7wZyjLBs70elwNLLquzdeBD40xfwTEAcU3O9HFixfJzc29+vi1117jtddeG9RiRUREAsFay+FDH1NS4uTUqdMkJibw+OOPsmjR/URFR93QfqABK9RCULAZiskJgR7o/wLwlrX2u8aYJcC/GWNmW2t9vRtlZGRQVVUVmApFRET8wOfzceDAQUpLXFRX15CcnMyTT63hvvvuJTIy8ravvT5gabV+/xuKyQn+DGU1QO9NtnK6j/X2aWAVgLV2kzEmBkgHav1Yl4iISMD4fD727tlHSamL8+fOk5qWytq1T7Hw3gVERNz5P8taiHVoDMXkBH+Gsm3AFGPMRLrC2PPAi9e1OQ0UAW8ZY2YAMcBFP9YkIiISEJ2dnezatRtnaRm1tRfJzMzg+ReeZf78uYSHhw/4vFqIdWgMxbg8v4Uya63XGPM68Du6lrt401q73xjzTaDKWvse8KfAj4wxf0zXoP9PWmutv2oSEREZal6vl+3bd+J0llF3uY6s0Vm89NILzJk7m7CwsLs+vxZiHTr+Hpfn1zFl3WuOvX/dsa/1+vkAENyLkoiIiAxAR0cH27ZW4XJV0NDQQE5ONqs/+Qlmzpw+KGGshxZiHT4CPdBfRERkWGlvb2fz5q2Ul1XQ2NjE+PHjePrpJ5g2fSrGmL5PcIdCdSFWuZFCmYiIyCBobW1j48ZNVJSvp6WlhcmTJ/HCC88x+Z5JfgljPYJxDbJb8feK+KFOoUxEROQueDwe1ldupLJyAx6Ph6nTplBcXMjEiROGrIZQWINMs0T7plAmIiIyAC0tLVRUrGfjhk20trYxc9YMiooKGDdubN8vHoE0S7RvCmUiIiJ3oLGxiYrySjZt2kJHRwdz5syisKiA7OwxgS4tqGmWaN8UykRERPqhoeEKZWXlbNm8jc7OTuYvmEdRYT6jskYFurSQoFmifVMoExERuY26y3U4XeVUbduOtZZ7cxdSUJBHRkZ6oEsLKZol2jeFMhERkZu4ePESztIyduzYiTGG++7PpaAgj9TUlECXFpJCaZZooCiUiYiI9HL+/AVKS13s3rWH8PBwli5bTF7eSpKTkwJdWsgLhVmigaRQJiIiAtTUnKW0xMXevfuIiopiZd4K8vKWk5CQEOjSZIRQKBMRkRHt9OkzlHzk5ODBQ8TERFNUXMCKFcuIi4sLdGkywiiUiYjIiHT8+AlKSpwc+fgosbEOHlr1AMuWLcHhcAS6NBmhFMpERGTEsNZy9OgxSj5ycvz4CeLj43nk0VUsWbKYmJjoQJcnI5xCmYiIDHvWWg4dOkxJiZPTp86QmJjI42seY9Gi+4iKigp0eSKAQpmIiAxjPp+P/fsPUlripKbmLMnJyTz51Bruu+9eIiMjA11eyNGG4v6lUCYiIsOOz+djz559lJY4OX/+Amlpqax99mkWLpxPRIT+6RsIbSjuf/qdKSIiw0LNkWp2uXZw/MwJLnVewd3uITMzg+dfeJb58+cSHh4e6BJDmjYU9z+FMhERCXmnD53iV//2Sy56G2jrbCc2IobxMVmsWfMkY6eNC3R5w4I2FPc/hTIREQlZHR0dbN1axQe/+S1t3nYSYuKYmjWJ9LgUPM0e9lXsVigbJNpQ3P8UykREJOS0t7WzafMWyssqaWpqIi48hmljppMWn4IxBlAvzmDThuL+p1AmIiIho7W1lY0bN1NRvp6WlhYmT57Ei+ue42PnfjzNnquBDNSLM9i0obj/KZSJiEjQc7s9rF+/gfWVG/F4PEybNpWi4gImTpwAgMNGqxdnCGhDcf9SKBMRkaDV0tJCRfl6NmzYRFtbG7NmzaSoKJ+x48Ze0069ODIcKJSJiEjQaWxsory8kk0bN+P1epkzZzZFxQWMGTP6lq9RL46EOoUyEREJGg0NDZS5KtiyZRudnZ0sWDCPwsJ8RmWNCnRpIn6nUCYiIgFXd7kOp7OMqqodWGu5N3chhYV5pKenB7o0bS0kQ0ahTEREAubixYuUlpaxY/tOANIik5iSM4lFCxYFTSDT1kIyVBTKRERkyJ0/d57SUhe7d+8lPDyctIgkxqWOISkxCU+LJ2iCj7YWkqGkUCYi0otuVflXTc1ZSkqc7Nu7n6ioKPLyVuA948br8QZl8NHWQjKUFMpERLrpVpX/nD51mpISJwcPHiYmJobi4kKWr1hKXFwcP/3WW0EbfLS1kAwlhTIRkW66VXX3ru9pTJ06it2H93Lk46PExjp4aNUDLFu2BIfDcfU1wRx8tLWQDCWFMhGRbrpVdXd6ehpjEmLxxYex7cRumg63EOtw8OijD7Nk6SKio6NveF0wBx8tSitDSaFMRKRbMPfYhILdrh20Rnk5UX+MxtZmoiOiGJ+YzYRROeQXrLzl64I9+GhRWhkqCmUiIt2CuccmmPl8PvbvP8Dmozvw+NqIiYhm2qhJjE7MxGBoqK3r8xwKPiIKZSIiVwV7j02w8fl87Nm9l9JSF+fPX8ARGcOkxLGMy8wmzIQB4G5yq6dRpJ8UykREelGPTd86OzvZuWMXTmcZFy9eIjMzkxdefJaMuDTKf1ZCa3OrehpFBkChTERE+sXr9bK9agdOZxl1dfWMHjOaT3ziRWbPmUVYWFfPmHoaRQZOoUxERG6ro6ODrVu24XJVcOXKFcaOzWHNmtXMmDkdY8w1bdXTKDJwCmUiInJT7W3tbNq0hfLySpqampgwYTxrn32KqVOn3BDGROTuKZSJiMg1Wltb2bhhMxUV62lpaeGeeyazbt3zTJo8UWFMxI8UykREBAC328P6yg2sX78Bj6eV6dOnUlRcyIQJ4wNdmsiIoFAmIjLCNTc3U1Gxno0bNtPW1sas2TMpKipg7FiNDRMZSgplIiIjVGNjI+VllWzatAWv18vcubMpLCpgzJjRgS5NZERSKBMRGWEaGhpwOcvZurUKn8/H/AXzKCzMZ9SozECXJjKiKZSJiIwQly/X4XKWUVW1A2stubkLKSjMJz19YCvu1xypvmZNsrn5C7Qchshd8GsoM8asAr4HhAM/ttZ++yZtngW+Dlhgt7X2RX/WJCIy0tTWXsRZ6mLnzt0YY7h/0X0U5K8kJTVlwOesOVKN650PcSTGkZyZirvJjeudDylY96CCmcgA+S2UGWPCgR8ADwDVwDZjzHvW2gO92kwB/juwzFpbb4xR37mIyCA5f+48paUudu/eS0REBMuWLSEvfyVJSYl3fe49ZTtxJMYRmxALcPX7nrKdCmUiA+TPnrL7gaPW2uMAxph3gTXAgV5tPgP8wFpbD2CtrfVjPSIiI0J1dQ2lJS727dtPdHQU+fkrWblyOfEJ8YN2jfrzl0nOTL3mmCPOQf35y4N2DZGRxp+hLBs40+txNbDoujZTAYwxG+i6xfl1a+1vrz/RxYsXyc3Nvfr4tdde47XXXhv0gkVEQtmpU6cp+cjJoUOHiYmJofiBQpYvX0pcXNygXyslKw13k/tqDxmAp8VDStbAxqeJSOAH+kcAU4B8IAeoMMbMsdY29G6UkZFBVVXV0FcnIhICjh07TmmJiyNHjhIbG8uqVQ+ydNkSHI4Yv11zbv4CXO98CHT1kHlaPHgaW1i8epnfriky3PkzlNUAY3s9zuk+1ls1sMVa2wGcMMZ8TFdI2+bHukREQp61liNHjlLykZMTJ04SnxDPo489zJIli4iOjvb79bOn5FCw7sFrZl8uXr1M48lE7oI/Q9k2YIoxZiJdYex54PqZlb8GXgD+1RiTTtftzON+rElEJKRZazl48BClJS5Onz5DUlIia9Y8xqLF9xMZGTmktWRPyVEIExlEfgtl1lqvMeZ14Hd0jRd701q73xjzTaDKWvte93MPGmMOAJ3Al621GiUqInIdn8/H/v0HKC1xUVNzlpSUFJ56+gnuu+9eIiICPRJFRAaDsdYGuoY+5ebmWo0pE5GRyOfzsXv3HkpLyrhw4QLp6WkUFhWwcOF8wsPDA12eiNyEMWa7tTa375bX0n+vRESCUGdnJzt27MJZ6uLSpcuMGpXJiy8+x9x5c+46jGklfpHgdNtQZoxJvd3z1tq6wS1HRGToBGM48Xq9VFXtwOUso66unjFjRvOJl9cxe/ZMwsLC7vr8WolfJHj11VO2na7tjwwwDqjv/jkZOA1M9GdxIiL+EmzhpKOjgy1btlHmquDKlSuMHZvDmidWM2PGdIwxg3YdrcQvErxuG8qstRMBjDE/An5lrX2/+/HDwBN+r05ExE+CJZy0tbWxadMWyssraW5qZuLECax99immTp0yqGGsh1biFwle/R1Tttha+5meB9baD4wxf+unmkRE/C7Q4aS1tZUNGzZRUb4et9vNPVMmU/zSC0yePMmv19VK/CLBq7+h7Kwx5i+A/9P9eB1w1j8liYj4X6DCidvtprJyAxvWb8TjaWX69GkUFRcwYcJ4v163h1biFwle/Q1lLwD/E/gVXWPMKrqPiYiEpKEOJ81NzVRUrmfjhs20tbUxa/ZMiosLycnJ9sv1bkUr8YsErztap8wYE2etbfFjPTeldcpExB+GYvZlY2MjZWUVbN60Fa/Xy9x5cygszGfMmNGDeh0RCR5+XafMGLMU+DEQD4wzxswDPmut/fydXlBEJFj4c5ug+voGylzlbN1ahc/nY8GCeRQW5ZOZmemX64lI6Ovv7cu/Bx4C3gOw1u42xqz0W1UiIiHq8uU6nM4ytlftAODe3IUUFOSRnq6B9CJye/1e0d9ae+a66dmdg1+OiEhoqq2tpbS0jF07dxMWFsaiRfeRX5BHSkpyoEsTkRDR31B2pvsWpjXGRAL/DTjov7JERELDuXPnKS11sWf3XiIiIli2fAl5eStJSkoMdGkiEmL6G8o+B3wPyAZqgA8BjScTkRGrurqGkhIn+/cdIDo6ivyClaxcsZz4hPhAlyYiIaq/oWyatXZd7wPGmGXAhsEvSUQkeJ08eYrSEheHDh0mJiaG4gcKWbFiGbGxsX2/WETkNvobyv4/YGE/jomIDEvHjh2npMTJ0SPHiI2NZdXDD7J06RIcjphAlyYiw8RtQ5kxZgmwFMgwxvxJr6cSgXB/FiYiEmjWWj7++AilJS5OnDhJfEI8jz32CIuX3E90dHSgyxORYaavnrIoutYmiwASeh1vBJ7xV1EiIoFkreXgwUOUfOTkzJlqkpISWfPEahYtuo/IyMhAlyciw9RtQ5m1thwoN8a8Za09NUQ1iYgEhM/nY9++A5SWODl79hwpKSk8/cyT5OYuJCKi3ysIiYgMSH//lvmxMWattbYBwBiTArxrrX3Ib5WJiAwRn8/H7l17KC11ceFCLenpaTz33DMsWDif8HCN1BCRodHfUJbeE8gArLX1xhjtFSIiIa2zs5MdO3bhLHVx6dJlRo0axYvrnmPevLmEhYUFujwRGWH6G8p8xphx1trTAMaY8UD/dzIXEQkiXq+Xbdu243KWU19fz5gxo3n5lXXMmjVTYUxEAqa/oeyrwHpjTDlggBXAa36rSkTEDzo6OtiyeStlZRVcudLI2LE5PPHkambMmM5128iJiAy5foUya+1vjTELgcXdh75orb3kv7JERAZPW1sbmzZtoby8kuamZiZOnMCzzz3DlCn3KIyJSNDoa52y6dbaQ92BDOBs9/dx3bczd/i3PBGRgfN4Wtm4YRMVFetxu91MmXIPRS8VMHnypECXJiJyg756yv4U+Azw3Zs8Z4HCQa9IROQuud1uKis3sGH9RjyeVmbMmEZhUQETJowPdGkiIrfU1zpln+n+XjA05YiIDFxzUzMVFevZuHETbW3tzJ49i6LiAnJysgNdmohIn/q6ffnU7Z631v5ycMsREblzV640Ul5WwebNW/F6vcybN4fCogJGj84KdGkiIv3W1+3L1d3fM+naA9PZ/bgA2AgolImEkJoj1ewp20n9+cukZKUxN38B2VNyAl3WgNXX1eMqq2Db1ip8Ph8LFsyjsKiAzMyMQJcmInLH+rp9+SqAMeZDYKa19lz349HAW36vTkQGTc2RalzvfIgjMY7kzFTcTW5c73xIwboHQy6YXbp0GZezjKqqHRhjyM1dSEFhPmlpqYEuTURkwPq7TtnYnkDW7QIwzg/1iIif7CnbiSMxjtiEWICr3/eU7QyZUFZbW0tpaRm7du4mLCyMxYvvJ78gj5SU5ECXJiJy1/obykqNMb8Dftb9+DmgxD8liYg/1J+/THLmtT1JjjgH9ecvB6ii/jt37jylJU727NlHREQEy5cvJS9/BYmJiYEuTURk0PR38djXjTFPAiu7D/3QWvsr/5UlIoMtJSsNd5P7ag8ZgKfFQ0pWWgCrur3q6hpKPnKyf/8BoqOjKSjIY8XKZcTHxwe6NBGRQdffnjKAHUCTtbbEGBNrjEmw1jb5qzARGVxz8xfgeudDoKuHzNPiwdPYwuLVywJc2Y1OnjxFaYmTQ4c+xuGI4YEHili+YimxsbF9v1hEJET1K5QZYz5D116XqcBkIBv4Z6DIf6WJyGDKnpJDwboHr5l9uXj1sqAZT2at5fixE5SUODl69BhxcXE8/PBDLF22mJiYmECXJyLid/3tKfsCcD+wBcBae8QYk+m3qkTEL7Kn5ARNCOthreXjj49QWuLixImTxCfE89hjj7BkySKioqMCXZ6IyJDpbyhrs9a292zca4yJoGubJRGRAbHWcvDAIUpKnJw5U01SUhJPPLGa+xfdR2RkZKDLExEZcv0NZeXGmDcAhzHmAeDzwG/8V5aIDFc+n499e/dTUuri3NlzpKam8MwzT3Jv7kIiIu5kmKuIyPDS378B/xz4A2Av8FngfeDH/ipKRIafzs5Odu/eQ2lJGbW1tWRkpPPcc8+wYOF8wsPDA12eiEjA9RnKjDHhwH5r7XTgR/4vSUSGk87OTnZs34nTWcalS5cZNWoU69Y9z9x5cwgLCwt0eSIiQaPPUGat7TTGHDbGjLPWnh6KokQk9Hm9XrZt3Y7LVUZ9fQPZ2WN4+ZWXmDVrhsKYiMhN9Pf2ZQqw3xizFWjpOWitfdwvVYlIyGpvb2frlm2UlVVw5Uoj48aN5ckn1zB9xjR6JguJiMiN+hvK/odfqxAJcTVHqq9Z/2tu/oKgW3rC39ra2ti0cQvl5ZU0NzczadJEnn1uLVOmTFYYExHph9uGMmNMDPA54B66Bvn/b2utdygKEwkVNUeqcb3zIY7EOJIzU3E3uXG98yEF6x4cEcHM42llw4aNVFasx+32MGXqPRQXFTJp8sRAlyYiElL66il7G+gAKoGHgZnAf/N3USKhZE/ZThyJcVf3lOz5vqds57AOZS0tLayv3Mj69RtpbW1lxoxpFBUXMn78uECXJiISkvoKZTOttXMAjDH/G9jq/5JEQkv9+cskZ6Zec8wR56D+/OUAVeRfzU3NlJdXsmnTZtra2pk9ZxbFxYVkZ48JdGkiIiGtr1DW0fODtdZ7p+NCjDGrgO8B4cCPrbXfvkW7p4H/B9xnra26o4uIBFhKVhruJvfVHjIAT4uHlKy0AFY1+K5cuUJ5WSWbN2/F6/Uyb/5cigrzyRqdFejSRESGhb5C2TxjTGP3z4auFf0bu3+21trEW72we32zHwAPANXANmPMe9baA9e1S6DrluiWAb4HkYCam78A1zsfAl09ZJ4WD57GFhavXhbgygZHfV09Llc5W7dWYa1lwcL5FBXlk5GREejSRESGlduGMmvt3SyzfT9w1Fp7HMAY8y6wBjhwXbtvAX8DfPkuriUSMNlTcihY9+A1sy8Xr14W8uPJLl26hNNZzvaqHRhjyL3vXgoK8khLS72hrWafiojcPX9uNJcNnOn1uBpY1LuBMWYhMNZa+1/GGIUyCVnZU3KGTQi5cKEWZ6mLnTt3Ex4ezpIli8gvWElycvJN24/02aciIoMlYLv/GmPCgL8DPtlX24sXL5Kbm3v18WuvvcZrr73mv+JERqCzZ89RWuJi7959REREsGLlcvLylpOYeMtRCsDInX0qIjLY/BnKaoCxvR7ndB/rkQDMBsq6JxBkAe8ZYx6/frB/RkYGVVUa/y/iD2fOVFNa4mL//gNER0dTUJDHipXLiI+P79frR9rsUxERf/FnKNsGTDHGTKQrjD0PvNjzpLX2CpDe89gYUwZ8SbMvRYbGyZOnKPnIyeHDH+NwxPDAg0UsX76M2FjHHZ1npMw+FRHxN7+Fsu4lNF4HfkfXkhhvWmv3G2O+CVRZa9/z17VF5OastRw7dpySj5wcO3acuLg4Hn7kIZYuXUxMTMyAzjncZ5+KiAwVY60NdA19ys3Ntbp9KYEyHGYWWms5fPhjSktcnDx5ioSEBPLyV7Bk8SKioqPu+vzD4ddIRGSwGGO2W2tz+2553esUykRurffMwt69QKEys9Bay4EDByktcXHmTDXJyUnkF+Rx//25REZGBro8EZFhaaChLGCzL0VCQajOLPT5fOzdu5/SEifnzp0nNS2VZ9Y+xb33LiAiQn/sRUSCkf52FrmNUJtZ2NnZya5de3CWllFbW0tGRgbPPb+WBQvmER5+N2tBi4iIvymUidxGqMws9Hq97NixC5ezjEuXLpOVNYp1L73A3LmzCQsLC3R5IiLSDwplIrcR7DMLvV4vW7dW4XKW09DQQHb2GF5+5SVmzZqhMCYiEmIUykRuI1j3tWxvb2fLlm2UuSpobGxk3PixPPX0GqZPn0b3YswiIhJiFMpE+hBM+1q2traxadNmKsrX09zczKRJE3n+hbXcc89khTERkRCnUCYSAjweDxs2bKKyYj1ut4epU6dQVFzApEkTA12aiIgMEoUykSDW0tJCZeUGNqzfSGtrGzNmTKe4uIBx48cFujQRERlkCmUiQaipqYny8vVs2riZ9vZ25syZTVFxAdnZYwJdmoiI+IlCmUgQuXLlCmVlFWzZvA2v18u8+XMpKiogK2tUoEsTERE/UyiTESuY9musr6vH6Spn29YqrLUsXLiAwqI8MjIyAlKPiIgMPYUyGZF672mZnJmKu8mN650Ph3xPy0uXLuEsLWP79p0YY8i9714KC/JITUvt+8UiIjKsKJTJiBToPS0vXKiltNTFrp27CQ8PZ8nSReTn55GcnOT3a4uISHBSKJMRKVB7Wp49e47SEid79+4nMjKSlSuXszJvBYmJCX69roiIBD+FMhmRhnpPyzOnz1BS6uLA/oNER0dTUJjHypXLiYuL88v1REQk9CiUyYg0VHtanjhxkpISJx8fPoLD4eDBB4tZtnwpsbGOQb2OiIiEPoUyGZH8uaeltZZjR49TUuLk2LHjxMXF8cgjq1iydBExMTGDUL2IiAxHCmUyYg32npbWWg4f+piSUhenTp4iMTGB1Y8/yuJF9xMVHTVo1xERkeFJoUzkLvl8Pg4cOERpiZPq6hqSk5N48snHue/+XCIjIwNdnoiIhAiFMpEB8vl87N2zj9JSF+fOnSc1LZVn1j7FvfcuICJCf7REROTO6F8OkTvU2dnJrl17cJa6qK29SEZGBs+/sJb58+cRHh4e6PJERCREKZSJ9JPX62XH9p04nWVcvlxH1ugsXnrpBebMnU1YWFigyxMRkRCnUCYBE0x7T95OR0cH27Ztx+Usp6GhgZycbF755EvMnDlDYUxERAaNQpkExGDsPenvUNfe3s6WzVspK6uksbGR8ePH8fTTTzBt+lSMMYN2HREREVAokwC5270n7zTU3UmAa21tY9PGzZSXV9LS0sLkyZN44YVnmXzPJIUxERHxG4UyCYi73XvyTkJdfwOcx+Nh/fqNrK/cgNvtYerUKRQ/UMjEiRPu4p2KiIj0j0KZBMTd7j15J6GurwDX0tJCZcUGNmzYSGtrGzNnzqCouIBx48YO9O2JiIjcMYUyCYi73XvyTkLdrQJc7dkL/Odv3mfTpi10dHQwZ84sCosKyM4ecxfvTEREZGAUyiQg7nbvyTsJddcHuLaONo5dOEWtuw5bcZz58+dSVFTAqKxRg/cGRURE7pCx1ga6hj7l5ubaqqqqQJchQaa/g/d7xpSZ2AhqW+s411iLxTJz2nQee+JRMjLSA1C9iIgMV8aY7dba3Dt9nXrKJGT1d0PxqOQYOrLDOXj4EACjkzJ56NEHmblwpr9LFBER6TeFsgALlQVUQ9GF8xcoLXWxa9cewsPDWbZ8CXn5K0lOTgp0aSIiIjdQKAugwVhANVT5M4zW1JyltMTFvn37iYyMZGXeClauXE5iYsKgnF9ERMQfFMoC6G4XUA01PUGs+vBp6s9dJmvSGNJzMgctjJ4+fYbSEhcHDhwkJiaawsJ8VqxcRlxc3CC+CxEREf9QKAugu11ANZT07hX0NHnAwLnjZ4mJc5CQlggMPIyeOHGSko+cfPzxERwOBw8+VMzy5UtxOByD/TZERET8RqEsgO52AdVQ0rtXsLXFQ0ycA2+Hlwsnz5GQlnjHYdRay9Gjxyj5yMnx4yeIi4vjkUdWsWTpYmJiov34TkRERPxDoSyA7nYB1VDSu1fQEe+go62DiKhIPM0eoP9h1FrL4UMfU1Li5NSp0yQmJvD444+yaPH9REVF+fU9iIiI+JNCWQDd7QKqoaR3r2DmhCxO7T2Ot6ODmDgH7iZ3n2HU5/Nx4MBBSktcVFfXkJyczJNPreG+++4lMjJyCN+JiIiIfyiUBVh/19oKdb17BRNSEhk1aQznj58ltvuW5q3CqM/nY++efZSUujh/7jxpaamsXfsUC+9dQESEfvuKiMjwoX/VZEhc3yuYOW4UxS+vumUg7ezsZNeu3ThLy6itvUhmZgbPv/As8+fPJTw8fIirFxER8T+FMhky/ekV9Hq9bN++E6ezjLrLdYwencVLn3iROXNmERYWNkSVioiIDD2FMgkKHR0dbNtahctVQUNDAzk52az+5CeYOXO6wpiIiIwICmUSUO3t7WzevJXysgoaG5sYP2E8Tz/zBNOmTcUYE+jyREREhoxCmQREa2sbGzduoqJ8PS0tLUyePIkXXniOyfdMUhgTEZERSaFsiGjj8S4ej4f1lRuprNyAx+Nh6rQpFBcXMnHihECXJiIiElB+DWXGmFXA94Bw4MfW2m9f9/yfAH8AeIGLwKestaf8WVMgDOXG48Ea/lpaWqioWM/GDZtobW1j5qwZFBcVMHbc2ECXJiIiEhT8FsqMMeHAD4AHgGpgmzHmPWvtgV7NdgK51lq3MeYPgb8FnvNXTYEyVBuPD2X466/GxibKyyvZtHEzXq+XOXNmUVRcyJgxowNSj4iISLDyZ0/Z/cBRa+1xAGPMu8Aa4Goos9a6erXfDLzkx3oCZqg2Hh+q8NcfDQ1XKCsrZ8vmbXR2djJ/wTyKCvMZlTVqSOsQEREJFf4MZdnAmV6Pq4FFt2n/aeCDmz1x8eJFcnNzrz5+7bXXeO211wajxiExVBuPD1X4u526y3U4XeVUbduOtZZ7cxdSUJBHRkb6kNUgIiISioJioL8x5iUgF8i72fMZGRlUVVUNbVGDaKg2Hu8d/hovX6H25Hma65uIT0mg5ki1X3vLLl68iLO0nB07dmKM4b77cykoyCM1NcVv1xQRERlO/BnKaoDeo7hzuo9dwxhTDHwVyLPWtvmxnoAZqo3He8Jfc30T54+dxYSBCQ8jKSPZb2PLzp+/QGmpi9279hAeHs7SZYvJz19JUlLSoF5HRERkuPNnKNsGTDHGTKQrjD0PvNi7gTFmAfAvwCprba0fawm4odh4vCf8/fK779LZ2UlCYgKjJowmIS0Rd5N7UMeW1dScpaTEyb69+4mKiiIvbwUr85aTkJAwKOcXEREZafwWyqy1XmPM68Dv6FoS401r7X5jzDeBKmvte8B3gHjg37sXDD1trX3cXzWNBNlTckjLTmfygqmYsN8vwjpYY8tOnz5DyUdODh48RExMNEXFBaxYsYy4uLi7PreIiMhI5tcxZdba94H3rzv2tV4/F/vz+iOVPyYWHD9+gpISJ0c+PkpsrIOHVj3AsmVLcDgcg1GyiIjIiBcUA/3vRrAulhpIgzWxwFrL0aPHKPnIyfHjJ4iPj+eRR1exZMliYmKi/VG6iIjIiBXSoSwYF0sNBj1jyzb8opx9O3YDMH72xH6/3lrLoUOHKSlxcvrUGRITE3l8zWMsWnQfUVFR/ipbRERkRAvpUBZMi6UGo/bWNiYvnHq1t6yvwOrz+di//yClJU5qas6SkpLMU089Qe59C4mMjBzi6kVEREaWkA5lwbBYarC6k8Dq8/nYs2cfpSVOzp+/QFpaKmuffZp7711AeHj4kNcuIiIyEoV0KBuqlfJDUX8Ca2dnJzt37sZZWsbFixfJzMzkhRefZd68uQpjIiIiQyykQ9lQrZQfim4XWL1eL9urduB0lVN3uY7RY0bziU+8yOw5swgLCwtg1SIiIiOXsdYGuoY+5ebm2ltts6TZlzfXexJET2BtudJE+vxsdu7fTUPDFXJysil+oJCZM2fQvU6ciIiI3CVjzHZrbW7fLa97XaiHMrm1nsB66dxF3NEdnG2pxe12M2HCeIofKCTOONhbvkuBVkREZBANNJTpXtUwljY2nehJCRzrPMvRiycZPTqLz37uD/j8Fz5LfFgsZT/9CHeT+5rlRGqOVAe6bBERkREppMeUyc253R7Wr9/A+sqNeDwepk2bSlFxARMnTrjaRsuJiIiIBBeFsrsQbOPZmpubqazYwIYNm2hra2PWrJkUFRcwduyNNWk5ERERkeCiUDZAwbSbQGNjI+Xl69m0cTNer5c5c2ZTVFzAmDGjb/kaLSciIiISXBTKBigYbv81NDRQ5qpgy5ZtdHZ2smDBPAqLChg1KrPP12o5ERERkeCiUDZAgbz9V3e5DqezjKqqHVhryc1dSEFhHunp6f0+R8/+mL1vvy5evUzjyURERAJEoWyAAnH77+LFi5SWlrFzxy6MMdx/fy4FBXmkpKYM6HzZU3IUwkRERIKEQtkADeXtv/PnzlNa6mL37r1ERESwbNkS8vJXkpSUOOjXEhERkcBQKBugobj9V1NzlpISJ/v27ic6Ooq8vBWszFtOQkLCoF1DREREgoNC2V0YzNt/vZfXCEuKoo5GTpw+RUxMDMXFhSxfsZS4uLhBuZaIiIgEH4WyINCzvEZHtOVc+0XqT18hnDCW3reIVY8/hMPhCHSJIiIi4mcKZQFmraXsv1wcbz9LU3MLkeGRTM4YT2p4IjGN4QpkIiIiI4RCWYBYazl08DAlJU5OV58hOiKKKZkTGZOUSXhYONZntbq+iIjICKJQdgv+2kLJ5/Oxf/8BSktc1NScJSUlmWmjJpEUFk98YvzVdlpdX0REZGRRKLsJf2yh5PP52LN7L6WlLs6fv0B6ehrPPvs0C+9dwPnj53C98yFhJkyr64uIiIxQCmXXqTlSzS+/+y7N9U3EpySQOSGLxLQkYGBbKHV2drJzxy6czjIuXrzEqFGZvPjic8ydN4fw8HBAq+uLiIiIQtk1enrImuqbiEuKp6Otg1N7jzN+ziQSUhLvaIyX1+ulqmoHLmcZdXX1jB4zmk984kVmz5lFWFjYDe21ur6IiMjIplDWS88m4wkpCXS0dxAZHQlA7cnzRERF9muMV0dHB1u3bMPlquDKlSuMHZvDmjWrmTFzOsYYf78FERERCVEKZb30bDI+asJoTuw9BkB4ZATN9U19jvFqb2tn06YtlJdX0tTUxMSJE1j77FNMnTpFYUxERET6NGxC2WDMluzZZDwhLZHMcaM4feAk7iY3jvhYZq2Yd9Pztba28sF7v2Pb9io6Or2kxCbx9OonWLTyfoUxERER6bcbBzeFoJ6xYO4m9zWzJWuOVN/ReebmL8DT2MLF0xe4cOo8jgQHqVlpTJw3mf2Vu685n9vt4cPflfCX3/w2G7duJi7CwcKc2UxLnshR137OHq0Z7LcpIiIiw9iw6CnrGQsWmxALcPX7nc6W7JkF+cvvvovt9OFI/P3sy9rTF/jld98lcXQyTZGtnGuqpb2jg/T4VKYkjiczLf2GmjRwX0RERPprWISynrFgvTniHANaET97Sg5p2elMXjAVE9Z1+7Hx8hXOnqihJa6d6uZ6fNZHUkQ8a595igMf7SI5ZXCuLSIiIiPXsAhlPWPBenrI4O5WxO99vtaONg6dPUrzqDYAshIyGJ+ajWmHc3vPDPq1RUREZGQaFmPKesaCuZvcWJ/F3eTG09jC3PwFAz5fQ0MD+84cYtPxHTRHthHtDmdO6hRmjp5CXHTs1d6wwb62iIiIjEzDIpT1jAWLTYilobaO2ITYAW+JVFt7kcqqjRz2nOKSp560qCTGuJOZmj6BjMyMq+16esMG89oiIiIycg2L25dw9yvinz93npJSF3t27yUiIoLlK5aSl7eSpKTEa2Z33mxvSq3GLyIiIndr2ISym+nP2mXV1TWUlrjYt28/0dFR5OevZOXK5cQnxF9to70pRURExN+MtTbQNfQpNzfXVlVV3dFrenq3HIlx1/Ru9dxaPHXqNCUfOTl06DAxMTEsX7GUFSuWERsb2/fJRURERG7BGLPdWpt7p68btj1lt1q7rPz9Mppj2jhy5CixsbGsevhBli5dgsMRE8hyRUREZIQbtqGs99pl1lrq3Vc4UXeGK61NxCfE8+hjD7NkySKio6MDXKmIiIhICIWyO93bMiUrjZbGFjxhbZy8XE1jazNRYZFMyZzIq3/8KpGRkUNYvYiIiMjthcSSGB1t7Xe0t6XP58MxLpHdFw6xp+YQ7d4OJiblMM0xjkeffESBTERERIJOSPSUuZs8/drb0ufzsXv3HkpLyrhw4QLJSUlMdIwl2h1GalZ6n71rIiIiIoESEqGs6XIje8t2Mm7mREZPHgNcu79kZ2cnO3bswlnq4tKly6SmpDBz9BSiWgypSenMXaMwJiIiIsEtJJbEGJ2UZdfNewbb6SMtJ4PJC6YQERVJTFwMafNG4ywto76+njFjRrNg1jzObDxKbFL8TZfCEBEREfGnYb0khrUWb3sHWKg9eZ4rl6+QOC0Nb3oYzUc2M3ZsDk88uZoZM6bz2x//J7FJ8X3e6hQREREJJn4d6G+MWWWMOWyMOWqM+cpNno82xvzf7ue3GGMm3Ow87nY3xhgIh7DsGDpnRtPgcEObj2zS4aCbjf/q4rc//k9qPj6DI85xzet73+qsOVLNBz/6DT/91lt88KPf3HKygAyOH/7wh4EuQe6CPr/Qpc8utOnzC3npA3mR30KZMSYc+AHwMDATeMEYM/O6Zp8G6q219wB/D/zNzc7V6m0jbKyDiPuSCZ8US1gb+Pa3EHWyk7azLbQ2e7hUc5GLpy9w+ewlLlXXXvP6ns3De+9h2Z9ZnHL39BdLaNPnF7r02YU2fX4hL2MgL/JnT9n9wFFr7XFrbTvwLrDmujZrgLe7f/5/QJExxlx/opTUFMLGxWCbOgk/2g6H3ZhmHy1XmomMjsQRH0tUTBRXLjaQNWkM54+fxd3kxvos7iY3nsYW5uYvuGaVfxNmiE2IxZEYx56ynX78ZRARERHpm98G+htjngFWWWv/oPvxJ4BF1trXe7XZ192muvvxse42l3qfKzws3IaZMGx3sY7IGGIiYjoB2+nrbOt1vvD2zvaGiLAIh9fndYebsOhO62tr9bY1eH1eT1J0woRO62u/vtZwExZ1pa3p5OD/KghdXbiX+mwlwUqfX+jSZxfa9PmFtmnW2oQ7fVFIDPTv9HXe0HsmIiIiMpz48/ZlDTC21+Oc7mM3bWOMiQCSgMt+rElEREQkKPkzlG0DphhjJhpjooDngfeua/Me8Er3z88AThsKC6eJiIiIDDK/hTJrrRd4HfgdcBD4ubV2vzHmm8aYx7ub/W8gzRhzFPgGkHu3y2dIYPRj+ZM/McYcMMbsMcaUGmPGB6JOubm+Pr9e7Z42xlhjzB0viij+0Z/PzhjzbPefv/3GmJ8OdY1ya/34u3OcMcZljNnZ/ffnI4GoU25kjHnTGFPbPT7+Zs8bY8w/dH+2e4wxC/s8qbU24F9AOHAMmAREAbuBmde1+Tzwz90/Pw/830DXra87+vwKgNjun/9Qn1/wfPXn8+tulwBUAJuB3EDXra9+/9mbAuwEUrofZwa6bn3d0ef3Q+APu3+eCZwMdN36uvrZrAQWAvtu8fwjwAeAARYDW/o6p18Xj70Dg7Z8hgREn5+ftdZlrXV3P9xM1xhDCQ79+fMH8C261hJsHcri5Lb689l9BviBtbYewFpbiwSL/nx+Fkjs/jkJODuE9cltWGsrgLrbNFkD/MR22QwkG2NG3+6cwRLKsoEzvR5Xdx+7aRvbdWv0CpA2JNVJX/rz+fX2abr+9yDBoc/Pr7vbfay19r+GsjDpU3/+7E0FphpjNhhjNhtjVg1ZddKX/nx+XwdeMsZUA+8DfzQ0pckguNN/G0NjSQwZPowxLwG5QF6ga5H+McaEAX8HfDLApcjARNB1CzOfrh7qCmPMHGttQyCLkn57AXjLWvtdY8wS4N+MMbOttb5AFyaDL1h6yrR8Rmjrz+eHMaYY+CrwuLW27frnJWD6+vwSgNlAmTHmJF1jI97TYP+g0J8/e9XAe9baDmvtCeBjukKaBF5/Pr9PAz8HsNZuAmIY4L6KMuT69W9jb8ESyrR8Rmjr8/MzxiwA/oWuQKYxLcHltp+ftfaKtTbdWjvBWjuBrjGBj1trqwJTrvTSn787f01XLxnGmHS6bmceH8Ia5db68/mdBooAjDEz6AplF4e0Shmo94CXu2dhLgauWGvP3e4FQXH70lrrNcb0LJ8RDrxpu5fPAKqste/RtXzGv3Uvn1FH129eCQL9/Py+A8QD/949P+O0tfbxW55Uhkw/Pz8JQv387H4HPGiMOQB0Al+21uouQxDo5+f3p8CPjDF/TNeg/0+qQyI4GGN+Rtd/eNK7x/z9TyASwFr7z3SNAXwEOAq4gVf7PKc+WxEREZHAC5bblyIiIiIjmkKZiIiISBBQKBMREREJAgplIiIiIkFAoUxEREQkCCiUiUjQMsZYY8z/6fU4whhz0Rjzn4Gsqy/GmOZA1yAioUehTESCWQsw2xjj6H78AH2siO0v3TuJiIj4jUKZiAS794FHu39+AfhZzxPGmDhjzJvGmK3GmJ3GmDXdxycYYyqNMTu6v5Z2Hx9tjKkwxuwyxuwzxqzoPt7c65zPGGPe6v75LWPMPxtjtgB/a4yZbIz5rTFme/f5p3e3m2iM2WSM2WuM+csh+DURkWFIoUxEgt27wPPGmBhgLrCl13NfpWvLtfuBAuA7xpg4oBZ4wFq7EHgO+Ifu9i8Cv7PWzgfmAbv6cf0cYKm19k+AHwJ/ZK29F/gS8I/dbb4H/JO1dg5w221URERuRd3xIhLUrLV7jDET6Oole/+6px8EHjfGfKn7cQwwDjgLfN8YM5+urYWmdj+/DXjTGBMJ/Npau6sfJfy7tbbTGBMPLOX3W4UBRHd/XwY83f3zvwF/0+83KCLSTaFMRELBe8D/omufubRexw3wtLX2cO/GxpivAxfo6g0LA1oBrLUVxpiVdN0OfcsY83fW2p/Qtadgj5jrrt3S/T0MaOjuZbsZ7VknIndFty9FJBS8CXzDWrv3uuO/A/7IdHddGWMWdB9PAs5Za33AJ+ja7BljzHjggrX2R8CPgYXd7S8YY2YYY8KAJ29WgLW2EThhjFnbfS5jjJnX/fQG4Pnun9fd3VsVkZFKoUxEgp61ttpa+w83eepbQCSwxxizv/sxdI31esUYsxuYzu97u/KB3caYnXSNNfte9/GvAP8JbOT2Y8LWAZ/uPu9+YE338f8GfMEYsxfIvvN3KCICxlr1uIuIiIgEmnrKRERERIKAQpmIiIhIEFAoExEREQkCCmUiIiIiQUChTERERCQIKJSJiIiIBAGFMhEREZEgoFAmIiIiEgT+f5vJLJ64wW9GAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Load or train primary amine benchmark model\n", - "save_dir = pathlib.Path(\"baumgartner_phenethylamine_emulator/\")\n", - "if save_dir.exists():\n", - " exp_amine = ExperimentalEmulator.load(\"baumgartner_primary_amine\", save_dir)\n", - "else:\n", - " exp_amine = ExperimentalEmulator(\n", - " domain=new_domain,\n", - " model_name=\"baumgartner_primary_amine\",\n", - " dataset=datasets[\"Phenethylamine\"].replace(\"≥90%\", 0.9)\n", - " )\n", - " exp_amine.train(max_epochs=1000, cv_fold=2, test_size=0.25, verbose=False)\n", - " exp_amine.save(\"baumgartner_phenethylamine_emulator\")\n", - "exp_amine.parity_plot()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#Single-Task Bayesian Optimization\n", - "for i in range(N_REPEATS):\n", - " print(f\"Repeat {i}\")\n", - " result = run_stbo(exp_amine, max_iterations=MAX_ITERATIONS)\n", - " result.save(f\"data/cross_coupling_similar/stbo_cn_noise_repeat_{i}.json\")\n", - " clear_output(wait=True) " - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "scrolled": true - }, - "outputs": [ + "cell_type": "markdown", + "source": [ + "We first generate different amounts of data using latin hypercube sampling." + ], + "metadata": {} + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Repeat 9\n" - ] + "cell_type": "markdown", + "source": [ + "Now, we can run single-task and multi-task Bayesian optimization." + ], + "metadata": {} }, { - "data": { - "text/html": [ - "\n", - "
\n", - " \n", - " \n", - " 100.00% [20/20 01:36<00:00]\n", - "
\n", - " " + "cell_type": "code", + "source": [ + "def generate_mit_case_1_data(n_points):\n", + " exp_pt = MIT_case1(noise_level=1)\n", + " rs = np.random.RandomState(100)\n", + " lhs = LHS(exp_pt.domain, random_state=rs)\n", + " conditions = lhs.suggest_experiments(n_points)\n", + " exp_pt.run_experiments(conditions)\n", + " pt_data = exp_pt.data\n", + " pt_data['task', 'METADATA'] = 0\n", + " return pt_data\n", + "\n", + "n_aux = [5, 10, 50]\n", + "aux_datasets = [generate_mit_case_1_data(n) for n in n_aux]" ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "outputs": [], + "execution_count": null, + "metadata": {} }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", - " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n" - ] - } - ], - "source": [ - "#Multi-Task Bayesian Optimization\n", - "pt_data = datasets[\"Morpholine\"].copy()\n", - "pt_data[(\"task\", \"METADATA\")] = 0\n", - "pt_data = pt_data.replace(\"≥90%\", 0.9)\n", - "for i in range(N_REPEATS):\n", - " print(f\"Repeat {i}\") \n", - " exp_amine.reset()\n", - " result = run_mtbo(exp_amine, pt_data, max_iterations=MAX_ITERATIONS)\n", - " result.save(f\"data/cross_coupling_similar/mtbo_pre-train_repeat_{i}.json\")\n", - " clear_output(wait=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "scrolled": true - }, - "outputs": [ + "cell_type": "markdown", + "source": [ + "### Same Mechanism" + ], + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "#Single-Task Bayesian Optimization\n", + "for i in range(N_REPEATS):\n", + " print(f\"Repeat {i}\")\n", + " exp = MIT_case2(noise_level=1)\n", + " result = run_stbo(exp, max_iterations=MAX_ITERATIONS)\n", + " result.save(f\"data/kinetics_similar/stbo_case1-2_noise_repeat_{i}.json\")\n", + " clear_output(wait=True)" + ], + "outputs": [], + "execution_count": null, + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "#Multi-Task Bayesian Optimization\n", + "for n, dataset in zip(n_aux, aux_datasets):\n", + " for i in range(N_REPEATS):\n", + " print(f\"Repeat {i}\")\n", + " exp = MIT_case2(noise_level=1)\n", + " result = run_mtbo(exp, dataset, max_iterations=MAX_ITERATIONS)\n", + " result.save(f\"data/kinetics_similar/mtbo_case1-2_noise_{n}-pre-train_repeat_{i}.json\")\n", + " clear_output(wait=True)" + ], + "outputs": [], + "execution_count": null, + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Finally, we can make a plot for the paper." + ], + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "stbo_results = [summit.Runner.load(f\"data/kinetics_similar/stbo_case1-2_noise_repeat_{i}.json\") for i in range(10)]\n", + "mtbo_results_lists = [[summit.Runner.load(f\"data/kinetics_similar/mtbo_case1-2_noise_{n}-pre-train_repeat_{i}.json\") \n", + " for i in range(10)]\n", + " for n in n_aux]\n", + "fig, ax = make_comparison_plot(\n", + " dict(results=stbo_results, label=\"STBO\"),\n", + "# dict(results=mtbo_results_lists[0],label=\"MTBO, n=5\"),\n", + " dict(results=mtbo_results_lists[1],label=\"MTBO, n=10\"),\n", + " dict(results=mtbo_results_lists[2],label=\"MTBO, n=50\")\n", + ")\n", + "fig.savefig(\"figures/stbo_mtbo_kinetics_case1-2_noise_comparison.png\", bbox_inches='tight', dpi=300)" + ], + "outputs": [], + "execution_count": null, + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "### Different Mechanisms" + ], + "metadata": {} + }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n", - "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", - " warnings.warn(msg, UndefinedMetricWarning)\n" - ] + "cell_type": "markdown", + "source": [ + "This adds an extra wrinkle because there is a competing reaction which consumes B (see Case 3 from figure above)." + ], + "metadata": {} }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEGCAYAAACD7ClEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABJcklEQVR4nO2deZxcVZX4v+fV2nunu7N3VpIQSCCCISC77CACiqNsCm6Io6IyGzoOi47+mGEcB8ZtXABXGAVBUBYRBAdkC8iShRBIQtLZ0+l9qe2d3x/3VXd1p5eq7upauu7383ld9fZT1a/Ouffcc88RVcVisVgspYmTbwEsFovFkj+sEbBYLJYSxhoBi8ViKWGsEbBYLJYSxhoBi8ViKWGsEbBYLJYSxp9vATKloaFB58+fn28xLBaLpWh48cUX96nq1KH2FZ0RmD9/PqtXr863GBaLxVI0iMjbw+2z7iCLxWIpYawRsFgslhLGGgGLxWIpYawRsFgslhLGGgGLxWIpYawRsFgslhLGGgGLxWIpYYpunoClSFE1C4NfAX8wn5JZLCWNNQKWsRPrMQsMr+AHvB+GQBmU1U6cnBaLZVisEbBkjpuA3jaIR7JzvVgPqAtlU0AkO9e0WCxpYY2AJTOiXRDpGL11nynxCHQ3G0Pg+LJ77dFwExDrBsTcWxxv8YFjh80skxtrBCzpkYhBbzskohN7j6Qh8AUm7j6pxHpNr0bd4Y/pMwqOMQqp65JiNHz252QpPuxTaxkZVdPyj3bl5n5uot8Q+EMTdx9Vo/yTYxojHuv2G4nECMeJYwa5fSHwh20vwlIUWCNgGZ54xLT+3Xhu76sK3fshXAPB8uxfPx41BiDbn0td07OI9QJtpjfj9wzCRPdsEnFwY+YzOd59cz2+Eo9CImJ6dG7C6yF5MogAkvLqDLFt0L5cuwUnK6O4bq0RsByI60KkPb1W8kTS2waagFBV9q4Z6YBIZ/auNxKJmFkinV4vIWQWX2h8vYSkwk9E+98P9UP3BbwlOP57DilHzDQUElGzZHucSMQbl/GB4x+05LGX5bqYqDd30DJ4mxcpZz6M93k8I5dq7IZdFwYY8qGuf4AMg7anEZ1njUCmuC70tno/6LLJ1+WP9ZjW/0g+8lwS6TSt23Dt+Fq2bgJ6Wid2TGMk1B0YUusLpvQSRvgZJg2JGxtZ4Y90Lt1m3fH3GwV/KPOWdiLutfSjptU/0c+IKmjc67ENikQT8YzBEAYinefETVWSwynP1G2p+3JIsneUTqj1GLFGIFMSEdP6iUeAdvODCoQ9H3ARd1+zHfaZTWK94O73IofGYHRjPV6vYmJ+RGMi2XqOdJjnJtlDUHdsCj8dXE+hJg2R4xvYUxhsjNyE19JPcfEUCqopRm4QScMg0v/9HdBCLxIG9CYmhpwYARG5DTgX2KOqy4fYL8AtwDmYZssVqvpSLmTLmMFKMvljpt3zAYdHb90VGhMV9plNElEzYFxel76xdV2ItHk++gLGTUC0m74Wey7v6yb6vx9xzDMsjqf0czwWlC2Sn8uSFrnyZdwBnDXC/rOBxd5yJfC9HMg0NkZqKSdiRpl27YXOveb9UC2V8aLa/6APWNwDl2S6htSlT944dDV77p8CNgBJ3Dh07UvvO41HoXtf4RuAQkJd83zHeorXAFgyJifNVVX9s4jMH+GQ84GfqqoCz4pIrYjMVNWduZAvbRKx9H2Cbtz4syOdpmua9P+OlCcnqdzVNQOi6nrriUH7CsRfnw/UNT2CcK1xwx2wP8chrRZLkVMoPovZwLaU9SZvW2EZgfgYW5VuHKJxo5iS/l9kkHJPFEdrvBBQhZ4W0GoIVvRvT8TNoP1E9L4slklKoRiBtNm7dy8rV67sW7/yyiu58sorc3PzeBYiS/r8v5Zxk5zDEK4pjnENi6UAKRQjsB2Yk7Le6G07gKlTp7J69eqcCDUA181feKFleKLdxo9tBwItljFRKEHu9wMfEcMxQFvhjQcUYOikxWANgMUyZnIVInoncDLQICJNwPVAAEBVvw88iAkPfRMTJ/fRXMiVEYUYP2+xWCzjJFfRQRePsl+Bz+RCljFjjYDFYpmEFMqYQGGTSWioxWKx5Ju+8HIv3HwErBFIh7GGhloslslJImoy3XbvMxMYu5vNJNHuZm89ZXs8MjA5nAgwaH1A0rghEsupNxn0gPlDg5S9O7rSH4w1AumQjdBQi8VSHMSj0LoFmt+CtqaBCr17n1H2vW35lnJ0kpXxxAe0D3uYNQKjYUNDLZbJSawH9m8yS/ObRunvfxNat43emhYHyuuhvMG8VjSY9xXJ9an92/1hhsxKekAGUwWGyFyKplS2S1ay8w16n1LlLrk9lX+ZNexHsUZgNGxoqMVS3EQ6Yf9bKYreW9q2M2SGTnGgdh7UHwS1cz2F3jBQ0YdriztrcArWCIyGjQqyWAobVeOqad9ulrYm89q6zSj7zt1Dn+f4Ycp8qFsIdYuM0q9fZLZNZGnTAsMagdGwRsBiyS+q0LPftNxTlXyf0t8+co/dF4K6BVDnKfm6hea1du7El/3MEEVJuEpCFdc1710XAn4h6Pfhm4CSodYIjIQNDbVYJhY33h9Zk0zBnnzfvqNf0Y8WoReugerZZqlJvjYaxV89u6BcNwn1lLv3apQ+uN62oYgkzB+fIwR9xiAEfdlJ+GCNwEjY0FCLZWzEevuVedce73VfyjZv6d5PWpWzQjX9yr16Vr+STyr+UOWEf6RUFDXjtoCq4mr/NkjmMTTbjbI3r66r46oTlnCVHlfpibmIQNBxCAYcgj4HZ4y9BGsERsKGhlqKiUgH7F4L05dBqCr392/dBuvuhfX3G5dNWkh/NE3FVDPomnxfNctT9LNy+nkUJZpwicZd4q5R8mCUODrRxR7TRxUiCZdIwngr/D6HkE8I+B0CGZRhtUZgOGxoqKVY2L0WXrkLXv8dxHuMn3v+ibDkLDjo3RCcwFZytAs2PgJr74WmF/q3+wJQPrVfoVcmI2y898nt5fVmgDbPuOop/phL1HWLMiN5POESTwDRBI4IQb8Q8DmE/CMbhPx/+4WKDQ21FDKxHtjwoFH+u1/r3163EPZvhrceM4svBAtOhIPPgYUnQaB8/PdWhe2rYe1v4I1HIObVx/CHYfGZsOx9MGfVgbHqBUbcNa39SEKJJybX2J+rSm9M6Y25dI5yrDUCw2GjgiyFyP5N8Or/mpZ3xJsFGqo2ivfwDxkj0LkbNv4BNjwEO16CNx81i78MFp4MB59tegpDleccifbtsO635t5tKYUAZx1p7r/k7Jz75jMh1c0TS5gB2VJgtE8pWmT9npUr36mrV7848Tfq2G0jgyzD48Zhz3rjAtm+Gra/aH5tMw6DGYfDTO+1vH7890rETKv+lTth23P922ccbhT/wedAoGzoczt2mtb6hodg1yv92wPlcNApRnHPP2H42texHnjzj6bVv/VZ+lRK5XQ49AJYdgFMWTD+zzhBTAY3TzaYNnvBi6q6cqh9xWcEjnyHrn7p5Ym9SSJmIhksliTxqHG7NL0ATatNCzuWRpnQ6tmeUTjcvE47dHiFPZj2HfDar2HN3SaSBkxrfum5sOJDMH15Zp+hrckYhDcegt1r+rcHK2HRqcYgzDsWnADs/Ktp8W94CKKeQ8EXhEWnwbL3w9x3FVTY5WASqnT0xolNMjfPWJlcRuCIFaYn4JtAT1akw0w1t5QusW7Y+QpsewG2v2DeDw4UqJ0HjUdB40qYvdIoxZ2vwK7XYNerZsB2sKEQHzQsNgZhxuGm51C/qF+hqgtbnjKt/s1P9vdG6xeZVv8h50O4evyfr3WrMQYbHoa96/u3h6qhbAq0vt2/bcbhRvEffLaJxy9wIokEHb3xAmn1m8ygKtL3HpLvnf5171WFofejA3MJoUhfvqED96GKJJ8dVabNnj/JjMBfnoSy2om7SVezjQwqNXrbTeu+abVR+rvXGpdPKvWLPaV/FMx+J1ROG/mabsLkq0kahV2vwb43DkxOFig3YZ31i2DL//WHVzoBWHw6rLjYGJkJmC0KQMtmYww2PAjNG822iqlwyHnG11+/aGLuOwF0R+N0RXNYblQc1PF5ydt8aF8iN9/QidzyxIyasklmBP78iHlIJ6I76rrD5xqxTD5i3fDYjbDufgYMoYljXDeNK2H2UTD7SNNCzsb99qzvNwo7XzEDrqlUzzat/mXvN3HzuaT5LZOiYdYRBRG6mS6K0t4TJ5pV94/0K3jvVfuydPoK2h02mJGMQPH8l1NRNX7Kieia2tDQ0qHlbbj/s6b16wSMa6ZxpWnpzzxiYiJdAuWmFzH7nf3bupu9XsIGaFgK84/Pn4KpPwg4KD/3HiNx16W9N56VaB91/OALob6gGQOZqN5XAVGcRgBM1EKwyuTRziY2NLQ02PQneOgfzfjPlAVw3rc9BZgHyutN6ObCk/Nz/yKmN56gszc+5lm86vgGKf3CcN/kkuI1AqoQ68r+dHJrBHKLam5bW+rCM9+GZ79r1hedDmf+v4KOb7cciKJ0RuL0xjJ0/4iDpir9InLpTBTFawQAot0mvC1bSsRmDc0uqmZCU8dOE+441GvXPuN/PvEfYOaKiZWnp9W0/rf82bT4jvsiHPWJkujyTyYSqrT3xtOb5SsO6guivoCZPV1E4xy5ori/EXVN7pJsteJs1tDMcBPQuQvad3qKfbv36q137DD/n9HYvhru/JCJUz/+Gqidk31Z96yHBz5nIm/CtfCe/zQx8ZaiIppwae+NjRz+KQ7qD6P+soKrF1CIFLcRABNtEazITmvOZg1Nj+a3zASmdb81kSQjESg3WSCrZva/Vs2C6pnmfbACXrwdXvyJiVt/84/wjkvg6E9nLwx43f3w6L+YQf/py+C9t5oIHEtRMVr4p/oCRvH7y2zvLgOK3wi4CW+QeJyJsWzW0JGJdpnZo2vuhp0v928vbzB53qtSFH2q0g9Vj/6DPP4aEwv/9C3GsLz0EzNb9ehPwTsuG3upv0QUnvw3ePkXZn3ZhXDqdSVVOnAyoCgdPfG+lMkDETRQZlv946A45wk8+fDAjY7fpKcdD7Ee4zO29KNqFP6ae8xEouTs10A5HPweWH6h8eNns9W1Zz38+WbY+hezXj0bjv+iyY+TSeRG52743Rdgx1+Ncnj3V+CwD9oWYpExXPinbfVnxuSbJzAYN26UeLo5WYbCRgX1091sWuRr7jGFupPMOtIo/iVnGTfORDDtELjwxyZ1wp//3cTwP/j3xl100j+aGP7R2P6iMQBde02is/feOvGDzpasc2D4p231TwSTwwiAcVdYIzB23IRRvGvuNjH0yZQJ5fUmW+TyC02a4lwgAgtOMAO3a++Fv9xikrf96sMm8+UJfz+0LKrw8s+NC8iNQ+MqOPdb2cnkaUmbZJ7+1LZ7qsdh4PYDN3rZb/qSv6njRwPlttU/QUweI5CIGUU+Fn9vKYeGtm6DtfcYZZtMlyGOmbi0/AOw4KT8tbocHxz2AVh6Dqy+HVb/GN56HDY9CYd/EI75TH9ahVgPPHodvP6AWX/nx+CEa2xIYI4Z7+StfgQNlNtWfw6YXL+QaNfYjEAxhYa2bjMFQrY9Z1rvyUyDkkxc5b13fPRlInQcz5/uDFzfv2lgfvqauXDYhablXzk9Tx9wCALl8K7PGMX/zLdNeuVX7jQuq1VXmt7Bg/9g0i4EyuGMr5uMlyVC3HWJu0os4aIuVIT9+HLcYh7z5K0k4qBOAHxBbyKXVfy5YnIMDKdSXj98gYzhKOSsoaomE+Wbj8LGRwem/c0GyZKAyy80/vZi6G43vwn/9x+w6YmB26fMh/f+t0nVPElJFklJuEosocSHKJQiQEXIT1kgN7NhE6q09cQyy93TN3M34M3cnVzt0UJj8g8MpxLtBH9d+scXYmioqin6sfEPRvm3bOnfFyj38sy820x60oRxZSXziWsi5f3gZdD2YKUpRJ7t1BsTTf0iuOD7ptLVn/8d9qyDg06Fs24qvs8yAoqn6BMu8YQScxU3jUabAp2ROJG4S9UE9wp64wk6I6Pn7jeJ2YJ9rX2brqFwmHxGIB6BRDz9ojOZZg3ds94onaqZJnyxambmPY+hcBMmn/1Grx5sx87+feEao+QWnw5zj7Vx7knmHgOX3m1mAdfMKY5ezAgkVL36t8a9M96smLGES0tXlIqQj7JA9n/qnZEYPcO4f9QXACfY39IvwcRsxULOjICInAXcAviAH6nqTYP2zwV+AtR6x1yrqg+O6WbRzvRnm2YSFeQm4J6PQU9LykYxtQ2SE6ZqZhvjUD3LMxKzhi/onYjC1ufgzT/Am48NnH1bMc2U8lt8hklvbLvLQyMO1M7NtxTjJq10CGnhVaHyML2CBJG4Zq1X4KrSNkzuHvWXocFK29IvInKiWUTEB3wHOB1oAl4QkftVdV3KYV8BfqWq3xORQ4EHgfljumG81yjsdB7ETIzA/reMAQhVQcPBJjdOxy7o2mMW/jr0eeUNxiAkDUXlNJM/ftOf+uu3ghmYXXy6yWw583DbeioRemIJuiLjjagRNFiBBiog3ovEu5FErG9vtnoFQxsrMbl6rPIvSnLVvFwFvKmqmwBE5C7gfCDVCCiQLJ5aA+wY893SLTqTaWjozlfM67zjTfx58hqdu01WzPbtKYu33rELuveZZdcrB16zYYlR+ovPMO+L3KVhyYyRXCrpor4gGqru7y0GysykqkQUiXUjXvTbeHsFB+bu8SZvBSqs8i9icmUEZgPbUtabgKMHHXMD8AcR+RxQAZw2rjumU3Qm09DQna+a19TZp74A1DSaZSjchOkltKUYh44dpkj5otNMRIslL7iqROJGKbpqFGMg20WKhiEr5RDFwQ1WDT9J0gu3VDfhGYMeUDfjXoGrSkdvqqxW+U8mCsnRfDFwh6p+U0TeBfxMRJarDmyq721uZuVJZ/WtX3nFZVz50csOvFo6RWcyzRqaTJw28/D0z3F8XubMmcCQEVqWHJKq+GODFHBrd4yygENFyI8wcT2yMYVUDkID5cb9ko7L0PGhoSpzfLwbiXWDm0irVxBzXdp74l5UklX+k5FcGYHtQGqS+EZvWyofB84CUNVnRCQMNAB7Ug+aWl/PiPMEUhmp6EymoaHRThOf7vhh6qHpn2fJOyMp/sH0xFyiiRiVIT9BX/Z7BeMdAFbHb1w/vjFEpIlAwIwbaDyCxLqIJaLD9gp6YnG6Igk0OXvXKv9JSa6MwAvAYhFZgFH+FwGXDDpmK3AqcIeIHAKEgb3juutIRWcyDQ3dtQZQmLp0+GgfS8GQieIfTMI1LfVwwKEyi72C8aVUEDRYiWYrcZ8/hPpDqBtHYt10RnrojceoCvnwOeKlblZjMIIVNkhhEpMTI6CqcRH5LPAIJvzzNlVdKyJfBVar6v3A3wE/FJEvYsawrtBsTGceruhMpgnjkoO6MzJwBVlyyngU/1D0xlyi8RgVIR9h//hawF3RON0jFEQZCfWFvIHfCWiFez0LDVYSi/XQ0tOFI5DwlaFhq/xLgZyNCXgx/w8O2nZdyvt1wHFZv/FwRWcyNQJ9g8LvyIpYluwQc13iCTdrin8wfYOiPpfKsB8nw4iakQuijII4uKFqk9pjohHHhJgGK3DVtcq/hCikgeGJI9o10AhkGhqq2h8emsmgsCWruKqe0u9Pp5CrzFeRhEu0O0pFcIicPI7PBCA4AZO2w42Dm8BNJGjr7iE+Bv1vBn6r8hMybA1ASVEaRmBw0ZlMQ0M7dpg4/3CNCe205IS46xJLaNbSKIwX1UE5eRzHuBoHBB/4gRCxhEtrLIYbKoMQptHhGgMh6ppnUhOIGx/QIDEDvzU2i6YlZ5SGEYCBRWcyDg1NjgdkuZSipQ/FZMfsa+UPkR2zUIglXPZHfFRU11IeOjCPU28sQXtPbGAvRRzwOeALDCyqknzjJkwvYixRPxbLOCgdI5AsOuMEMs8aal1BWSWhRsm7femQ89/KTxf1BdBgNfgCdESV3kSU6rAfvxdO2hWJ0xmJZ35hx4eJmbBYckvpGAGASOeBA8TpsGuImcKWUUkq+0RS0SskCriFPyLDzM6NJVz2d0UpD/lJuEpvbGwRQBZLvigtI5CIQjRDDZSIwu615r0NDx2SIZV9DgdtJ5aUxGzDuAIV0wOwWIqR0jICYNxCmbB3gzEEUxaMnpCuRIi5LrG4SzTHETq5xqZFtpQCpWcEMsWOB/SVNDQFT9KrblXMpPr9LZbJjjUCo5EcD5hROuMByUidZGu/WAZtx81oWTktlkmINQKj0dcTmNxGwMTku0S9mbclovb70GDliH5/i2WyYo3ASPS0QOvb4AuZgi+TiFJz8QyP4IZrbd1mS8lijcBI7HrNvM5YXvT+4aTSjyWM0i8ZF89IiIMbnlL0/1uLZTxYIzASySIyRRgaapX+yKjjR8NTbOSPpeSxRmAkhionWaAkVD2ffmHk2Slk1Bc0BsD6/y0WawSGRd2Cnilslf7Y0EC5yc1vsVgAawSGp2ULRNqhYipUzsi3NIBR/JFYgt64a5X+GNBgVfYqc1kskwRrBIajLzT0HXl1G8Rdl0jcLFbxjxUxxVls/L/FcgDWCAxH3ySx3A8KW8WfRcQxIaA2RbPFMiTWCAxHjieJxVzj37eKP3uo40PDdTYCyGIZAWsEhiLWYxLHiQPTlw3YpSiugtDvJRLG5i6KuS6RWKK0UjPkCPUFvAggWyrRUnxE4gl2tfWyo7WX3e29VIX9TKsOM60qRENlCJ+TPRe1NQIpuKokVHF3vkZIEyQaDqbLDeL2xHBVcV0dNp2C9P0xRiF1GEGk30yIt8Tc0p2lq47PFPdxAqjjN2UWEzFwo4g7/nz86g+bEo02BNRSoLiq7O2IsKO1hx2tvexo7WF7a49Zb+tlb0dk2HN9IjRUBZnuGYVp1WGmJ1+rQ0yvDlNXEcRJ8/kvOSMQTbgkXONycV1IADpIwZdte5kQEG1YTiTNKuHa98f0FgZai9JU9jCEwvcFhmydqzdpV9WFRLTfKCTiZPL9abDSpH+2WPJIwlX2d0XZ2xFhZ5tR7DtaetjRZpT+zrYeYonhn2ufCDNqwsyqDTOtOkxXb5zdHb3sbo+wvyvK7vYIu9tHMBSOGANRZYzCSJScEWjvjY1a2Sqwx6SLiE87LAcSTSLEQX3BURX+aNfAH0b95sFVVXBjxigkIgcUZk85ETdUBYExVI6zWDKgKxJnb0fELJ0R9nRE2DdofX9nlMQoimZKeYDZU8qYVVPGrNoyZteWMas2zKzaMqZVh/A7Q/92onGXfZ0Rdrf3esaglz0d3qu33toTY2dbLzvbeoG2EeUoKSMQTaRX2tC/x0QGxaYXX7qInCCOaeGLb3wKP617CfiCxrhQYfoEfb2EGOLVi3ZDNTYJnCUruKpsbe5m3c52Nu/r6lf4npLvjqbnspxSHqChMuS16MuYVRMeoPTLgmMLWAj6HXO92uFDniPxRJ9B2NMR4WP/Nvz1SssIxEf/5zlde/B17cYNVJKoXZADqQqTfiXvB/ENWs+zr90XAF8ADSTdcJp/mSxFS0tXlLU72lmzo421O9pZv7Odjt7hy4WG/A5Tq0JMrQyZ1+SSst5QGSLoz19QQsjvY05dOXPqRu8Zl5QRiMRH7wb4+1xByws6skR9ASBVvsGfbdD6gC5Q8r30KXZ1HBC/UfLFFlJpDYAlTXpjCd7Y3WGU/naj9I3LZCBTK0Msm1XN4umVfVE5UytDNFSFqA77kUn0zJWMEYi5blrROIGkK6hAxwNM6cMqO/nJYhmFpFtn7Y521nqt/I17Og8Ixw4HHA6ZUc2y2dUsm1XDslnVow6mTiaGNQIi8jPSCMtQ1Y9kVaIJIppmlI9/zxqg8AaF1fEZ5e8vnYfTYhkLqsovn9/KHU9voX2QW0eAg6ZW9Cn7ZbOrWdBQMewgbCkwUk/gzZT3DcDlwAPA28Bc4L3ATyZOtOySVqinGyew1xiBgukJiIMbrICATXxmsYxGZ2+cr/1uHU+8sRfod+skW/lLZ1RRESoZB0haDPttqOqNyfci8gjwHlX9v5RtxwP/MrHiZYeEpjcj19fyFhLvJVE1Gy2ry4FkIyFosMLWvbVY0mTjng6uvec1mlp6qAz5ue7cQznp4Kn5FqvgSdckHgM8O2jbc8C7sivOxJBOVBBAYHdyPCCfoaGCBsrMhKcCHpi2WAqJB1/byU0PvU4k7rJ4WiU3XXgYjVPsnJF0SNcI/BX4hohcp6o9IlIG3Ai8PGGSZZF0ooIgNTIoP64g9YeN8ndsd9ViSYdIPMG3Ht3IvX/dDsB7Dp/JP555MOFAkUW45ZF0tc0VwC+BNhFpAaYAq4FLJkiurOF6FbjSIbDXGIHY9NwaAfUFvYgfW/DcYkmXHa09fPne11i/s4Ogz+Hvz1zCeStmTarwzVyQlhFQ1S3AsSIyF5gJ7FTVrRMpWLaIpmkAJNqBr2Uz6gSI1y+dYKkM6vi9iB8709ViyYS/vLWP6+9fS3tPnJk1YW668DCWzrBlQ8fCSCGiQzmkm7ylb7/qkIlchrreWcAtgA/4kareNMQxHwRuwISmvqKq4+5pRGPphoauRVBi9QdPXAy+OKiIefWX2Tw3FkuGJFzlx09t5ranNqPAcYvquf69y6gps73osTJST2C09I3i7R/V+SYiPuA7wOkYI/KCiNyvqutSjlkMfAk4TlVbRGRaGvKPiKJp9wQCGeULEhBBxTGDt6kL0qfoD9xnsVjGSmt3lOt+u5bnNu9HgKtOWsjlx85PO2WyZWhGMgLZTJyzCnhTVTcBiMhdwPnAupRjPgl8R1VbAFR1z3hvGom7aSchTn9QWHArp49LLovFkhlrtrfx5XtfY3d7hNqyAF+7YDmrFuQ7jHtyMNI8gbcHb/NcQNNVdWeG95kNbEtZbwKOHnTMEu8eT2N6Fzeo6sMZ3mcA6c4SRrUvffRo4aFabHl1LJYiRlW556XtfOvRN4i7yvLZ1XzjfYeVVFqHiSatgWERqQW+C3wAiAEVInIesEpVv5JFWRYDJwONwJ9F5DBVbU09aG9zMytPOqtv/corLuPKj1425AXTdQU5Hdtxeltww1Nwq2aPcrD1PVosuaAnmuCmh17n4bW7APjgykauPnUxAZ91rWaTdENEvw+0APPod+E8A3wTSMcIbAfmpKw3ettSaQKeU9UYsFlE3sAYhRdSD5paX8/qJ0fvIKRbOwBI6QUcNvrsXBvDb7FMOG83d3HtPa+xaV8XZQEfXz5nKWcsm5FvsSYl6Wq0U4FZqhoTES+Fu+7NYPD2BWCxiCzAKP+LOHCOwX3AxcDtItKAcQ9tSvP6B5DuLGHoLyKTziQxtUbAYhkXycpYezsi7EtW5uocWLhlV1svsYQyv76c//f+w1g41ZYMnSjS1WhtmCRyfWMB3pyBtMYGVDUuIp8FHsH4+29T1bUi8lVgtare7+07Q0TWYUr//oOqNqf/UQYSHaF+52AG9ARGw07oslhGZHd7Lxt3d7Kno5d9ndE+xb7XK8PY2hNL6zpnHDqda89eahO+TTDpfrs/Au4RkX8GHBF5F/ANjJsoLVT1QeDBQduuS3mvwDXeMi7iXiH5tEhE8e97HUVMIZmRsKGeFsuwJFyTwvl/nnxr1CLq9ZXBAdW4Gryi6A2V/VW6KsNW+eeCdL/lfwN6MLH+AeA24H8wk78KjrSjggB/8+uIGyNeu9DM3h0B6wqyWIZmR2sPX31gHX/d1grAynlTmFVb5pVaDDKtKkxDVZCplSGmVARtbH8BkW7aCMUo/IJU+oOJZOIK2p2BK8gaAYtlAKrKQ2t2cfMjG+iOJqirCPKV9xzCcYsa8i2aJU1GShtxoqr+2Xt/ynDHqerjEyHYWHFViacZGgqZZQ61PQGLpZ/W7ig3PfQ6f9pgCricvGQqXzpnKbXltvRpMTGSVvuuiJzizdz98TDHKLAw+2KNnbQqiKXQNyicTroIawQsBUZ7T4w1O9p4ramNNdvb2dHWw4mLp/I3KxuZVVs2Yfd95q1mvva7dTR3RSkP+vi7M5bwnsNm2gyeRchIM4aXi8g+EfmiqmYzhcQ4GdnVk4kRkJ79+DqaUH+YxJSDRj/BThSz5BFXlS37unhte5tZmtrY0tx9wHG/fH4rd72wlZOWTOWiVXNZ0ViTNeXcG0tw62MbueclM81nRWMNN5y3bEINjmViGa1peyHwAxH5EHClqu7IgUwj074DVIec1KVk5grq6wVMXTZ6K18cW+bRklM6emOs3dHOa01G6a/d0U5nZGDh9KDPYenMKpbPruGw2TVMKQ9w38s7+OO63fxpw17+tGEvS2dUcdGqOZx2yPRxzbZdt6Od6+9fy9b93fgd4VMnLeTSo+fhc+zvopgZUfOp6pMicjgmvfMrInIjA5O+5X5MoKcFXrwdVn7sgF2ZJIyDTMcDbC/AMrE0tXTz0tZW1mxv49WmNrbs6zrgeZ5eHeKw2TV9Sv/gGVUHKPYj5k7hs+9exD0vNfGbl7bz+q4Obrh/Hd9+/E0+8M5G3nfE7Iz89nHX5Y6nt3DbU1tIqLKwoYIbz1/GkukjR9NZigPRNHIriEg5cCdwCrAvZZeqak7HBFbO8unqK6vggu/CwncP2NfeEyOSQU+g5vefIrj9WdpO/ybRBaeNeKwGKtCQfegt2ScST/C9J97izue3Ddge8AlLZ1R7Sr+awxprmFaVWeK03liCR9bu4q7nt7FpXxcAIb/DWctncNFRc0adibt1fzc33L+WtTvaAbhk1VyuOnkhIb9NpFhMzKgpe1FVVw61b1QjICKnAj8AXgI+k40Uz+Nh5ZKZuvqSblOQ5eK7oGEJYFxBzV3RtPMFoS71d5yAE+uk+dJHcStGzoDhhmogYP2eluzyxu4Obrh/LW/t7cInwolLGlgxp5bls2s4eHoVQX92JieqKi9saeHO57fyl7f6J+KvWlDHRUfN4V0H1Q+I3VdV7v3rdm55bCO9MZdpVSGuf++hrJxv0zcXIyMZgRHdQSJyG3AWcLWq3j0RwmVMxTQ4+FDY8CDc92m45NdQXpdRwjgAX+tmnFgniYrpoxoAwEYGTUJUlZ1tvazf2U7cVU4+eGrOWriDZ9fOrSvnxvOWceisiSmRKCKsWlDHqgV1vN3cxf++sI3fv7aT5zfv5/nN+5lXV86HjprDOYfNpDsa519/v77PWJy1bAZ/f+YSqsLWJToZGU2zBYDlqro/F8KkzRnfgNZtsPs1eOBzcOHtRBOZDU71jwekWUnMGoGiZ39XlHU721m/o9287mynpbs/j8306hBXnriQs5fPnNDBzl1tvdz4wFpe2toKwIVHzuZzpyymLJgbAzSvvoJ/PGspnzrpIO5/eQe/Wr2Nt/d38++PbOB7T76FI0JbT4yqsJ9/Omsppx9qiyhNZtIaEygkVh6xQlc/+TB07oZfftC8Lns/zcddTyYzBCr//FXKXr+HzqOvoWfF5SMeq44PLZ86PsEtOaUzEuf1nUbZr9vRzvqdHexq7z3guOoyP4fOrGZfR5Q393YCsLChgr9990Ecv6ghq3Hvqsoja3dz8yMb6IzEC2Z2bTzh8sSGvdz5wlbWbDe+/1Xz6/iX9x6S8RiEpTAZszuooKmcDud/F/73Ulj7G0JV8+k5fGRlnkpg7xogvcggOz+gsInEE7yxu3NAC//t5u4DImvKAj6WzqjikFnVHDrTLLNqw4gIriqPrN3F/zy5iU37uvj7X7/K4Y01fPbdi1gxp3bcMrb3xPi3h1/nj+vNkNqJSxr48tmHMKUi/7Nr/T6H0w6dzmmHTmftjjb2dkQ4cclUm9+nRCjenkCSNx6G330BRWg/8xai804a/SKxbhruOA4Q9n30afCPPOCrwUo0aPOZ55OEq+xu72Xr/m627e9mW0uP99rNjpZeEoOeY78jLJlexSEzqzjUU/rz6itGdfNE4y6/eamJ257eQpuX8viExQ387ckHjTmn/Qub93Pj79axtyNCWcDHNacv4b0r7OxaS+6YnD2BJEvOovuoz1D+wneoevxaWs//KYm6xSOeEti7DlGXWP3SUQ0A2JxBucJVZW9HZICSTyr97a09w6YnFowLJ7WFv2ha5Zgia4J+h4tWzeXcFbP4xbNv88vnt/J/G/fx9Jv7OOewmVx54sK069sODv08bHYNN5x3KI1TyjOWy2KZKIpeuyVU6XrHJ3H2v0X4rYepeeRqWi74BVo2fChbXyWxdPIFgXUHZRFVpbU7xlZPwQ9u2Y+U9qOhMsjcunLm1JUzZ0o5c+rKmFtXzqzaMsKB7A6qVob8fOqkg/jAOxv58VObue/lHfzu1Z38Ye1u/mZlI5cfO5+asuGfi8Ghn584YQEfOXYefsfWo7AUFkVvBCKxBIjQcdKN+Nq3Edi7lppHr6H1PT8A39D+1owqiSHg2IkxmdIZiQ9oyW/b39On9AenPkiltizA3PqBSn5OXTmNU8ooD+b+ca2vDPGPZy3l4lVz+f6Tb/HH9Xv4xXNb+e3LO/jIu+bxoaPmDDBAuQ79tFjGS9GPCbT0xPryBTnde6m99xJ8XXvoXXIeHSd99cB8P6rU/eJ0fN172f/B+0jUjpwbT30BtKw+659jMhCNuzS1JBV9z4DW/f6u6LDnVYR8zK0rNwp+SvkApV/osejrd7bznT+9yQtbWgCYWhniEycs4NwVM9nbEeGrD6zLW+inxTIc45oxXGikGgFXzSzhVPz71lP72yuQRO+Q4Z9O5y7qf3kmbrCK5sv/PGq5SPWXoeGa7H6IIiMad3l7fxeb93axaV//a1NLN8NV8Qz6HObUlTEnqey917l15UwpDxT9oOhzm5v5zp/eYsOuDgDm1pWzvytaUKGfFkuSSTswPJT/ON5wCO3v/jo1f/w7Kp77FonaeUTnndy3v3+S2PK06gWrr6i/ooyIxl227u9m095Oo+w9hd/U0nNA9A2AI9A4pWyAgjcKv4zp1eFJHWJ49IJ6jppfxx/X7eb7T25i636T0rmQQj8tlnQoag03XC3h6MLT6Fr5GSpWf4eqx780IGIo4A0Kx9KaKQxIUX9FQ9ITTbCtpZu3m/sV/pZ9XWzbP7yyn1NXxoKGChY2VLJwagULGiqYV19e0onEHBHOWDaDdy+dxsNrdlEW8HHqIdOKvpdjKS2KVsMpSmyEjKHdR3wSX8smwm895EUM/Rwtq+8bFE5rkhiAr7B91MMRT7jsaO0d4KdPDtLu6YgMeY5gWvYLpxplv6ChgoVTK5hbV5716JvJRMDn8N4Vs/IthsUyJorWCIxaO0CEjpNu8CKG1lDzh2toPed7+PeacghpRQaJk5bLKF8k4+q3Ng9S9MNMoErid6TPjZOq8OfVW2VvsZQaRWsEhnMFDcAfpv3M/6L23ksJ7H6Z2of+FklEiFfPRcO1o55eSJPEVJWmlh5ebWrjlaZW1u1oZ+sIcfUCzKwJH+Cvn1tXzvSakI1Xt1gsQDEbgTSLx7jlU2k/8xZq77+CwK6/At6gcDrk0QjEEi4bdnX0Kf1Xm9qGDLusqwj2DcamKvrZU8pK2l9vsVjSoyiNQKa1A/oihh79OyD9QeFc9gTae2K85pUVfLWplbU72g9o5deWBVgxp5bDG2s4vLGGhQ2VVIaL8l9osVgKhKLUINF4IvNzFpxGx3FfIrzxd0QXjlxKso8JMgKqyo7W3r4W/ivbWvtK/6Uyv76cwxuN0l/RWMucujIbeWKxWLJKURqBSHxsE9x6l11E77KL0j8hJWdQLOGyZnsbz23az862XuKuSzyhJFSJJ3T4dVeJuwPXowmX7uhAQxbwCYfMrGZFY39LP5Ni4BaLxTIWis4IKCYqZuLvI2zd38Nzm5t5bvN+Xny75QDFPR5qygJ9LfzDG2tYOrPK+vAtFkvOKT4jMIEGoK03zuptXTy7tYvntnWxs33gQOzChgqOXljHkulV+B3B73O8V8HnCH4n/fXKkN+6diwWS94pOiMwXK6asRBPKGt2dxul/3Yn6/b0DLh+bVmAVQvqOHqhKdBtS+1ZLJbJRtEZgfGyrTVilP7WTlZv66Ir1h+B43eEI2eXc/TcClYtmsGS2Q2TOv+NxWKxlJQR+J9n9/Cj5/cO2LZgSoij51VwzNxKjphVTrmX9tctn3JgGmqLxWIpAkRMbitHhNG0WM6MgIicBdwC+IAfqepNwxx3IXA3cJSqrs7W/be0RLj9hb04AqcsquaYuZUcPbeCGVVDReAIiB2ktVgs+UUAETOm6AgIgjhJBW9exdueXHdGqaM9mJwYARHxAd8BTgeagBdE5H5VXTfouCrg88Bz2ZbhO3/ZTULh/GW1fOXU2SMeq47P9gIsFktOEAG/4+ATwecTfCI4jrctQ4U+FnLVE1gFvKmqmwBE5C7gfGDdoOO+Bvwb8A/ZvPkrO7p54q0Own7hU0dPG/2EAsoZZLFYihsBfI4MWBwR/N77fEcJ5krbzQa2paw3AUenHiAiRwJzVPX3IpI1I6Cq3PLULgAuPbKBqZVppIa2heUtFkuGJFv0fl+/gg84TsbumVxTEE1eEXGA/wSuGO3Y5uZmTj/7vL71D196ER+57JJhj//TWx28tquHujIfHz4yvVrBagvLWyyWYRCBgOPg85R9cv5PoSv74ciVEdgOzElZb/S2JakClgNPeF2jGcD9InLe4MHh+vp6Hn3o/rRuGku4fPvp3QB88uhpVKRb8Nv2BCyWkqfPZeMzLXoz4bN4lf1w5MoIvAAsFpEFGOV/EdDXfFfVNqCvKreIPAH8/Xijg+5d08K2tijzpgS5YNmUNM8SsD0Bi2XS43hRN/kakC0UcmIEVDUuIp8FHsGEiN6mqmtF5KvAalVNr2mfAZ2RBD98zswJ+Oyx0/H70vunllJheYtlMiMCPjHuGsdJGZyVwhiQLRRypvFU9UHgwUHbrhvm2JPHe7+fvriP1t4EK2aWc9LCqvRPnISF5S2WUiPs91FdZvNzpcOk1Hi7O2L88q/NAHz++OkZPQi2J2CxFC8CVIb9lAft7zhdJuU39T/P7SGSUE5dVM1hM8szO9n2BCyWosQRobY8QMBn62dnwqTTeG/u6+V361rxOfCZY9OYGDYYn40MsliKjZDfoTocmHSRO7lg0hmBW5/ejQIfOKyOObWhzE4WxywWi6VoqAz5qQhNOlWWMybVN/fc1k6eebuTiqDDx4+amvH5uSwsb7FYxocI1JYFCfptw208TBqt56ry397EsMvf2cCU8jF8NGsELJaiIOBzqC2z7p9sMGm03sMb2tiwt5dplX4uPiK99BCDsT0Bi6XwKQ/6qArbsbtsMSm0XiTu8r1n9gBw1THTCI+1e2jTRVgsBYsIVIcDhAN2Rn82mRRG4Fev7GdXR4xF9SHOWVo79gvZnoDFUpD4HaG2PFhS6RxyRdFrvdaeOLe9YNJDXH38jDE/JLaQjMVSmJQFfVSF7OzfiaLojcDtL+yjM+qyak4Fx8ytGPuF7CQxi6WgEKC6zLp/Jpqi1nzb26L86tX9CHD1cZmlhzgAO0nMYikIBPD7HKrDfvx29u+EU9RG4LvP7CbuKucsreHgaWXjupbawvIWS85JKny/l7Pf7xOb9iHHFK0RWLu7hz+80U7QJ3z6XWNIDzEY2xOwWCaUZEWupKL3O2Jb+gVAURoBVeVWr27wRe+oY0ZVcJxXFBsZZLFkEUeEgM8oeb9jlL6N7ClMilLzPbWlk5e2d1MT9nHFyszTQwzG1hS2lBqJeJz25t3Eo5GsX9sRbCRPHgiHwzQ2NhIIZObVKDojoCnpIT521FSqQllQ4LYXYCkx2pt3U1tTTV1dXdYUtiNiDUCeUFWam5tpampiwYIFGZ1bdA651t4Em/dHmFUd4AOHpVs3eBTsTGFLiRGPRrJmAAQzmcuWbMwfIkJ9fT29vb0Zn1t0RmBfVxyAzxw7PWvZA607yFKKZENh+8T4/a3yzz9j/R8UnR8k7iqHTi/j9MXV2buo7QlYLBkhYFv+k4SiMwKQhYlhAxCwPQGLJW18juBY5T9pKDp3UGXQxzsbx5EeYhC2sLxlMjGRqtkR4/vPhQF46qmnOPbYY6mpqaGuro7jjjuOG2+8kcrKSiorKwmHw/h8vr71ZcuWAcYlUlFRQWVlJQ0NDVx88cW0trb2XVdVufnmm1m8eDFlZWXMnTuXL33pS0Qi2Y+SKhaKzghMq8yy0rauIEsR43OEcMBHdThAfUWQadVh6iuC1JQFKAv6CPiccRuGpOvH5+TG99/e3s65557L5z73Ofbv38/27du5/vrred/73kdnZyednZ18//vf513velff+tq1a/vOf+WVV+js7GTTpk20tLRwww039O27+uqr+cEPfsBPf/pTOjo6eOihh3jsscf44Ac/OOGfq1ApumZwKMul5OygsKWY8DtCwO8Q9JllqMpaJg0DfYnXVJW4q8QSLrG4EnPdtO/niOR8ktcbb7wBwMUXXwxAWVkZZ5xxRsbXqa6u5rzzzuO+++4DYOPGjXz3u9/lmWeeYdWqVQAsW7aMe+65h0WLFvH4449zyimnZOdDFBFFZwSyju0JWAoUwZRRDPgdAj4hOMYoHPFm7wZ8DniT6/d4yl3VGIlF//xQdoUfhi03vWfUY5YsWYLP5+Pyyy/noosu4phjjmHKlMzDwVtaWrjvvvs45phjAHjsscdobGzsMwBJ5syZwzHHHMOjjz5akkag6NxBWcdOFLMUCCKmp1sV9lPnuXamVASpDPkJ+X1ZdcWI9LfyCy1/T3V1NU899RQiwic/+UmmTp3Keeedx+7du9M6/8gjj6S2tpaGhga2bt3Kpz71KQD27dvHzJkzhzxn5syZ7Nu3L2ufoZgobQ0ojlksljwimMIpFUF/3gqnp9NCzyWHHHIId9xxBwCvv/46l112GV/4whe48847Rz33pZdeYtGiRcRiMb773e9ywgknsG7dOhoaGti5c+eQ5+zcuTPjmbaThZLWgLawvCXfhP0+6itDVIUDeTMAhc7SpUu54oorWLNmTUbnBQIBPvGJT7B582bWrFnDKaecwrZt23j++ecHHLdt2zaeffZZTj311GyKXTSUtBGw4wGTGyGZzdIh5HcIB3yUB31UhvxUhwPUlAWYUh6koTJEXUWQcMA3oSGWqQR8DlPKg9SUB2x2zUG8/vrrfPOb36SpqQkwSvrOO+/s8+2nSyKR4Pbbb6esrIyFCxeyZMkSrrrqKi699FKeffZZEokEa9eu5cILL+S0007jtNNOm4iPU/CUdFPYRgYVB4IZ3Ez6sR0BQRCnf90ZsD/zRGY+hJoyBzfkpyeWoDuawFXN+mdxRKgK+23JxBGoqqriueee4z//8z9pbW2ltraWc889l5tvvjmt81esWIGI4DgOBx98MPfeey91dXUAfPvb3+bmm2/msssuY/v27X1zCb761a9O5EcqaEQn4EGfSN6x4nB99KH7s3Itt6zeFpPJAwI4jpiJR44MUORwoGLPV2qCXs8YxBLph1QOhwAVIT/lwewO8I6V9evXc8ghh+RbDEuWGe7/KiIvqurKoc4p6Z6AjQyaOBzpV/LJDJOp24qBcMBHOOAjlnDpjiaIxBKMpckUDvioCuVv0NdiGYmS1YLq+EycnCVtxPvjiPT52x0RfD7BJ4LjgN+ZfBWkAj6nz1XUHUvQk6arKOgz4Z6FFoJpsaRSskYAKZ2PnlTeQr+v3PjZzXsn9ZWkC2agss+nW6ZQcByhMuSnIugjEneHdRX5HOP3D/mt399S+ORME4rIWcAtgA/4kareNGj/NcAngDiwF/iYqr49YQIV4ViAiNfS9lrfSUWe9KXLEIreuiCyj4gMdBVFEkTiCRCoDPkpD5ZOA8NS/OTkaRURH/Ad4HSgCXhBRO5X1XUph/0VWKmq3SLyaeDfgQ9NlEwqhddKSyptX4qLxef50/02d3tBEvA51JQ7uK7f9pYsRUmumiyrgDdVdROAiNwFnA/0GQFV/VPK8c8Cl02oRDnuCaT60x0Z6EOfrL70UsL2uCzFSq6MwGxgW8p6E3D0CMd/HJjAjFYyrsggnzMwFv2A+PXUdVt822KxFDAF57wUkcuAlcBJQ+1vbm7m9LPP61v/8KUX8ZHLLsnoHmOZJCYCZQEf5UG/bbFbLJZJQ66MwHZgTsp6o7dtACJyGvDPwEmqOmSpn/r6esY9WSyDXoDPEcqDPsoChTHJx2KxWLJJrgKYXwAWi8gCEQkCFwEDNLmIHAH8D3Cequ6ZUGnSyBkU9DnUlAVoqAxRHvRbA2Cx5Ij58+cTDAYPSO18xBFHICJs2bKFs88+u6+0ZCAQIBgM9q1fddVVPPHEEziO07dt9uzZXH/99QOu19rayqc//WlmzJhBeXk5hx12GLfffnsuPyoAN9xwA4FAoE/WyspKNm3a1Lc/kUjwla98hVmzZlFVVcURRxwxoGTmeMlJT0BV4yLyWeARTIjobaq6VkS+CqxW1fuBm4FK4Neewt2qqucNe9HxyDNMT0CAUMBHRdBnJ/hYLHlkwYIF3HnnnXzuc58D4LXXXqO7u7tv/0MP9Q8ZXnHFFTQ2NvKv//qvfdueeOIJZs2a1ZeEbvPmzZxwwgkcccQRXHDBBUSjUU477TSmTZvGM888Q2NjI4899hiXX345LS0tXHPNNTn6pIYPfehD/PznPx9y3/XXX89f/vIXnnnmGebOncvatWsJh8NZu3fONJ2qPqiqS1T1IFX9urftOs8AoKqnqep0VX2HtwxjAIRxl9MeZAQcESpCfhoqQ9SUBawBsFjyzIc//GF++tOf9q3/5Cc/4SMf+ciYr7dgwQKOPfZY1q0zAYk/+9nP2Lp1K7/+9a9ZsGABgUCAs846i1tvvZXrrruO9vb2Ua/5xBNP0NjYyDe/+U2mTZvGzJkzs96TaGlp4b/+67/44Q9/yLx58xARli9fnlUjUHADw6Ohjh+3YhokokgiColexE2kfwFxwBsY9jtG+Yf8uSmgbbEULDfU5Og+bWkddswxx/Czn/2M9evXs2TJEu666y6efvppvvKVr4zpths3buTpp5/mqquuAuDRRx/l7LPPpqKiYsBxF154IZdeeinPPPMMZ5555qjX3bVrF21tbWzfvp1HH32UD3zgA1xwwQVMmTKFm266iZtuumnYc1NdOg888AB1dXXMnDmTz372s3z6058GTA/I7/dz9913861vfYvq6mo+//nP85nPfGYM38LQFJ0RALypsyHUHwKqUDcBiQiSNAw6fNZHdXyE/A7lQT/BLBett1gs2SPZGzjppJM45JBDmD17dkbn79ixg9raWlzXpaOjg/e9730cf/zxgCk1uXLlgUk1/X4/DQ0NaZeaDAQCXHfddfj9fs455xwqKyvZsGEDxxxzDNdeey3XXnvtqNf44Ac/yJVXXsn06dN57rnnuPDCC6mtreXiiy+mqamJtrY23njjDTZv3szGjRs59dRTWbJkCaeffnpG38dwFKcRGIzjA6ccDZSbLI+JWH8vIREHFBEI+x3KKirwlQfzLLDFUmCk2ULPJR/+8Ic58cQT2bx585hcQaljAm1tbfzt3/4tl19+OXfeeeewpSbj8Tj79u2joaEhrXvU19fj9/er0fLycjo7OzOS89BDD+17f+yxx/L5z3+eu+++m4svvpiysjIArrvuOsrKyjj88MO56KKLePDBB7NmBCZnU9gXQIMVaFk9UjWditoG6mtrqSwrw+cvvpxBFkspMm/ePBYsWMCDDz7I+9///nFdq6amhksuuYQHHngAgNNOO42HHnqIrq6uAcfdc889hEKhjKuYDcU3vvGNARE/g5fhEBGSdV4OP/zwvm2p+7PJ5DQCQMjvUFseoKEqTHl5JVJWC5VTIVgx6rkWi6Uw+PGPf8zjjz9+gO8+Uzo7O7nrrrtYtmwZYHoZjY2N/M3f/A1btmwhFovxyCOPcPXVV3PDDTdQU2PGSK644gquuOKKMd3zy1/+Mp2dncMuSX7729/S0tKCqvL8889z6623cv755wNw0EEHccIJJ/D1r3+dSCTC+vXrueuuuzj33HPH9X2kMjncQR4ChIM+ygM2xNNimQwcdNBBYz53x44dfS3uZOv+F7/4Rd/6H//4R770pS9x9NFH097ezsKFC/n617/OJz7xib5rbNu2jYsuumh8H2IU7rrrLj72sY8RiURobGzkn/7pn7j88sv79t955518/OMfp76+nmnTpvG1r32NU089NWv3L7rykiuOeKf+4cmnB2yzs3otlsyw5SVHJxqNsmLFCl599VUCgeJwI5dcecmgz6Es6LNFuy0WS9YJBoOsX78+32JMOEVnBAQosy4fi8ViyQpFZwT8PqE6XBxdM4vFYil0bFPaYrFYShhrBCyWEqXYgkIsIzPW/6c1AhZLCRIOh2lubraGYJKgqjQ3N48psVzRjQlYLJbx09jYSFNTE3v37s23KJYsEQ6HaWxszPg8awQslhIkEAiwYMGCfIthKQCsO8hisVhKmKIzAoXQff3BD36QbxGAwpDDytBPIchRCDJAYchRCDJA4cgxHEVnBNLN8z2RFMo/tRDksDL0UwhyFIIMUBhyFIIMUDhyDEfRGQGLxWKxZI+iSyAnIh3AhjyL0QDkv0tSGHJYGfopBDkKQQYoDDkKQQYoDDnmqerUoXYUnRGwWCwWS/aw7iCLxWIpYawRsFgslhKmaIyAiJwlIhtE5E0RuTZPMswRkT+JyDoRWSsin8+HHJ4sPhH5q4j8Lo8y1IrI3SLyuoisF5F35UGGL3r/izUicqeIZD5vfmz3vU1E9ojImpRtdSLyqIhs9F6n5EGGm73/x6sicq+I1E6kDMPJkbLv70RERSS9yu1ZlkFEPud9H2tF5N8nUobh5BCRd4jIsyLysoisFpFVEy1HJhSFERARH/Ad4GzgUOBiETk0D6LEgb9T1UOBY4DP5EkOgM8D+a54cQvwsKouBVbkWh4RmQ1cDaxU1eWAD5jYWoD93AGcNWjbtcBjqroYeMxbz7UMjwLLVfVw4A3gSxMsw3ByICJzgDOArfmQQUTeDZwPrFDVZcB/5EMO4N+BG1X1HcB13nrBUBRGAFgFvKmqm1Q1CtyF+efmFFXdqaovee87MEpvdq7lEJFG4D3Aj3J97xQZaoATgR8DqGpUVVvzIIofKBMRP1AO7MjFTVX1z8D+QZvPB37ivf8JcEGuZVDVP6hq3Ft9Fsg8mUwW5PD4FvCPwIRHnwwjw6eBm1Q14h2zJ09yKFDtva8hR89ouhSLEZgNbEtZbyIPyjcVEZkPHAE8l4fb/xfmx+Xm4d5JFgB7gds9t9SPRKQilwKo6nZM624rsBNoU9U/5FKGQUxX1Z3e+13A9DzKAvAx4KF83FhEzge2q+or+bi/xxLgBBF5TkSeFJGj8iTHF4CbRWQb5nnNRe8sbYrFCBQUIlIJ3AN8QVXbc3zvc4E9qvpiLu87BH7gSOB7qnoE0MXEuz8G4Pncz8cYpFlAhYhclksZhkNN7HXe4q9F5J8x7stf5OHe5cCXMa6PfOIH6jCu238AfiUikgc5Pg18UVXnAF/E6z0XCsViBLYDc1LWG71tOUdEAhgD8AtV/U0eRDgOOE9EtmDcYqeIyM/zIEcT0KSqyZ7Q3RijkEtOAzar6l5VjQG/AY7NsQyp7BaRmQDe64S7H4ZCRK4AzgUu1fxMBDoIY5hf8Z7TRuAlEZmRYzmagN+o4XlMz3lCB6iH4XLMswnwa4x7u2AoFiPwArBYRBaISBAz+Hd/roXwWhE/Btar6n/m+v4AqvolVW1U1fmY7+FxVc1561dVdwHbRORgb9OpwLoci7EVOEZEyr3/zankd7D8fswPHu/1t7kWQETOwrgKz1PV7lzfH0BVX1PVaao633tOm4AjvWcml9wHvBtARJYAQfIzc3cHcJL3/hRgYx5kGB5VLYoFOAcT7fAW8M95kuF4TBf/VeBlbzknj9/JycDv8nj/dwCrve/jPmBKHmS4EXgdWAP8DAjl6L53YsYhYhgl93GgHhMVtBH4I1CXBxnexIyfJZ/P7+fjuxi0fwvQkIfvIgj83Hs2XgJOydNzcTzwIvAKZgzxnbl4RtNdbNoIi8ViKWGKxR1ksVgslgnAGgGLxWIpYawRsFgslhLGGgGLxWIpYawRsFgslhLGGgGLZQIRkU4RWZhvOSyW4bBGwDJpEZEtItLjKeJdInKHl/Jjou73hIh8InWbqlaq6qaJuqfFMl6sEbBMdt6rqpWYiW1HUGDJuyyWfGONgKUkUJOy4BGMMUBEjhGRv4hIq4i8IiInJ48VkY96RXI6RGSTiHwq9Voicr5XIKRdRN4SU/Do68AJwLe9nse3vWNVRBZ572tE5KcisldE3haRr4iI4+27QkSeEpH/EJEWEdksImen3PMKT5YOb9+lE/qFWUoGf74FsFhygVeD4Wzgca8Yze+BDwMPY3IO3SMiS1V1Lybx27nAJkzNhIdE5AVVfcmrCvVT4AOYFBEzgSpVfVhEjgN+rqrD1Xn4b0w++YWYFBN/wKQYSGaVPBpTh6ABuBL4sSdrOXArcJSqbvCS09Vl67uxlDa2J2CZ7NwnIh2YfDp7gOuBy4AHVfVBVXVV9VFMDqRzAFT196r6lhqexCjrE7zrfRy4TVUf9c7drqqvjyaEVx3vIuBLqtqhqluAb2IMUZK3VfWHqprAGIOZ9NckcIHlIlKmprjR2vF8KRZLEmsELJOdC1S1CpNsbymmlT0P+BvPFdQqIq2YJF/JNNBnezVh93v7zqE/BfEcTBLDTGkAAsDbKdveZmBxpL4sm9qfAbRSVbuADwFXATtF5PcisnQMMlgsB2CNgKUk8Fr0d2AqO20DfqaqtSlLhareJCIhTL2I/8BUCqsFHgSSxUi2YfLlD3mbEUTYh8ksOS9l21zSrIuhqo+o6ukYQ/U68MN0zrNYRsMaAUsp8V/A6cBfgPeKyJki4hORsIic7I0bBIEQpnRm3BucPSPlGj8GPioip4qIIyKzU1rluzH+/gPwXDy/Ar4uIlUiMg+4BpPqeEREZLo3GF0BRIBO8lta1DKJsEbAUjJ4g74/Ba7GlKX8MkbZb8OUH3RUtcPb/yugBbiElAJGaipUfRRTRL0NeJL+1v0twAe86J5bhxDhc5gynJuAp4BfArelIbqDMRg7MEXMT8KULLRYxo2tJ2CxWCwljO0JWCwWSwljjYDFYrGUMNYIWCwWSwljjYDFYrGUMNYIWCwWSwljjYDFYrGUMNYIWCwWSwljjYDFYrGUMNYIWCwWSwnz/wEvZt68Nd90SQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "cell_type": "code", + "source": [ + "#Single-Task Bayesian Optimization\n", + "for i in range(N_REPEATS):\n", + " print(f\"Repeat {i}\")\n", + " exp = MIT_case3(noise_level=1)\n", + " result = run_stbo(exp, max_iterations=MAX_ITERATIONS)\n", + " result.save(f\"data/kinetics_different/stbo_case1-3_noise_repeat_{i}.json\")\n", + " clear_output(wait=True)" + ], + "outputs": [], + "execution_count": null, + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "#Multi-Task Bayesian Optimization\n", + "for n, dataset in zip(n_aux, aux_datasets):\n", + " for i in range(N_REPEATS):\n", + " print(f\"Repeat {i}\")\n", + " exp = MIT_case3(noise_level=1)\n", + " result = run_mtbo(exp, dataset, max_iterations=MAX_ITERATIONS)\n", + " result.save(f\"data/kinetics_different/mtbo_case1-3_noise_{n}-pre-train_repeat_{i}.json\")\n", + " clear_output(wait=True)" + ], + "outputs": [], + "execution_count": null, + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "stbo_results = [summit.Runner.load(f\"data/kinetics_different/stbo_case1-3_noise_repeat_{i}.json\") \n", + " for i in range(10)]\n", + "mtbo_results_lists = [[summit.Runner.load(f\"data/kinetics_similar/mtbo_case1-2_noise_{n}-pre-train_repeat_{i}.json\") \n", + " for i in range(10)]\n", + " for n in [10,50]]\n", + "fig, ax = make_comparison_plot(\n", + " dict(results=stbo_results, label=\"STBO\"),\n", + " dict(results=mtbo_results_lists[0],label=\"MTBO, n=10\"),\n", + " dict(results=mtbo_results_lists[1],label=\"MTBO, n=50\")\n", + ")\n", + "fig.savefig(\"figures/stbo_mtbo_kinetics_case1-3_noise_comparison.png\", bbox_inches='tight', dpi=300)" + ], + "outputs": [], + "execution_count": null, + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## C-N Cross Couplings" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "First we need to get the data from the Baumgartner paper and do some manipulation to get it in the form we want" + ], + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "b_df = pd.read_excel(\"data/baumgartner_data.xlsx\", sheet_name=\"Reaction data\")\n", + "# Just the columns we want\n", + "b_df = b_df[[\n", + " \"Optimization\", \n", + " \"Base\",\n", + " \"Base equivalents\",\n", + " \"Temperature (degC)\",\n", + " \"Residence Time Actual (s)\",\n", + " \"Reaction Yield\"\n", + "]]\n", + "# Rename columns\n", + "columns = {\"Optimization\": \"catalyst\", \n", + " \"Base\": \"base\",\n", + " \"Base equivalents\": \"base_equivalents\",\n", + " \"Temperature (degC)\": \"temperature\",\n", + " \"Residence Time Actual (s)\": \"t_res\",\n", + " \"Reaction Yield\": \"yield\"\n", + "}\n", + "b_df = b_df.rename(columns=columns)\n", + "\n", + "# Drop preliminary reactions\n", + "b_df = b_df.iloc[:363,:] \n", + "#Split catalyst column into nucleophile and catlyst\n", + "new = b_df[\"catalyst\"].str.split(\" - \", n=1, expand=True)\n", + "# Create new columns\n", + "b_df[\"nucleophile\"] = new[0]\n", + "b_df[\"catalyst\"] = new[1]\n", + "# Create a dtaset for each nucleophile\n", + "nucleophiles = pd.unique(b_df[\"nucleophile\"])\n", + "dfs = {nucleophile: b_df[b_df[\"nucleophile\"]==nucleophile]\n", + " for nucleophile in nucleophiles}\n", + "datasets = {nucleophile: DataSet.from_df(dfs[nucleophile], metadata_columns=\"nucleophile\")\n", + " for nucleophile in nucleophiles}" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/ipykernel_launcher.py:1: FutureWarning: Your version of xlrd is 1.2.0. In xlrd >= 2.0, only the xls format is supported. As a result, the openpyxl engine will be used if it is installed and the engine argument is not specified. Install openpyxl instead.\n", + " \"\"\"Entry point for launching an IPython kernel.\n" + ] + } + ], + "execution_count": 5, + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "fig, axes = plt.subplots(1,2, figsize=(10,5))\n", + "fig.subplots_adjust(wspace=0.2)\n", + "# Counts of different catalysts grouped by nucleophile\n", + "(b_df.\n", + " groupby(\"nucleophile\").\n", + " catalyst.\n", + " value_counts().\n", + " unstack(0).\n", + " plot.bar(ax=axes[0])\n", + ")\n", + "# Counts of different bases grouped by nucleophile\n", + "(b_df.\n", + " groupby(\"nucleophile\").\n", + " base.\n", + " value_counts().\n", + " unstack(0).\n", + " plot.bar(ax=axes[1])\n", + ")\n", + "for ax in axes:\n", + " ax.set_ylabel(\"Counts\")\n", + "fig.tight_layout()\n", + "fig.savefig(\"figures/baumgartner_catalyst_base_distribution.png\", dpi=300)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA/WUlEQVR4nO3deXhU5fn/8fdNWBUEROpPSxFwYzExSEBwRVoRlVosUrciiKhtsW5Vi99+LdjaqrV2EVstWgU3XKBuaCuiIgVRJBLZQsUlfItSZBEVBEvg/v1xJvEQJslMkpkzM/m8risXc5Y5554zhzP3PHOf5zF3R0REREREAk2iDkBEREREJJMoQRYRERERCVGCLCIiIiISogRZRERERCRECbKIiIiISEjTqANIxH777eddunSJOgwRkQZTXFy8wd07Rh1HMnQtFpFcU921OCsS5C5durBo0aKowxARaTBmtjrqGJKla7GI5JrqrsUqsRARERERCVGCLCIiIiISogRZRERERCQkK2qQ49mxYwdr1qxh+/btUYciDaBly5Z06tSJZs2aRR2KiIg0csoxck+yeUbWJshr1qyhTZs2dOnSBTOLOhypB3dn48aNrFmzhq5du0YdjoiINHLKMXJLXfKMrC2x2L59Ox06dNCJmwPMjA4dOuibuoiIZATlGLmlLnlG1ibIgE7cHKL3UkREMok+l3JLsu9nVifIIiIiIiINTQlyhAYOHNjgne6PHj2a6dOn7zH/o48+4qyzzgJgzpw5DB06tEH3KyIiIplDOUb9KEFuJA488MC4J7WIiIhIfeRijqEEuQ7Kysro0aMHF198Mb169WLw4MFs27Ztt29rGzZsoEuXLgDs3LmTa665hiOOOIKCggImTZq0xzZnzZrFgAEDOOqooxgxYgRbtmwB4KWXXqJ3797k5+czZswYvvzySyAY8vW6664jPz+ffv368e6771Zua+7cuRxzzDF069at8oQtKyvjiCOO2GO/W7duZcyYMfTr14/evXvz9NNPN+ixEklWl/HPJfQnmU/vn0jylGNkBiXIdbRq1SrGjRvH8uXLadeuHTNmzKh23cmTJ1NWVkZJSQlLlizh/PPP3235hg0buOmmm5g9ezZvvfUWRUVF/O53v2P79u2MHj2axx57jKVLl1JeXs5dd91V+by2bduydOlSLrvsMq688srK+WvXrmXevHnMnDmT8ePH1/g6fvWrXzFo0CAWLlzIK6+8wrXXXsvWrVvrdlBERESk3pRjRE8Jch117dqVwsJCAPr06UNZWVm1686ePZtLL72Upk2Dbqf33Xff3Za//vrrrFixgmOPPZbCwkKmTp3K6tWr+de//kXXrl057LDDABg1ahRz586tfN65555b+e+CBQsq5w8bNowmTZrQs2dP1q1bV+PrmDVrFrfccguFhYUMHDiQ7du383//938JHwcRERFpWMoxope1A4VErUWLFpWP8/Ly2LZtG02bNmXXrl0ASfW15+6cfPLJTJs2bbf5b7/9do3PC3dZEn4cjs3da933jBkzOPzwwxOOV0RERFJHOUb0UtaCbGYtzWyhmb1tZsvN7MbY/Clm9oGZlcT+ClMVQ7p16dKF4uJigN2K1U8++WT+8pe/UF5eDsCmTZt2e17//v2ZP39+ZY3P1q1beeeddzj88MMpKyurnP/ggw9y4oknVj7vscceq/x3wIABdYr5lFNOYdKkSZUn+eLFi+u0HREREUkd5RjplcoSiy+BQe5+JFAIDDGz/rFl17p7YeyvJIUxpNU111zDXXfdRe/evdmwYUPl/LFjx9K5c2cKCgo48sgjeeSRR3Z7XseOHZkyZQrnnnsuBQUFDBgwgJUrV9KyZUvuv/9+RowYQX5+Pk2aNOEHP/hB5fM++eQTCgoK+OMf/8jvf//7OsV8ww03sGPHDgoKCujVqxc33HBD3V68iIiIpIxyjPSy2prHG2QnZnsB84Afxv5munvC/YEUFRV51b78SktL6dGjR4PGmU26dOnCokWL2G+//aIOpcE09vdUAon2cFB2y+kpjiS1zKzY3YuijiMZ8a7FNanpvcz2909yW2P/PMrFHAPiv6/VXYtTWoNsZnlAMXAI8Cd3f8PMfgj8ysx+DrwEjHf3L+M89xLgEoDOnTunMkxJwJI1mxNar6BTu5TGIZIKpd0T+yDssbI0xZGIiEgmSGkvFu6+090LgU5APzM7Arge6A70BfYFflrNcye7e5G7F3Xs2DGVYWalsrKynPtmJyIiItFTjpGmbt7cfTPwCjDE3dd64EvgfqBfOmIQEREREUlEKnux6Ghm7WKPWwEnAyvN7IDYPAOGActSFYOISGPXGHsUEhGpr1TWIB8ATI3VITcBHnf3mWb2spl1BAwoAX5QwzZERKR+KnoU2mJmzYB5Zvb32LJrk7lhWkSksUhZguzuS4DeceYPStU+RURkdx50VbQlNtks9pf67otERLJYzoykl2jXUIlKtAuip556ijPPPJPS0lK6d+9e47pjx47l6quvpmfPnrt1oXLMMcfw2muvNUTYIiJ7UI9CIvUTVY4ByjOikjMJclSmTZvGcccdx7Rp07jxxhtrXPfee++NO18nrTQUdVcm8bj7TqAwdl/Ik6Eehf4DNAcmE/Qo9Is4z50cW05RUZFankXSTHlGNNLSi0Wu2rJlC/PmzeOvf/0rjz76KABz5sxh4MCBnHXWWXTv3p3zzz+/cojFgQMHEq+T/datW9f63OLiYk488UT69OnDKaecwtq1a9P0KkUkV6hHIZHsojwjOkqQ6+Hpp59myJAhHHbYYXTo0KFyjPTFixfzhz/8gRUrVvD+++8zf/78hLcZ77k7duzgxz/+MdOnT6e4uJgxY8bws5/9LFUvS0RyiHoUEsleyjOioxKLepg2bRpXXHEFAOeccw7Tpk1j6NCh9OvXj06dOgFQWFhIWVkZxx13XELbjPfcdu3asWzZMk4++WQAdu7cyQEHHJCCVyQiOUg9ColkKeUZ0VGCXEebNm3i5ZdfZunSpZgZO3fuxMw4/fTTadGiReV6eXl5lJeXJ7zdeM91d3r16sWCBQsa9DWISO5Tj0Ii2Ul5RrRUYlFH06dPZ+TIkaxevZqysjL+/e9/07VrV/75z382+L4OP/xw1q9fX3ni7tixg+XLlzf4fkRERCQzKM+IVs60ICfTZUpDmDZtGj/96U93mzd8+HDuuusuDj744AbdV/PmzZk+fTqXX345n376KeXl5Vx55ZX06tWrQfcjIiKNR3Vdl6X78zQbRHFMcinPWLJmc9z5BZ3aNcj2U8Eq7l7MZEVFRV71rszS0lJ69EisSyupv+pO7qrqc7LrPa2/XOjmLdH+RhvyAyuK42Zmxe5e1GAbTIN41+Ka1PReKgmLnhLk6unzqGFlSoIc732t7lqsEgsRERERkRAlyCIiIiIiIUqQRURERERClCCLiIiIiIQoQRYRERERCcmZbt5EMk0UvTE0KhPbJrDOp6mPQ0REck7uJMiJfFgmtb3aP1jz8vLIz8/H3cnLy+POO+/kmGOOadg46mHs2LFcffXV9OzZc7f5U6ZMYdGiRdx5550RRSYiIpJFlGPsIddzjNxJkCPQqlUrSkpKAHjhhRe4/vrrefXVV6MNKuTee++NOgQRERGpA+UY0VINcgP57LPPaN++feX0bbfdRt++fSkoKGDChAkAlJWV0aNHDy6++GJ69erF4MGD2bZtGx999BGFhYWVf3l5eaxevZpnn32Wo48+mt69e/Otb32LdevWATBx4kRGjRrF8ccfz0EHHcTf/vY3rrvuOvLz8xkyZAg7duwAYODAgVR06n///fdz2GGH0a9fP+bPn18Z5/r16xk+fDh9+/alb9++uy0TERGR6GV7jnHe6YM47/RBLH7z9XQdsnpTglwP27Zto7CwkO7duzN27FhuuOEGAGbNmsWqVatYuHAhJSUlFBcXM3fuXABWrVrFuHHjWL58Oe3atWPGjBkceOCBlJSUUFJSwsUXX8zw4cM56KCDOO6443j99ddZvHgx55xzDr/5zW8q9/3ee+/x8ssv88wzz/D973+fk046iaVLl9KqVSuee2732te1a9cyYcIE5s+fz7x581ixYkXlsiuuuIKrrrqKN998kxkzZjB27Ng0HDkRERGpSS7lGI889zK3T57KjdddkYYj1zBUYlEP4Z8/FixYwAUXXMCyZcuYNWsWs2bNonfv3gBs2bKFVatW0blzZ7p27UphYSEAffr0oaysrHJ78+fP55577mHevHkArFmzhrPPPpu1a9fy3//+l65du1aue+qpp9KsWTPy8/PZuXMnQ4YMASA/P3+3bQK88cYbDBw4kI4dOwJw9tln88477wAwe/bs3U7mzz77jC1bttC6desGO04iIiKSnFzKMbbv2BnE+vnnfLF1C3vtnfk5hhLkBjJgwAA2bNjA+vXrcXeuv/56Lr300t3WKSsro0WLFpXTeXl5bNu2DQi+gV100UU888wzlcnpj3/8Y66++mrOOOMM5syZw8SJEyufW7GdJk2a0KxZM8yscrq8vDzhuHft2sXrr79Oy5Yt6/S6RUREJLWyPcd4Z8P2Or3uKKnEooGsXLmSnTt30qFDB0455RTuu+8+tmzZAsCHH37Ixx9/XO1zd+zYwYgRI7j11ls57LDDKud/+umnfP3rXwdg6tSpdY7t6KOP5tVXX2Xjxo3s2LGDJ554onLZ4MGDmTRpUuV0xbdVERERyQy5kmOsXL60zvtJt9xpQY6gv9OK+iAAd2fq1Knk5eUxePBgSktLGTBgAACtW7fmoYceIi8vL+52XnvtNRYtWsSECRMqi+2ff/55Jk6cyIgRI2jfvj2DBg3igw8+qFOcBxxwABMnTmTAgAG0a9euMmaAO+64g3HjxlFQUEB5eTknnHACd999d532IyIikpOUY1QrkRzjnvumsHPnTo46egA33Pz7Ou0n3czdo46hVkVFRV5xp2SF0tJSevToEVFEjc+SNZsTWq+gU7s67yPX3tMoBgop7Z7Y8euxsrTB9tnQEj5uLc+rfaUEP9SiOG5mVuzuRQ22wTSIdy2uSU3vpQbIiV5174/em9z7PIpadTlEfXKGuoj3vlZ3LU5ZiYWZtTSzhWb2tpktN7MbY/O7mtkbZvaumT1mZs1TFYOIiIiISLJSWYP8JTDI3Y8ECoEhZtYfuBX4vbsfAnwCXJTCGEREREREkpKyBNkDW2KTzWJ/DgwCpsfmTwWGpSoGEREREZFkpfQmPTPLA4qBQ4A/Ae8Bm929oo+QNcDXq3nuJcAlAJ07d05lmCJZIX9qfq3rPJ6GOERERHJdSrt5c/ed7l4IdAL6Ad2TeO5kdy9y96KKzqdFRERERFItLf0gu/tm4BVgANDOzCparjsBH6YjBhERERGRRKSsxMLMOgI73H2zmbUCTia4Qe8V4CzgUWAU8HRD7C+Rn5+TsXRU7Z1Zmxnnn38+Dz30EADl5eUccMABHH300cycObPeMZSVlTF06FCWLVuW8HNGjx7N0KFDOeussxg7dixXX301PXv2rHcsIpKdzKwlMBdoQXDNn+7uE8ysK8F1uANBKdxId/9vdJGKZC7lGIHGlGOksgb5AGBqrA65CfC4u880sxXAo2Z2E7AY+GsKY0ipvffem2XLlrFt2zZatWrFiy++WDkqTaLKy8tp2jQ1b8O9996bku2KSFap6FFoi5k1A+aZ2d+Bqwl6FHrUzO4m6FHorigDFZGvKMeIVip7sVji7r3dvcDdj3D3X8Tmv+/u/dz9EHcf4e5fpiqGdDjttNN47rmgs/Vp06Zx7rnnVi7btGkTw4YNo6CggP79+7NkyRIAJk6cyMiRIzn22GMZOXIkU6ZM4Tvf+Q4DBw7k0EMP5cYbb6zcxs6dO7n44ovp1asXgwcPrhxXvaSkhP79+1NQUMCZZ57JJ598skdsAwcOpKJT/9atW/Ozn/2MI488kv79+7Nu3ToA1q9fz/Dhw+nbty99+/Zl/vz5qTlQIhIJ9Sgkkr1yJcc47/RBnHf6IBa/+XpqDlQKpKUGOZedc845PProo2zfvp0lS5Zw9NFHVy6bMGECvXv3ZsmSJfz617/mggsuqFy2YsUKZs+ezbRp0wBYuHAhM2bMYMmSJTzxxBOVJ92qVasYN24cy5cvp127dsyYMQOACy64gFtvvZUlS5aQn5+/2wkfz9atW+nfvz9vv/02J5xwAvfccw8AV1xxBVdddRVvvvkmM2bMYOzYsQ16fEQkemaWZ2YlwMfAiyTZo5CZLTKzRevXr09LvI1Fafcecf9EKuRKjvHIcy9z++Sp3HjdFQ16fFIppd28NQYFBQWUlZUxbdo0TjvttN2WzZs3r/JkGzRoEBs3buSzzz4D4IwzzqBVq1aV65588sl06NABgO9+97vMmzePYcOG0bVr18pxzfv06UNZWRmffvopmzdv5sQTTwRg1KhRjBgxosY4mzdvztChQyu38+KLLwIwe/ZsVqxYUbneZ599xpYtW2jdunVdD4mIZBh33wkUmlk74EmS7FEImAzBUNMpCVBE4sqVHGP7jp0AbPn8c77YuoW99s78HEMJcgM444wzuOaaa5gzZw4bN25M6Dl77733btNmFne6RYsWlfPy8vIqf/5IVrNmzSq3mZeXR3l50HC0a9cuXn/9dVq2bFmn7YpI9ojdNL1bj0KxVmT1KCSSoXIhx3hnw/Y6bTdKKrFoAGPGjGHChAnk5+9+l+vxxx/Pww8/DMCcOXPYb7/92GeffeJu48UXX2TTpk1s27aNp556imOPPbba/bVt25b27dvzz3/+E4AHH3yw8ptesgYPHsykSZMqp0tKSuq0HRHJTGbWMdZyTKhHoVK+6lEIGrBHIRFpWLmUY6xcXnvvHZkiZ1qQE+kyJVU6derE5Zdfvsf8iRMnMmbMGAoKCthrr72YOnVqtdvo168fw4cPZ82aNXz/+9+nqKiIsrKyatefOnUqP/jBD/jiiy/o1q0b999/f51iv+OOOxg3bhwFBQWUl5dzwgkncPfdd9dpWyKSkXK+RyGRVFOOUb8c4577prBz506OOnoAN9z8+zptK93MPfNLyoqKiryioLxCaWkpPXrkxs0MU6ZMYdGiRdx5551Rh1KtJWs2J7ReQad2dd5HLr2nAF3GP5fQemW3nJ7QegkNNX1zea3rAPRYWZrQelFI+Li1PK/2lSZ+mtC2Er0xqiGPm5kVu3tRg20wDeJdi2tS03uZ6Hmfy6o779L1/7O690fvTW59HmVCjlFdDlGfnKEu4r2v1V2LVWIhIiIiIhKSMyUW2Wz06NGMHj066jBEREQkxyjHqJtGlyCno1RARERERLKXSixEREREREKUIIuIiIiIhChBFhEREREJyZka5ES7aWqW6AYT6GYnLy+P/Px8ysvL6dGjB1OnTuXjjz9m6NChLFu2LNE9JW3z5s088sgj/OhHPwKCDsJ/+9vfMnPmzIS30aVLFxYtWsR+++1Xr1iWv72YZ2c8yvhf3Fqv7YiIiGSqRHOMRCXSlZ9yDFi0aBEPPPAAd9xxR722UxdqQa6HVq1aUVJSwrJly2jevHnaBtjYvHkzf/7zn9Oyr9r0OrK3kmMREZEGphwDioqKIkmOQQlygzn++ON59913Adi5cycXX3wxvXr1YvDgwZVjm7/33nsMGTKEPn36cPzxx7Ny5Uog6ILl8ssv55hjjqFbt25Mnz69cru33XYbffv2paCggAkTJgAwfvx43nvvPQoLC7n22msB2LJlC2eddRbdu3fn/PPPx915+eWXGTZsWOW2XnzxRc4888w9Yh82bBh9+vShV69eTJ48uXJ+69atufbaa+nVqxeXnDuMpYuLuWjEUE47tpA5s54H4M0F87hs9NkA3PW7WxgzZgwDBw6kW7duu53UDz30EP369aOwsJBLL72UnTt31vuY54yJbRP7ExGRRinbc4xzThvImd8cwPSHp1TO7394p8oc41vf+hYLFy6szB+eeeYZIGi9Hjp0KPDVyIHpyjGUIDeA8vJy/v73v1eOk75q1SrGjRvH8uXLadeuHTNmzADgkksuYdKkSRQXF/Pb3/628ucLgLVr1zJv3jxmzpzJ+PHjAZg1axarVq1i4cKFlJSUUFxczNy5c7nllls4+OCDKSkp4bbbbgNg8eLF/OEPf2DFihW8//77zJ8/n5NOOomVK1eyfv16AO6//37GjBmzR/z33XcfxcXFLFq0iDvuuIONGzcCsHXrVgYNGsTy5cvZa+/W3Hnbr7j7kSf5/T0P8ufbb457LFauXMkLL7zAwoULufHGG9mxYwelpaU89thjzJ8/n5KSEvLy8irHjxcREZHq5UKO8ejzc5g282Ueue8vbP5kEwDbvvgqx2jTpg3/+7//y4svvsiTTz7Jz3/+87jHIp05Rs7UIEdh27ZtFBYWAsG3u4suuoiPPvqIrl27Vs7v06cPZWVlbNmyhddee40RI0ZUPv/LL7+sfDxs2DCaNGlCz549WbduHRCcvLNmzaJ3795A8A1u1apVdO7ceY9Y+vXrR6dOnQAoLCykrKyM4447jpEjR/LQQw9x4YUXsmDBAh544IE9nnvHHXfw5JNPAvDvf/+bVatW0aFDB5o3b86QIUMAOLR7T5o3b06zZs04tHsvPlrzf3GPyemnn06LFi1o0aIFX/va11i3bh0vvfQSxcXF9O3bt/K4fe1rX0v4OIuIiDQ2uZRjTHs8aLVet/ZD/u+D92jXfl+ahXKM/Px8WrRoQbNmzcjPz6esrCzuMUlnjqEEuR4q6oOqatGiReXjvLw8tm3bxq5du2jXrl3c9as+x90r/73++uu59NJLd1s33olTdZ/l5eUAXHjhhXz729+mZcuWjBgxgqZNd3/L58yZw+zZs1mwYAF77bUXAwcOZPv27QA0a9YMMwOgSZMmNG/eovJxeXn8ny/ixeHujBo1iptvjt/qLCIiIrvLpRzjgadn0arVXlw0Ymhl4t606e45RsU+ghyjvNbXkeocQyUWabLPPvvQtWtXnnjiCSA4Md9+++0an3PKKadw3333sWXLFgA+/PBDPv74Y9q0acPnn3+e0H4PPPBADjzwQG666SYuvPDCPZZ/+umntG/fnr322ouVK1fy+uuvJ/nKavfNb36T6dOn8/HHHwOwadMmVq9e3eD7ERERaYwyPcdo1WovPnj3HZYsXpTkK6tdqnKMnGlBTqTLFEh8qOlUePjhh/nhD3/ITTfdxI4dOzjnnHM48sgjq11/8ODBlJaWMmDAACC4ae6hhx7i4IMP5thjj+WII47g1FNP5fTTT69xv+effz7r16+nR489u6kZMmQId999Nz169ODwww+nf//+9XuRcfTs2ZObbrqJwYMHs2vXLpo1a8af/vQnDjrooAbfl4iISENLNMeIUibnGMNOOpou3Q6hoHdR/V5kHKnKMayiqT2TFRUV+aJFu3/rKC0tjftm1CbRBLmgU7ukt52pLrvsMnr37s1FF11U522k47jV9T3NVF3GP5fQemUtz0tovfyue9aFVfX4zfF/lqoqky/2DXrcJn6a0LYS7eO0IY+bmRW7e8N/WqRQvGtxTWp6L8tuqflDtzGo7rxL1//P6t4fvTe593mUSonkGNXlEOnOteK9r9Vdi3OmBTkqyzcsr3WdXvv1SkMk8fXp04e9996b22+/PbIYREREJPfkco6hBDnHFRcXRx2CiIiI5KBczjGy+ia9bCgPkcTovRQRkUyiz6Xckuz7mbUJcsuWLdm4caNO4Bzg7mzcuJGWLVtGHYqIiIhyjBxTlzwjZSUWZvYN4AFgf8CBye7+RzObCFwMrI+t+j/u/nyy2+/UqRNr1qypHMElUes+2ZbQeqWft0povf9s+U+t6zRZn7XfQyo19HGrqmXLlpWdkIuIiESprjmGxFddDlHXnKEuks0zUlmDXA78xN3fMrM2QLGZvRhb9nt3/219Nt6sWTO6du2a9PNOTfQO+QTv4v3e1O/Vus7SUUsT2lYma+jjJiIikqnqmmM0lFzrAaa6HCKTX0vKEmR3XwusjT3+3MxKga+nan8iIiIiIg0hLb1YmFkXoDfwBnAscJmZXQAsImhl/iTOcy4BLgHijguechPbJrZeAn3TioiIiEj2SHlxrJm1BmYAV7r7Z8BdwMFAIUELc9zO89x9srsXuXtRx44dUx2miEhOMrNvmNkrZrbCzJab2RWx+RPN7EMzK4n9nRZ1rCIimSKlLchm1owgOX7Y3f8G4O7rQsvvAWamMgYRkUYupfeDiIjkopS1IJuZAX8FSt39d6H5B4RWOxNYlqoYREQaO3df6+5vxR5/Duh+EBGRWqSyBflYYCSw1MxKYvP+BzjXzAoJun4rAy5NYQwiIhKTlfeDhJR27xF3fo+VpWmORERyXSp7sZgHWJxFSfd5LCIi9VP1fhAzuwv4JUFjxS8J7gcZU/V57j4ZmAxQVFSkURNEpFHI/hEsRESkRtXdD+LuO919F3AP0C/KGEVEMokSZBGRHKb7QUREkpeWfpBFRCQyuh9ERCRJSpBFRHKY7gcREUmeSixEREREREKUIIuIiIiIhChBFhEREREJUQ1yGlTXuX1V6uxeREREJHpqQRYRERERCVGCLCIiIiISogRZRERERCRENcgiIiKSuya2rWb+p+mNQ7KKWpBFREREREKUIIuIiIiIhChBFhEREREJUYIsIiIiIhKiBFlEREREJEQJsoiIiIhIiLp5ExERka9U1y0aqGs0aTTUgiwiIiIiEpJ0gmxm7c2sIBXBiIhI7XQdFhFJrYQSZDObY2b7mNm+wFvAPWb2u9SGJiIiFXQdFhFJn0RbkNu6+2fAd4EH3P1o4FupC0tERKrQdVhEJE0STZCbmtkBwPeAmSmMR0RE4tN1WEQkTRLtxeJG4AVgnru/aWbdgFU1PcHMvgE8AOwPODDZ3f8Y+3nwMaALUAZ8z90/qVv4IiKNRtLX4YxWXU8J6iVBRDJAognyWnevvCHE3d9PoPatHPiJu79lZm2AYjN7ERgNvOTut5jZeGA88NM6xC4i0pjU5TosIiJ1kGiJxaQE51Vy97Xu/lbs8edAKfB14DvA1NhqU4FhCcYgItKYJX0dFhGRuqmxBdnMBgDHAB3N7OrQon2AvER3YmZdgN7AG8D+7r42tug/BCUY8Z5zCXAJQOfOnRPdlYhITqnvdVjlbiIiyautBbk50JogkW4T+vsMOCuRHZhZa2AGcGXsDuxK7u4EF+w9uPtkdy9y96KOHTsmsisRkVxU3+twRblbT6A/MM7MehKUt73k7ocCL8WmRUSEWlqQ3f1V4FUzm+Luq5PduJk1I0iOH3b3v8VmrzOzA9x9beyO7I+TjlpEpJGo73U49ovd2tjjz80sXO42MLbaVGAOuh9ERARI/Ca9FmY2meCnuMrnuPug6p5gZgb8FSh19/CNJM8Ao4BbYv8+nWTMIiKNUdLX4arqUu4mItIYJZogPwHcDdwL7EzwOccCI4GlZlYSm/c/BInx42Z2EbCaoE9PERGpWV2uw5WqlrsFbRgBd3czi1vupvtBJBGl3XtUu6zHytI0RiLSMBJNkMvd/a5kNuzu8wCrZvE3k9mWiIgkfx2uUJ9yN3efDEwGKCoqiptEi4jkmkS7eXvWzH5kZgeY2b4VfymNTEREwup0HU6g3A1U7iYisptEW5ArLqLXhuY50K1hwxERkWrU9TqscjcRkSQllCC7e9dUByIiItWr63VY5W4iIslLKEE2swvizXf3Bxo2HBERiUfXYRGR9Em0xKJv6HFLglaHtwhGZxIRkdTTdVhEJE0SLbH4cXjazNoBj6YiIBER2ZOuwyIi6ZNoLxZVbQVUlywiEh1dh0VEUiTRGuRnCe6WBsgDegCPpyooERHZna7DIiLpk2gN8m9Dj8uB1e6+JgXxiIhIfLoOi4ikSUIlFu7+KrASaAO0B/6byqBERGR3ug6LiKRPQgmymX0PWAiMIOhM/g0zOyuVgYmIyFd0HRYRSZ9ESyx+BvR1948BzKwjMBuYnqrARERkN43iOpw/Nb/aZSq4FskxE9vWsOzT9MURR6K9WDSpuCjHbEziuSIiUn+6DouIpEmiLcj/MLMXgGmx6bOB51MTkoiIxKHrsIhImtSYIJvZIcD+7n6tmX0XOC62aAHwcKqDExFp7HQdFhFJv9pakP8AXA/g7n8D/gZgZvmxZd9OYWwiIqLrsIhI2tVWv7a/uy+tOjM2r0tKIhIRkTBdh0VE0qy2FuR2NSxr1YBxiIhIfO1qWKbrcIZTrxzZqbR7j7jze6wsTXMkEpXaWpAXmdnFVWea2VigODUhiYhIiK7DIiJpVlsL8pXAk2Z2Pl9diIuA5sCZKYxLREQCV6LrsIhIWtWYILv7OuAYMzsJOCI2+zl3fznlkYmIiK7DIiIRSKgfZHd/BXglxbGIiEg1dB0WEUkfjcIkIiIiIhKiBFlEREREJCRlCbKZ3WdmH5vZstC8iWb2oZmVxP5OS9X+RURERETqIpUtyFOAIXHm/97dC2N/z6dw/yIiIiIiSUtZguzuc4FNqdq+iIiIiEgqRFGDfJmZLYmVYLSvbiUzu8TMFpnZovXr16czPhGRnKFyNxGR5KU7Qb4LOBgoBNYCt1e3ortPdvcidy/q2LFjmsITEck5U1C5m4hIUtKaILv7Onff6e67gHuAfuncv4hIY6NyNxGR5KU1QTazA0KTZwLLqltXRERSSuVuIiLVSGU3b9OABcDhZrbGzC4CfmNmS81sCXAScFWq9i8iItVSuZuISA0SGmq6Ltz93Diz/5qq/YmISGLcfV3FYzO7B5gZYTgiIhlHI+mJiDQyKncTEalZylqQRUQkerFyt4HAfma2BpgADDSzQsCBMuDSqOITEclESpBFRHKYyt1ERJKnEgsRERERkRAlyCIiIiIiIUqQRURERERClCCLiIiIiIQoQRYRERERCVGCLCIiIiISogRZRERERCRE/SCLiIhIo5M/Nb/aZY+nMQ7JTGpBFhEREREJUYIsIiIiIhKiBFlEREREJEQJsoiIiIhIiBJkEREREZEQJcgiIiIiIiFKkEVEREREQpQgi4iIiIiEKEEWEREREQlRgiwiIiIiEqIEWUREREQkRAmyiIiIiEiIEmQRERERkRAlyCIiIiIiISlLkM3sPjP72MyWhebta2Yvmtmq2L/tU7V/EREREZG6SGUL8hRgSJV544GX3P1Q4KXYtIiIpIgaK0REkpeyBNnd5wKbqsz+DjA19ngqMCxV+xcREUCNFSIiSUt3DfL+7r429vg/wP7VrWhml5jZIjNbtH79+vREJyKSY9RYISKSvMhu0nN3B7yG5ZPdvcjdizp27JjGyEREcl7CjRUiIo1RuhPkdWZ2AEDs34/TvH8REQmprbFCv+aJSGOU7gT5GWBU7PEo4Ok0719ERJJorNCveSLSGKWym7dpwALgcDNbY2YXAbcAJ5vZKuBbsWkREUkvNVaIiNSgaao27O7nVrPom6nap4iI7C7WWDEQ2M/M1gATCBonHo81XKwGvhddhCIimSdlCbKIiERPjRUiIsnTUNMiIiIiIiFKkEVEREREQpQgi4iIiIiEKEEWEREREQlRgiwiIiIiEqIEWUREREQkRAmyiIiIiEiIEmQRERERkRANFCIiIiIJyZ+aH3f+42mOQyTV1IIsIiIiIhKiBFlEREREJEQJsoiIiIhIiBJkEREREZEQJcgiIiIiIiFKkEVEREREQpQgi4iIiIiEKEEWEREREQlRgiwiIiIiEqIEWUREREQkRAmyiIiIiEiIEmQRERERkRAlyCIiIiIiIUqQRURERERCmkaxUzMrAz4HdgLl7l4URRwiIiIiIlVFkiDHnOTuGyLcv4hIo6bGChGR+KJMkEVEJHpqrBARqSKqGmQHZplZsZldEm8FM7vEzBaZ2aL169enOTwRERERaayiSpCPc/ejgFOBcWZ2QtUV3H2yuxe5e1HHjh3TH6GISO5TY4WISByRJMju/mHs34+BJ4F+UcQhItLIqbFCRCSOtCfIZra3mbWpeAwMBpalOw4RkcZOjRUiIvFF0YK8PzDPzN4GFgLPufs/IohDRKTRUmOFiEj10t6Lhbu/DxyZ7v2KiMhu9geeNDMIPgseUWOFiEhA3byJiDRCaqwQEamehpoWEREREQlRgiwiIiIiEqIEWUREREQkRAmyiIiIiEiIEmQRERERkRAlyCIiIiIiIUqQRURERERClCCLiIiIiIQoQRYRERERCVGCLCIiIiISogRZRERERCRECbKIiIiISIgSZBERERGRECXIIiIiIiIhSpBFREREREKUIIuIiIiIhChBFhEREREJUYIsIiIiIhKiBFlEREREJEQJsoiIiIhIiBJkEREREZEQJcgiIiIiIiFKkEVEREREQiJJkM1siJn9y8zeNbPxUcQgItLY6VosIhJf2hNkM8sD/gScCvQEzjWznumOQ0SkMdO1WESkelG0IPcD3nX39939v8CjwHciiENEpDHTtVhEpBrm7undodlZwBB3HxubHgkc7e6XVVnvEuCS2OThwL/SGmji9gM2RB1EltExqxsdt+Rl8jE7yN07RrXzDL4WZ/J7Vhd6PZkrl14L6PXUVdxrcdM07LhO3H0yMDnqOGpjZovcvSjqOLKJjlnd6LglT8es/tJ9Lc6190yvJ3Pl0msBvZ6GFkWJxYfAN0LTnWLzREQkfXQtFhGpRhQJ8pvAoWbW1cyaA+cAz0QQh4hIY6ZrsYhINdJeYuHu5WZ2GfACkAfc5+7L0x1HA8r4MpAMpGNWNzpuydMxq0YGX4tz7T3T68lcufRaQK+nQaX9Jj0RERERkUymkfREREREREKUIIuIiIiIhChBFhEREREJUYIsIiIiksXM7GAzu8HMMuFG25yQsQOFSG4xs72Bbe6+y8wOA7oDf3f3HRGHJjnKzJoArd39s6hjkfjMbB9gf3dfFZseAbSKLX7B3ddFFlwdmVkhcAiw3N1LIw6nXsxs3yqzHNjsWXp3v5l1AM4j+PwBKAWmufvG6KKqOzM7EDib4DXlAzcTdNeYVcysE9DF3efFpq8GWscWP+Lu70YRl1qQk2RmV5jZPhb4q5m9ZWaDo44rC8wFWprZ14FZwEhgSqQRZTida8kzs0dix2xvYBmwwsyujTouqdZvgWND0zcDfYETgBsjiagezOznwOPAcOA5M7s44pDqqxhYFPu3GHgL+NjMZptZlygDS5aZ9SC4JvQB3gFWEZxrS82se03PzTRmdomZvQLMAToAFwFr3f1Gd18aaXB1cxvQLjR9KbCV4AtZZNcBdfOWJDN7292PNLNTCN7EG4AH3f2oiEPLaGb2lrsfZWY/Blq5+2/MrMTdC6OOLVPpXEtexTllZucDRwHjgWJ3L4g4NInDzBYDR1W0SJrZYnfvHXs8z92PizTAJMV+3u7r7l/EWiv/4e59o46roZnZd4FL3H1I1LEkysymA4+7++NV5g8HznP34dFEljwz+y+wAPiJuy+KzXvf3btFG1ndVOQHoenwdeCf7n58FHGpBTl5Fvv3NIJkZXlonlTPzGwAcD7wXGxeXoTxZAOda8lrZmbNgGHAM7ESHrUCZK6mVX6uHxl63C7NsTSEL939C4DYz/Y5+Rnr7n8DvhZ1HEnKr5ocA7j7DOCICOKpjwOAacDtZvYvM/sl0CzimOqjZZXpb4Ye75fOQMJy8j9vihWb2SyCpOUFM2sD7Io4pmxwJXA98KS7LzezbsAr0YaU8XSuJe8vQBmwNzDXzA4CVIOcuXaZ2f+rmHD3ZQCxUqxsPNe7mdkzsb9ngYND0zkzjLeZtSb78oetdVyWcdx9o7vf7e4nEiSTm4F1ZlZqZr+ONro6+Tx2bxIA7r4JIFb68nlUQanEIkmxG38KgffdfXPsZ7Svu/uSaCPLDrELK+6+JepYMp3OtYZhZk3dvTzqOGRPZvZ94ArgJ8Di2OyjCGqT73D3B6OKrS7M7MSalrv7q+mKpSHEbpaqqj1wBnCnu9+T5pDqzMzWAL+Ltwi40t2/keaQGlwsyTzH3X8RdSzJMLMhwB3Arwjq3CGoFf8f4Ap3/3sUcakXiyTFemHoBJxnZgCvuvuzEYeV8cwsH3gA2DeYtPXABbGyAYlD51ryzKwtMIHgJi+AV4FfAJ9GFpRUy90fMrMNwE1Ar9jsZcDPo/pQrKcL3X101EE0oDZVph34D/D9LLwZ7B72fD0V7k1nIPVlZte5+29ij0e4+xMA7v6OmVUtV8h47v6PWF37dcDlsdnLge9W/KoUBbUgJ8nMbiG48/Xh2KxzgTfd/X+iiyrzmdlrwM/c/ZXY9EDg1+5+TJRxZTKda8kzsxkECdbU2KyRwJHu/t3oopLGourNRiKpED7P4tzgpnOwgShBTpKZLQEK3X1XbDoPWKy75GtW0SNDbfPkKzrXkhevZxT1lpK5zOyOmpa7++U1Lc80ZraS4Its3Jtp3f2tePMzlZntB4wDPgHuI+iO63jgPYIeFCLpn7YuYi2rZxO8lmeBawl+aXoP+KW7b4gwvKRU6eWh8nG86WxQW32+u5+RrljCVGJRN+2ATbHHbSOMI5u8b2Y3ABU1hd8H3o8wnmzRDp1rydhmZseFOpw/FtgWcUxSvR8QtPg/DnxE9vfS8nXgduK/DgcGpTecenuEoB/kQ4GFwP3AHwmS5HuBgZFFlrwHgB0EN/D+hOC8uxM4jqBP/qGRRZY8r+ZxvOlsMAD4N0HPHG+QIdcBtSAnyczOBW4h6IHBCL6Bjnf3xyINLMOZWXuCDr8r+jX9JzDR3T+JLqrMpnMteWZ2JMEHYVuCY7YJGO3ub0camMQVu/F0BEHLXjnwGDDd3TdHGVddZWPrXU1CfbEbsNrdO4eWZdUvM2a2zN2PMLOmwBp3/3+hZVn1a6aZ7QK2EFzjWgFfVCwCWrp7VnX5Fvt19GSCX18KCLqCnRb1PUpKkOvAzA4gqA0FWOju/4kyHsldOtfqxoIhjHENM501YjekngNcDfw023qwgNyr/8ylWtccey059UUszMxaECTKtwE3uvudUcWiEou6aQJsIDh+h5nZYe4+N+KYMlqs+5lrgC6Ezjt3z7afHNNN51oSYhfX4cTOs1jvH2Rbt0eNjZkdRfCheDLwd4JhjbNR1rRCJqhbrD7UQo+JTXeNLqw66RSrebfQY2LTX48urDrJuZbN2LX7dILrQBeCbt+ejDQmtSAnx8xuJfg5cDlfdWTvURWRZwszexu4m+CDb2fFfHfP1g/ClNO5ljwz+wdBl25Vz7PbIwtKqmVmvyD4UCwFHiUYmjlr+6zOtZa9XOrX2cxG1bTc3afWtDyT1NCnMwDuXu2yTGRmDxCMZvg88GiUXbuFKUFOkpn9Cyhw9y+jjiWbmFmxu/eJOo5sonMteRV1hlHHIYmJ1VJ+wFc1lBUfSEbwZTCremwxs/cJfimLKzZEc1Yys44A7r4+6ljqwsx+nStdZJrZWuAuqu8t5cb0RlQ/setAxWiG4aS04jqwT/qjUolFXbxPMOa5kpYEmNm+sYfPmtmPCH4yqTx2FUNKSlw615L3mpnlZ+EgBo1Vtv1MX5u2BL0hVNeLRVYlyLGb834O/Jig3MvMrByYlIVlS0MIRmbLBWuz8PjX5O1M/OVFCXKCzGwSwQXuC6DEzF5i90Qvq/rrTKOqJRTXhh470C2NsWQFnWvJM7OlBMesKXBhrCXvS7K0JbIRucfdB0cdRANa7e5jog6iAV1F0PNQX3f/AMDMugF3mdlV7v77SKNLTl6sN6XqWl2zqbEmI7pBa0AZWcqgEosE5VL9kmQ2nWvJM7ODalru7qvTFYskLgdrdnPu9QAnVx1EI1ZuMSubXquZfQl8SDWt++6eNY01ZrZvliX0NcrUmmq1ICfI3aeaWSFwCLDc3UsjDikrmNmhBN21HAIsBa5x9w+jjSqz6Vyrk3UEg05UnGd/zeabvRqRtmZW7TDgWVizO7LqjNhodBs9O1ujmsUbYc7d15tZVvW1C6zIpoS+JrmUHMfkAa3JsJZxJcgJio0CN5KgZOA3Znazu98TcVjZ4D6CgRvmAmcAk4BqPxBF51odTSUYJeufwKlAT+CKSCOSRORUzS7Q2szmEAxQ80uCkUP3A5qY2QXu/o8og6uD/9ZxmUgyMrKmWiUWCTKz5QR1WF/ERn/6h7v3re15jV3V0ZayrUP2KOhcS56ZLXX3/NjjpgSDqug8y3C5dj0ws0UEN4K1BSYDp7r762bWnWBksKxqwTSznXzVu8Bui8iyEdvMbLS7T4k6DtlTppYmqQU5cV+6+xcA7r7RzJpEHVCWaGlmvfmqhahVeNrd34osssylcy15OyoeuHt5xQAhkvFy7Y1q6u6zIOjj2d1fB3D3ldl4Trp7XtQxNKDv1lLOo/7lo/PNqAOIRwly4qqOInRwaFr/uar3H3Yvvg9PO6CR9Pakcy15R5pZxbDSRvBF7DMi7kdTapVrNbu7Qo+3VVmWja8nlwwA/g1MA94g976cZa1MralWiUWCcmlEIclsOteksTCz/sAtxKnZBbKuZjdUkmBAK74aACXrShJyjZnlEQxlfi5QADxHUPayPNLAJGMpQZaUMrPr3P03sccj3P2J0LKcGdkoFczsCnf/Y23zBMysr7u/Wc2yke7+YLpjktrlWs2uZAcza0GQKN8G3Ojud0YckmQgJcgJCg1EsMciYJe7H5nmkLJC+Cacqjfk5NoNOg0t3vHJ1JsZomZmS4D5wPXuvjk27wjgz8Amdx8WXXRSnfBNvGZW6u49Qst0rkuDiiXGpxMkx12AZ4D71PWoxKMa5MQNjTPPgG8A16c5lmxi1TyONy2AmZ0LnAd0DdceA20IfoqWPR1FMErjYjP7JZAPnAb8xN1nRhqZ1EQ1u5IWZvYAcATwPEGr8bKIQ5IMpwQ5QeGRuGK9MJwHjAA+AGZEFVcW8Goex5uWwGvAWoJazNtD8z8HlkQSUYaLDQpys5mVA/cCHwH93P2jaCOTWlTcXBm+sZLYdMvowpIc9H2C+vArgMtDvYroRl6JSwlygszsMIKfZc4FNgCPEZSonBRpYJlPH4BJin0ZW21mc6vekGdmtwI/jSayzGVmBwN/IvjS1YNgsJC5ZvYrd78/0uCkWjnWjZhkMHdXd5mSFNUgJ8jMdhGM0nWRu78bm/d+No3fLtmlmhrkJe5eEFVMmcrM3gXGu/v00LwDCboU/Ia7HxtZcCIiknXUgpy47wLnAK+Y2T+AR1ENraSAmf0Q+BFB/8fhkoo2BDeiyZ4K3X1LeEasvOIcM/tWRDGJiEiWUgtyksxsb+A7BKUWg4AHgCcrRk8SqS8zawu0B24GxocWfZ6pHapnCjM7Id58d5+b7lhEZHdm1gWY6e5HRB2LSG2UINeDmbUnuFHvbHfPyKESJbuZ2XHAoe5+f2yEsTbu/kHUcWUqM3s2NNkS6AcUu7tGbBSJmBJkySZKkEUylJlNAIqAw939sFhN7ROqp02cmX0D+IO7D486FpHGLpYg/wMoJuiacTlwAXAN8G2C0QdfAy51dzezy4EfAOXACnc/J/Yr7iSCLtuaARPd/el0vxbJfUqQRTKUmZUAvYG3KgZM0E16ybGgL6fl7t4z6lhEGrtYgvwBcJy7zzez+4AVBIN1bIqt8yDwuLs/a2YfAV3d/Usza+fum83s1wTJ8kNm1g5YCPR2962RvCjJWbpJTyRz/TfWiuJQWf8uNTCzSXzVv3YToBB4K7KARKSqf7t7xc3GDwGXAx+Y2XXAXsC+BC3LzxL0+/6wmT0FPBV7zmDgDDO7JjbdEugMlKYlemk0lCCLZK7HzewvQDszuxgYA9wTcUyZblHocTkwLfRhLCLRizdg1J+BInf/t5lN5Ks+8k8HTiAov/iZmeUT9B413N3/laZ4pZFSiYVIBoqVBnQCuhO0mBjwgru/GGlgIiJ1FCqxOMbdF5jZvQQtv9cBXYA84HVgOvALoLO7l5lZM2A10DO27j7Aj2O/sPV298VpfzGS89SCLJKBYhf+5909H1BSXAszOxT4GbCJYHCQe4DjgfeAse7+ZoThichX/gWMC9Uf30XQreUy4D9Axf/VPOChWLeXBtwRq0H+JfAHYImZNSFIuIem9yVIY6AWZJEMZWZTgTuV3NXOzOYR9Em+D3AVcCVBDePxwE3ufnR00YmISLZRgiySocxsJXAIwU+LWwlaUVy9WOzJzErcvTD2+F13PyTeMhERkUSoxEIkc50SdQBZZFfo8Wc1LBMREamVWpBFMpyZ7UVwc8pqd18fdTyZyMy+AN6NTR4SemxAN3dXF3kiIpKwJlEHICK7M7MzzKzMzN4ys9MI+gS9E1hqZqMiDi9T9QDOAFbGHn879DczwrhERCQLqQVZJMOY2dvACKAt8ApQ4O7vm9nXgJdiPVtIHGb2lrsfVWWeRh8UEZGkqAZZJPPscvd3AMzsA3d/H8DdPzaz8mhDy0xm9kPgR0A3M1sSWtQG0EAhIiKSFCXIIpmniZm1JyiB2hV7bBXLogsroz0C/B24GRgfmv+5u2+KJiQREclWKrEQyTBmVkbQ84LFWezu3i29EYmIiDQuSpBFREREREJUYiGSoczshHjz3X1uumMRERFpTNSCLJKhzOzZ0GRLoB9Q7O6DIgpJRESkUVALskiGcvdvh6fN7BvAH6KJRkREpPHQHfEi2WMNwSAYIiIikkJqQRbJUGY2CaiogWoCFAJvRRaQiIhII6EaZJEMVWVY6XKgzN016IWIiEiKKUEWEREREQlRDbJIhjGzQ81sipn9zsw6mdnfzWyLmb1tZn2jjk9ERCTXKUEWyTz3A68BHwFvAPcB+wHXAHdGGJeIiEijoBILkQxjZiXuXhh7/K67HxJvmYiIiKSGWpBFMs+u0OPPalgmIiIiKaAWZJEMY2ZfAO/GJg8JPTagm7vvHUlgIiIijYT6QRbJPD0IkuHfAOHR9Ay4NZKIREREGhElyCIZxt1XA5jZIRWPK5iZRtITERFJMSXIIhnGzH4I/AjoZmZLQovaABooREREJMVUgyySYcysLdAeuBkYH1r0ubtviiYqERGRxkMJsoiIiIhIiLp5ExEREREJUYIsIiIiIhKiBFkaFTMbaGbHJLDeaDNLeljnRLcvIiIimUsJsjQ2A4FUJrCp3r6IiIikmBJkyQlmdoGZLTGzt83sQTP7tpm9YWaLzWy2me1vZl2AHwBXmVmJmR0fb70q221jZh+YWbPY9D4V02Z2uZmtiO330XjbT/dxEBERkfpTP8iS9cysF/C/wDHuvsHM9gUc6O/ubmZjgevc/Sdmdjewxd1/G3tu+6rrAT+p2La7f25mc4DTgaeAc4C/ufsOMxsPdHX3L82snbtvrrp9ERERyT5KkCUXDAKecPcNAO6+yczygcfM7ACgOfBBNc/tlMB69xIkzk8BFwIXx+YvAR42s6diy0RERCQHqMRCctUk4E53zwcuBVrWdT13nw90MbOBQJ67L4stOh34E3AU8KaZ6QuniIhIDlCCLLngZWCEmXUAiJVYtAU+jC0fFVr3c4IhmytUt15VDwCPAPfH9tEE+Ia7vwL8NLad1nG2LyIiIllGCbJkPXdfDvwKeNXM3gZ+B0wEnjCzYmBDaPVngTNDN9FVt15VDxMM/zwtNp0HPGRmS4HFwB3uvjnO9kVERCTLaKhpkQSY2VnAd9x9ZNSxiIiISGqpZlKkFmY2CTgVOC3qWERERCT11IIsIiIiIhKiGmQRERERkRAlyCIiIiIiIUqQRURERERClCCLiIiIiIQoQRYRERERCfn/H6mtdRQLPucAAAAASUVORK5CYII=\n" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "execution_count": 14, + "metadata": { + "collapsed": false, + "inputHidden": false, + "jupyter": { + "outputs_hidden": false + }, + "outputHidden": false + } + }, + { + "cell_type": "code", + "source": [ + "fig, axes = plt.subplots(1,2, figsize=(10,5))\n", + "fig.subplots_adjust(wspace=0.2)\n", + "# Counts of different catalysts grouped by nucleophile\n", + "(b_df.replace(\"≥90%\", 0.9).\n", + " groupby([\"nucleophile\", \"catalyst\"])\n", + " [\"yield\"].\n", + " mean().\n", + " unstack(0).\n", + " plot.bar(ax=axes[0])\n", + ")\n", + "# Counts of different bases grouped by nucleophile\n", + "(b_df.replace(\"≥90%\", 0.9).\n", + " groupby([\"nucleophile\", \"base\"])\n", + " [\"yield\"].\n", + " mean().\n", + " unstack(0).\n", + " plot.bar(ax=axes[1])\n", + ")\n", + "for ax in axes:\n", + " ax.set_ylabel(\"average yield\")\n", + "fig.tight_layout()\n", + "fig.savefig(\"figures/baumgartner_catalyst_base_yields.png\", dpi=300)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABF0ElEQVR4nO3deZhU1bX+8e9Ly2BEwSi5PxURNCiDjSANilOIUcRI0ES5wThGUZNoNBo1eONAjEkcMjpcjRqVRMUBbrw4JE7RGHCiUWRqDKhtRL2KKBoUlYb1+6Oq26LpoXqoOlXV7+d5+qHOObtOraquXrXYtc/eigjMzMzMzCylU9IBmJmZmZkVEhfIZmZmZmYZXCCbmZmZmWVwgWxmZmZmlsEFspmZmZlZhk2SDqCltt566+jbt2/SYZiZtcncuXPfiYheScfRWs7FZlYKGsvFRVcg9+3bl8rKyqTDMDNrE0mvJh1DWzgXm1kpaCwXe4iFmZmZmVkGF8hmZmZmZhlcIJuZmZmZZSi6MchmpW7t2rUsX76cjz/+OOlQrB1069aN3r1707lz56RDMbMsOQ+XnpbmYhfIZgVm+fLlbL755vTt2xdJSYdjbRARrFy5kuXLl9OvX7+kwzGzLDkPl5bW5GIPsTArMB9//DFbbbWVk3IJkMRWW23lXiizIuM8XFpak4tdIJsVICfl0uHfpVlx8t9uaWnp79MFspmZmZlZBhfIZtauRo8e3e4LSBx//PFMnz59o/1vvPEGRxxxBACPP/4448aNa9fHNTMrVs7FbeMC2cyK1rbbbttgsjYzs/wpxVzcoQvkvpPvz+rHrCOorq5m4MCBnHTSSQwePJgxY8awZs2aDXoh3nnnHfr27QvAunXrOPvss9l1110ZMmQIV1111UbnfOihhxg1ahS77747EyZMYPXq1QA8+uijDBs2jPLyck444QQ++eQTILV88bnnnkt5eTkjR45k2bJlded64okn2Guvvdhxxx3rEnF1dTW77rrrRo/74YcfcsIJJzBy5EiGDRvG//7v/7bra2Ut5xxrlh3n4sLQoQtkM9vQ0qVLOfXUU1m0aBE9e/ZkxowZjba9/vrrqa6uZt68ecyfP5+jjjpqg+PvvPMOl1xyCY888gjPPfccFRUV/PrXv+bjjz/m+OOP584772TBggXU1NRw7bXX1t2vR48eLFiwgNNOO40f/OAHdfvffPNNZs2axX333cfkyZObfB4/+9nP2H///Xn22Wd57LHHOOecc/jwww9b96KYmeWZc3HyXCCbWZ1+/foxdOhQAIYPH051dXWjbR955BFOOeUUNtkkNZ365z//+Q2OP/300yxevJi9996boUOHMnXqVF599VVefPFF+vXrx8477wzAcccdxxNPPFF3vyOPPLLu36eeeqpu/2GHHUanTp0YNGgQb731VpPP46GHHuLSSy9l6NChjB49mo8//ph//etfWb8OZmZJci5OnhcKMbM6Xbt2rbtdVlbGmjVr2GSTTVi/fj1Ai+aQjAgOPPBApk2btsH+F154ocn7ZU7Fk3k7M7aIaPaxZ8yYwS677JJ1vGZmhcK5OHnuQTazJvXt25e5c+cCbHARxoEHHsjvf/97ampqAHj33Xc3uN+ee+7J7Nmz68auffjhh/zzn/9kl112obq6um7/n/70J770pS/V3e/OO++s+3fUqFGtivmggw7iqquuqkvezz//fKvOY2ZWKJyL88sFspk16eyzz+baa69l2LBhvPPOO3X7J02aRJ8+fRgyZAi77bYbt99++wb369WrF7fccgtHHnkkQ4YMYdSoUSxZsoRu3bpx8803M2HCBMrLy+nUqRPf+c536u733nvvMWTIEH73u9/xm9/8plUxX3DBBaxdu5YhQ4YwePBgLrjggtY9eTOzAuFcnF9qrnu80FRUVER7zeuX7dXT1Zce0i6PZ5aNqqoqBg4cmHQYiejbty+VlZVsvfXWSYfSrhr6nUqaGxEVCYXUZi3NxU3lW+dYKzQdOQ+DczG4B9nMzMzMbAO+SM/MCkZTV2qblaqqAQ33VA5cUpXnSMxSnIvdg2xmZmZmtgEXyGZmZmZmGVwgm5mZmZllcIFsZlbiJI2V9KKkZZI2WhtWUh9Jj0l6XtJ8SV9NIk4zs0Lhi/TMCly20xFmK9spte655x6+/vWvU1VVxYABA5psO2nSJM466ywGDRq0wfRAe+21F08++WR7hG2tJKkMuAY4EFgOzJE0MyIWZzQ7H7grIq6VNAh4AOib92DNClRSeRici5PiHmQza9C0adPYZ599NlqetCE33ngjgwYN2mi/E3JBGAksi4iXI+JT4A7g0HptAtgifbsH8EYe4zOzJjgXJ8MFspltZPXq1cyaNYs//OEP3HHHHQA8/vjjjB49miOOOIIBAwZw1FFH1S0fOnr0aBpaNKJ79+7N3nfu3Ll86UtfYvjw4Rx00EE8OncJ85evavbHsrYd8FrG9vL0vkxTgKMlLSfVe/z9hk4k6WRJlZIqV6xYkYtYzSxDkrn4zTffzNOzLEw5LZCbG/eWbvOfkhZLWiTp9obamFl+/e///i9jx45l5513ZquttmLu3LkAPP/88/z2t79l8eLFvPzyy8yePTvrczZ037Vr1/L973+f6dOnM3fuXE444QSuuvySXD0ta9yRwC0R0Rv4KvAnSRt9PkTE9RFREREVvXr1ynuQZh1Nkrn4xz/+ca6eVlHI2RjkbMa9SeoPnAfsHRHvSfpCruIxs+xNmzaNM844A4CJEycybdo0xo0bx8iRI+nduzcAQ4cOpbq6mn322SerczZ03549e7Jw4UIOPPBAANatW0f3LV14tbPXge0ztnun92U6ERgLEBFPSeoGbA28nZcIzaxBSebibbbZJgfPqHjk8iK9unFvAJJqx71lXhhyEnBNRLwHEBFOxmYJe/fdd/nb3/7GggULkMS6deuQxCGHHELXrl3r2pWVlVFTU5P1eRu6b0QwePBgnnrqqbpjHj7R7uYA/SX1I1UYTwS+Va/Nv4CvALdIGgh0AzyGwixBSefiji6XQyyyGfe2M7CzpNmSnpY0tqETedybWf5Mnz6dY445hldffZXq6mpee+01+vXrxz/+8Y92f6xddtmFFStW1CXltWvXsuxFL6/bniKiBjgNeBCoIjVbxSJJF0san272Q+AkSS8A04Djo3ZgopklIulcvGjRonZ/nGKS9DRvmwD9gdGkvvZ7QlJ5RKzKbBQR1wPXA1RUVDhpW1HJZnqgpqb8acl0QO1h2rRp/OhHP9pg3+GHH861117LTjvt1K6P1aVLF6ZPn87pp5/O+++/T01NDUccdzJf3GVguz5ORxcRD5C6+C5z34UZtxcDe+c7LrNike88DMnn4h/84AcMHjy4XR+nmChXnQSSRgFTIuKg9PZ5ABHxi4w21wHPRMTN6e1HgckRMaex81ZUVERDV2i2RrbzGibxh2Glo6UFclVVFQMHdtwCMdshFkN698xpHO2pod+ppLkRUZFQSG3W0lzc1N9BR8+xVQMa/nsfuMTfpiSlo+fhUtWSXJzLIRZ1494kdSE17m1mvTb3kOo9RtLWpIZcvJzDmMzMzMzMmpSzAjnLcW8PAislLQYeA86JiJW5isnMzMzMrDk5HYOcxbi3AM5K/5iZmZmZJc4r6ZmZmZmZZXCBbGZmZmaWwQWymZmZmVmGpOdBNrPmTOnRzud7v9kmZWVllJeXExGUlZVx9dVXs9dee7VvHG0w5ZzTueSCyQwaNGiD/bfccguVlZVcffXVCUVmZiXJeXgjkyZN4qyzzirZPOwC2cw2summmzJv3jwAHnzwQc477zz+/ve/JxtUhilXXMmgIpoH2cyspQo9D994441Jh5BTHmJhZk364IMP2HLLLeu2r7jiCkaMGMGQIUO46KKLAKiurmbgwIGcdNJJDB48mDFjxrBmzRreeOMNhg4dWvdTVlbGq6++yr333ssee+zBsGHDOOCAA3jrrbcAmDJlCuef+V2O/8bBjN2znEf+ci+/+dmFHH7AXnz36CNYu3YtACdOGEftIhU333wzO++8MyNHjmT27Nl1ca5YsYLDDz+cESNGMGLEiA2OmZkVk3zn4eOOO459992XHXbYgf/5n//h3HPPpby8nLFjx9bl4dGjR5d0HnaBbGYbWbNmDUOHDmXAgAFMmjSJCy64AICHHnqIpUuX8uyzzzJv3jzmzp3LE088AcDSpUs59dRTWbRoET179mTGjBlsu+22zJs3j3nz5nHSSSdx+OGHs8MOO7DPPvvw9NNP8/zzzzNx4kQuv/zyusd+7dVXuOHOmfzuptv58emnMGKvfZnxyJN07daNfzz60AZxvvnmm1x00UXMnj2bWbNmsXjx4rpjZ5xxBmeeeSZz5sxhxowZTJo0KQ+vnJlZ+0gyD7/00kv87W9/Y+bMmRx99NF8+ctfZsGCBWy66abcf/+Gq2KWah72EAsz20jmV3tPPfUUxx57LAsXLuShhx7ioYceYtiwYQCsXr2apUuX0qdPH/r168fQoUMBGD58ONXV1XXnmz17NjfccAOzZs0CYPny5Xzzm9/kzTff5NNPP6Vfv351bfcZfQCdO3em/4DBrFu/jr1HHwBA/wGDeGP5vzaI85lnnmH06NH06tULgG9+85v885//BOCRRx7ZIFF/8MEHrF69mu7du7ffC2VmliNJ5uGDDz6Yzp07U15ezrp16xg7diwA5eXlG5wTSjcPu0A2syaNGjWKd955hxUrVhARnHfeeZxyyikbtKmurqZr165122VlZaxZswZI9S6ceOKJzJw5sy4pfv/73+ess85i/PjxPP7440yZMqXuvl26pM7TqVMnNtmkM5LqttfV1GQd9/r163n66afp1q1bq563mVmhyHcerj1Pp06d6Nx5wzxc00HysIdY5FnVgIFZ/ZgViiVLlrBu3Tq22morDjroIG666SZWr14NwOuvv87bb7/d6H3Xrl3LhAkTuOyyy9h5553r9r///vtst912AEydOrXVse2xxx78/e9/Z+XKlaxdu5a777677tiYMWO46qqr6rZre2LMzIqN83D+uQfZrNBlMR1Qe6sd+wYQEUydOpWysjLGjBlDVVUVo0aNAqB79+7ceuutlJWVNXieJ598ksrKSi666KK6C0keeOABpkyZwoQJE9hyyy3Zf//9eeWVV1oV5zbbbMOUKVMYNWoUPXv2rIsZ4Morr+TUU09lyJAh1NTUsN9++3Hddde16nHMrINzHm5UqeZhRUTSMbRIRUVF1F412VZ9J9/ffCOg+tJD2uXxgKx7hwcuqWq3x7RkZfM+y3yPVVVVMXBgx/0WYf7yVVm1G1JE07w19DuVNDciKhIKqc1amoub+jtozxxbjBr7XPDnQHI6eh4uVS3JxR5iYWZmZmaWwQWymZmZmVkGF8hmZmZmZhlcIJuZlTBJYyW9KGmZpMkNHP+NpHnpn39KWpVAmGZmBcWzWJiZlShJZcA1wIHAcmCOpJkRUTdzf0ScmdH++8CwvAdqZlZg3INsZla6RgLLIuLliPgUuAM4tIn2RwLT8hKZmVkBcw+yWYErn1rerudbcNyCZttI4qijjuLWW28FoKamhm222YY99tiD++67r80xVFdXM27cOBYuXJj1fS4483vsd8BBHHjIoUw553QuuWAygwYNanMsJW474LWM7eXAHg01lLQD0A/4W2Mnk3QycDJAnz592i9KswLnPJxy/PHHM27cOI444ggmTZrEWWedVbJ52AWymW1ks802Y+HChaxZs4ZNN92Uhx9+uG7FpWzV1NSwySa5STFTrriSQUU0D3KRmAhMj4h1jTWIiOuB6yE1D3K+AjPriAo9D9944405OW+h8BALM2vQV7/6Ve6/P7W4w7Rp0zjyyCPrjr377rscdthhDBkyhD333JP58+cDMGXKFI455hj23ntvjjnmGG655RYOPfRQRo8eTf/+/fnJT35Sd45169Zx0kknMXjwYMaMGcOaNWsAWLJoAUePP5AjDtybH0w6mg9WrdoothMnjKN2kYru3bvz4x//mN12240999yTt956C4AVK1Zw+OGHM2LECEaMGMHs2bNz8joVuNeB7TO2e6f3NWQiHl5hVlCSysPz5s1jzz33ZMiQIXz961/nvffe2yi20aNHl3QedoFsZg2aOHEid9xxBx9//DHz589njz0++2b+oosuYtiwYcyfP5+f//znHHvssXXHFi9ezCOPPMK0aala69lnn2XGjBnMnz+fu+++uy6hLl26lFNPPZVFixbRs2dPZsyYAcD5P/gOPzhvCtMfnk3/AYO47reXNRnnhx9+yJ577skLL7zAfvvtxw033ADAGWecwZlnnsmcOXOYMWMGkyZNatfXp0jMAfpL6iepC6kieGb9RpIGAFsCT+U5PjNrQlJ5+Nhjj+Wyyy5j/vz5lJeXb1BUN6QU87CHWJhZg4YMGUJ1dTXTpk3jq1/96gbHZs2aVZdI999/f1auXMkHH3wAwPjx49l0003r2h544IFstdVWAHzjG99g1qxZHHbYYfTr14+hQ4cCMHz4cKqrq3n//ff59wfvUzFq79S5jjiSs797fJNxdunShXHjxtWd5+GHHwbgkUceYfHiuska+OCDD1i9ejXdu3dv5StSfCKiRtJpwINAGXBTRCySdDFQGRG1xfJE4I6I8LAJswKSVB5etWoVX/rSlwA47rjjmDBhQpNxlmIedoFsZo0aP348Z599No8//jgrV67M6j6bbbbZBtuSGtzu2rVr3b6ysrK6r/ZaqnPnznXnLCsro6amBoD169fz9NNP061bt1adt1RExAPAA/X2XVhve0o+YzKz7DkPJ8NDLMysUSeccAIXXXQR5eUbXsG97777cttttwHw+OOPs/XWW7PFFls0eI6HH36Yd999lzVr1nDPPfew9957N/p4PXr0YIsePXnumScBuO9/7qRij8bbN2XMmDFcddVVddvz5s1r1XnMzJKURB7ecsst+cc//gHAn/70p7re5JYq5jzsHmSzApfNdEC50rt3b04//fSN9k+ZMoUTTjiBIUOG8LnPfY6pU6c2eo6RI0dy+OGHs3z5co4++mgqKiqorq5utP1Pf3Mtl5x3Fh+v+Yjeffpy8a+uaVXsV155JaeeeipDhgyhpqaG/fbbj+uuu65V5zKzjq2j5eGpU6fyne98h48++ogdd9yRm2++uVWxF3MeVrENOauoqIjaweVt1Xfy/Vm1q770kHZ5PICqAQOzajdwSVW7PaYlK5v3WeZ7rKqqioEDs3ufFLpbbrmFyspKrr766qzvM3/5qqzaDSmiad4a+p1KmhsRFQmF1GYtzcVN/R20Z44tRo19LvhzIDkdPQ+XqpbkYg+xMDMzMzPLkNMCWdJYSS9KWiZpcgPHj5e0QtK89E/xzP9hZs06/vjj3WthZpYg5+HWydkYZEllwDXAgaSWN50jaWZELK7X9M6IOC1XcZiZmZmZtUQue5BHAssi4uWI+BS4Azg0h49nZmZmZtZmuSyQtwNey9hent5X3+GS5kuaLmn7Bo4j6WRJlZIqV6xYkYtYzczMzMyA5C/SuxfoGxFDgIeBBucoiYjrI6IiIip69eqV1wDNzMzMrGPJ5TzIrwOZPcK90/vqRETmkjA3ApfnMB6zopTt1IDZymbqqLKyMsrLy6mpqWHgwIFMnTqVt99+m3HjxrFw4cJ2jSfTqlWruHPqjXzzuNT1unOemsXU31/F1bfcmfU5+vbtS2VlJVtvvXWbYqmsrOSPf/wjV155ZZvOY2bFr6Pl4dtvv53vfe97QGoRkl/+8pfcd999WZ+jFPJwLnuQ5wD9JfWT1AWYCMzMbCBpm4zN8YAnfTQrAJtuuinz5s1j4cKFdOnSJW8Tu69atYo7//iHvDxWcyoqKlwcm1likszD//3f/52Xx2pOknk4ZwVyRNQApwEPkip874qIRZIuljQ+3ex0SYskvQCcDhyfq3jMrHX23Xdfli1bBsC6des46aSTGDx4MGPGjGHNmjUAvPTSS4wdO5bhw4ez7777smTJEiA1vdDpp5/OXnvtxY477sj06dPrznvFFVcwYsQIhgwZwkUXXQTA5MmTWf5qNf950L78+pILAFjz4Yf88JTjOHT0SM77/klEBM/MfoLDDjus7lwPP/wwX//61zeK/bDDDmP48OEMHjyY66+/vm5/9+7dOeeccxg8eDAHHHAAzz77LKNHj2bHHXdk5szU/+Mff/xxxo0bB3y2YlVtm8yEfeuttzJy5EiGDh3KKaecwrp169r8mpvlU9/J9zf4Y4Uj33n4pZdeYujQoZxzzjkArF69miOOOIIBAwZw1FFHERH87W9/K+k8nNMxyBHxQETsHBE7RcTP0vsujIiZ6dvnRcTgiNgtIr4cEUtyGY+ZtUxNTQ1/+ctfKC8vB2Dp0qWceuqpLFq0iJ49ezJjxgwATj75ZK666irmzp3LL3/5y7qv5gDefPNNZs2axX333cfkyanp0B966CGWLl3Ks88+y7x585g7dy5PPPEEl156Kb136MtdD/6Ds87/KQBLFs3n3Ck/589/e5rl/3qV5+c8zci9Usm/9qLdm2++mRNOOGGj+G+66Sbmzp1LZWUlV155JStXpkZ1ffjhh+y///4sWrSIzTffnPPPP5+HH36YP//5z1x44YUNvhZLlizhwQcf5Nlnn+UnP/kJa9eupaqqijvvvJPZs2czb948ysrKuO2229rp1TczSyYP77TTTsybN48rrrgCgOeff57f/va3LF68mJdffpnZs2fz5S9/uaTzcC7HIJtZkVqzZg1Dhw4FUj0XJ554Im+88Qb9+vWr2z98+HCqq6tZvXo1Tz75JBMmTKi7/yeffFJ3+7DDDqNTp04MGjSIt956C0gl5oceeohhw4YBqd6JpUuX0qdPn41i2XXocP5jm9QEOLsM2pU3lv+L3UeO4phjjuHWW2/l29/+Nk899RR//OMfN7rvlVdeyZ///GcAXnvtNZYuXcpWW21Fly5dGDt2LADl5eV07dqVzp07U15eTnV1dYOvySGHHELXrl3p2rUrX/jCF3jrrbd49NFHmTt3LiNGjKh73b7whS9k+zKbmTWqkPLwyJEj6d27NwBDhw6lurqaffbZp6TzsAtksw5mTfrijk133bXRNrVj3+rr2rVr3e2ysjLWrFnD+vXr6dmzZ4Pt698nIur+Pe+88zjllFM2aNtQUuzcpUvd7U5lZayrSX119u1vf5uvfe1rdOvWjQkTJrDJJhums8cff5xHHnmEp556is997nOMHj2ajz/+OHXOzp2RlDpnp051MXbq1Imamppmn0dZWRk1NTVEBMcddxy/+MUvGryPmVlrFVIebij/QWnn4aSneTOzIrfFFlvQr18/7r77biCVdF944YUm73PQQQdx0003sXr1agBef/113n77bTbffHM++nB1Vo+77bbbsu2223LJJZfw7W9/e6Pj77//PltuuSWf+9znWLJkCU8//XQLn1nzvvKVrzB9+nTefvttAN59911effXVdn8cM7OmtHce/ve//53V45ZyHnYPslmBy2Y6oExrcjj9T2Nuu+02vvvd73LJJZewdu1aJk6cyG677dZo+zFjxlBVVcWoUaOA1MUat956KzvttBNDK/bgG18ZxT5fPoB9v3JQk4971FFHsWLFCgYO3HgKprFjx3LdddcxcOBAdtllF/bcc8+2PckGDBo0iEsuuYQxY8awfv16OnfuzDXXXMMOO+zQ7o9lZslpaR5OQnvm4b333ptdd92Vgw8+mEMOOaTJxy3VPKzarvZiUVFREZWVle1yrmyv0q2+tOk3R0tkO5diMfwxWnayeZ9lvseqqqoaTDTZyrZAbmqIRZLmL1+VVbshvXty2mmnMWzYME488cTcBtVGDf1OJc2NiIqEQmqzlubipv4O2jPHFqPGPhfy9TnQ2O+mI/9e2pqHO5JiycPQslzsHmQzK0rDhw9ns80241e/+lXSoZiZdUilnIddIJtZUZo7d27SIRQFSWOB3wFlwI0RcWkDbf4TmAIE8EJEfCuvQZpZUSrlPOwC2awARUTd1b1W3JIcxiapDLgGOBBYDsyRNDMiFme06Q+cB+wdEe9J8jx1ZjgPl5qW5mLPYmFWYLp168bKlSsTLaysfUQEK1eupFu3bkmFMBJYFhEvR8SnwB3AofXanARcExHvAUTE23mO0azgOA+XltbkYvcgmxWY3r17s3z58rrViVpqbXoS+OZ0Litr1flz7a331mTVrurfm+Y4kvbRrVu3ugn2E7Ad8FrG9nJgj3ptdgaQNJvUMIwpEfHXhk4m6WTgZKDBxQTMSkVb87AVnpbmYhfIZgWmc+fO9OvXr9X3r/r6N7JqV6gzpRycwOwyHdwmQH9gNNAbeEJSeUSsqt8wIq4HrofULBZ5jNEsr9qah634uUDOxpQeWbR5P/dxmJm1zOvA9hnbvdP7Mi0HnomItcArkv5JqmCek58QzcwKj8cgm5mVrjlAf0n9JHUBJgIz67W5h1TvMZK2JjXk4uU8xmhmVnBcIJuZlaiIqAFOAx4EqoC7ImKRpIsljU83exBYKWkx8BhwTkSsTCZiM7PC4CEWZmYlLCIeAB6ot+/CjNsBnJX+MTMz3INsZmZmZrYBF8hmZmZmZhlcIJuZmZmZZXCBbGZmZmaWwQWymZmZmVmGRmexkLR7U3eMiOfaPxyzDiqbxWjAC9J0QM7FZmb519Q0b79K/9sNqABeAAQMASqBUbkNzczMcC42M8u7RodYRMSXI+LLwJvA7hFRERHDgWFsvFSpmZnlgHOxmVn+ZTMGeZeIWFC7ERELgYG5C8nMzBrgXGxmlifZrKQ3X9KNwK3p7aOA+bkLyczMGuBcbGaWJ9kUyN8Gvguckd5+Arg2ZxGZmVlDnIvNzPKk2QI5Ij4GfpP+MTOzBDgXm5nlT1PTvC0AorHjETEkJxGZmVkd52Izs/xrqgd5XFtPLmks8DugDLgxIi5tpN3hwHRgRERUtvVxzcxKSJtzsZmZtUyjBXJEvFp7W9IOQP+IeETSpk3dL+M+ZcA1wIHAcmCOpJkRsbheu81Jjal7pnVPwcysdLU1F5uZWcs1O82bpJNI9e7+Pr2rN3BPFuceCSyLiJcj4lPgDuDQBtr9FLgM+DibgM3MOqI25GIzM2uhbOZBPhXYG/gAICKWAl/I4n7bAa9lbC9P76uTXkJ1+4i4v6kTSTpZUqWkyhUrVmTx0GZmJae1udjMzFoomwL5k3QPMACSNqGJC0ayJakT8Gvgh821jYjr06tHVfTq1autD21mVoxykovNzGxj2RTIf5f0X8Cmkg4E7gbuzeJ+rwPbZ2z3ZsNlUTcHdgUel1QN7AnMlFSRTeBmZh1Ma3OxmZm1UDYF8mRgBbAAOAV4ADg/i/vNAfpL6iepCzARmFl7MCLej4itI6JvRPQFngbGexYLM7MGtSoXSxor6UVJyyRNbuD48ZJWSJqX/pnU7pGbmRWZbBYKWQ/ckP7JWkTUSDoNeJDUNG83RcQiSRcDlRExs+kzmJlZrdbk4mxnEwLujIjT2i1YM7Mi19RCIXdFxH82Nkl9NpPTR8QDpHo5Mvdd2Ejb0c1Ga2bWwbQxF9fNJpQ+V+1sQvULZDMzy9BUD/IZ6X89Sb2ZWXLakosbmk1ojwbaHS5pP+CfwJkR8VoDbZB0MnAyQJ8+fVoRjplZcWh0DHJEvJm+OR54PyJezfzJT3hmZh1bHnLxvUDfdE/0w8DUJmLxjEJm1iFkc5HefwCVku5KX+yhXAdlZmYbaU0ubm42ISJiZUR8kt68ERjeLtGamRWxZgvkiDgf6A/8ATgeWCrp55J2ynFsZmaW1spc3ORsQgCStsnYHA9UtWvgZmZFKJseZCIigP9L/9QAWwLTJV2ew9jMzCxDS3NxRNQAtbMJVQF31c4mJGl8utnpkhZJegE4nVTxbWbWoTU7zZukM4BjgXdIff12TkSsTa+EtxQ4N7chmplZa3Nxc7MJRcR5wHm5ijsrU3o0sv/9/MZhZpbWbIEMfB74Rv2LQSJivSTPcGFmlh/OxWZmeZLNQiEXNXHMY9XMzPLAudjMLH+y6UE2MytpVQMGZtVu4BLXoWZmHUFWF+mZmZmZmXUUWRXIknaQdED69qaSNs9tWGZmVp9zsZlZfjRbIEs6CZgO/D69qzdwTw5jMjOzepyLzczyJ5se5FOBvYEPACJiKfCFXAZlZmYbcS42M8uTbArkTyLi09oNSZsAkbuQzMysAc7FZmZ5kk2B/HdJ/wVsKulA4G7g3tyGZWZm9TgXm5nlSTYF8mRgBbAAOIXUikzn5zIoMzPbiHOxmVmeZLNQyHrghvSPmZklwLnYzCx/mi2QJS1g43Fu7wOVwCURsTIXgZmZ2Weci83M8ieblfT+AqwDbk9vTwQ+B/wfcAvwtZxEZmZmmZyLzczyJJsC+YCI2D1je4Gk5yJid0lH5yowMzPbgHOxmVmeZHORXpmkkbUbkkYAZenNmpxEZWZm9TkXm5nlSTY9yJOAmyR1B0RqkvpJkjYDfpHL4MzMrI5zsZlZnmQzi8UcoFxSj/T2+xmH78pVYGZm9hnnYjOz/MmmBxlJhwCDgW6SAIiIi3MYl5mZ1eNcbGbFqO/k+xs9Vn3pIXmMJHvNjkGWdB3wTeD7pL7WmwDskOO4zMwsg3OxmVn+ZHOR3l4RcSzwXkT8BBgF7JzbsMzMrJ5W52JJYyW9KGmZpMlNtDtcUkiqaKeYzcyKUjYF8sfpfz+StC2wFtgmdyGZmVkDWpWLJZUB1wAHA4OAIyUNaqDd5sAZwDPtFrGZWZHKpkC+V1JP4ArgOaCazyaqNzOz/GhtLh4JLIuIlyPiU+AO4NAG2v0UuIzPCnEzsw6ryQJZUifg0YhYFREzSI13GxARF2Zz8ua+1pP0HUkLJM2TNKuhXg0zs46ujbl4O+C1jO3l6X2Z598d2D4iGr+SxsysA2myQI6I9aS+mqvd/qTe1EKNyvJrvdsjojwihgKXA79uQexmZh1CW3Jxc9LF96+BH2bR9mRJlZIqV6xY0R4Pb2ZWkLIZYvFo+sINtfDczX6tFxEfZGxuBkQLH8PMrKNobS5+Hdg+Y7t3el+tzYFdgcclVQN7AjMbulAvIq6PiIqIqOjVq1cLwzAzKx7ZzIN8CnAWsE7SGlLTC0VEbNHM/Rr6Wm+P+o0knZo+fxdg/4ZOJOlk4GSAPn36ZBGymVnJaW0ungP0l9SPVGE8EfhW7cF0T/TWtduSHgfOjojK9g3fzKx4NNuDHBGbR0SniOgcEVukt5tLyFmLiGsiYifgR8D5jbRxr4WZdWitzcURUQOcBjwIVAF3RcQiSRdLGp/ruM3MilGzPcjpr/OOAvpFxE8lbQ9sExHPNnPX5r7Wq+8O4Nrm4ilU5VPLs2rn9WDNrDXakIuJiAeAB+rta/ACv4gY3Q7h5lzVgIEN7h+4pCrPkZhZKcpmiMV/A+tJDX/4KbCa1MUiI5q5X5Nf6wFI6h8RS9ObhwBLMTOzhrQ2F5vZlB5NHGuX612txGRTIO8REbtLeh4gIt6T1KW5O0VEjaTar/XKgJtqv9YDKiNiJnCapANITXj/HnBcq5+JmVlpa1UuNjOzlsumQF6bnrItACT1ItWL0azmvtaLiDOyD9XMrENrdS42M7OWyWaatyuBPwNfkPQzYBbw85xGZWZm9TkXm5nlSbM9yBFxm6S5wFdITSt0WET4KogOqu/k7Bbaqr70kBxHYtaxOBeb5VdjF4KCLwbtCLKZxeJK4I6IuKa5tmZmlhvOxWZm+ZPNEIu5wPmSXpL0y4ZWVzIzs5xzLjYzy5NsFgqZGhFfJTWV0IvAZZI8HZuZWR45F5uZ5U82Pci1vggMAHYAluQmHDMza4ZzsZlZjjVbIEu6PN1LcTGwEKiIiK/lPDIzM6vjXGxmlj/ZzIP8EjAqIt7JdTBmZtYo52IzszzJZpq330vaUtJIoFvG/idyGpmZmdVxLjYzy59spnmbBJwB9AbmAXsCTwH75zQyMzOr41xsZpY/2Vykdwapq6ZfjYgvA8OAVbkMyszMNuJcbGaWJ9kUyB9HxMcAkrpGxBJgl9yGZWZm9TgXm5nlSTYX6S2X1BO4B3hY0nvAq7kMyszMNuJcbGaWJ9lcpPf19M0pkh4DegB/zWlUZma2AediM7P8yaYHuU5E/D1XgZiZWXaci83McqslK+mZmZmZmZU8F8hmZmZmZhlcIJuZlThJYyW9KGmZpMkNHP+OpAWS5kmaJWlQEnGamRUKF8hmZiVMUhlwDXAwMAg4soEC+PaIKI+IocDlwK/zG6WZWWFxgWxmVtpGAssi4uWI+BS4Azg0s0FEfJCxuRkQeYzPzKzgtGgWCzMzKzrbAa9lbC8H9qjfSNKpwFlAFxpZvlrSycDJAH369Gn3QM3MCoV7kM3MjIi4JiJ2An4EnN9Im+sjoiIiKnr16pXfAM3M8sgFsplZaXsd2D5ju3d6X2PuAA7LZUBmZoXOQyzMzErbHKC/pH6kCuOJwLcyG0jqHxFL05uHAEsxm9KjiWPv5y8OswS4QDYzK2ERUSPpNOBBoAy4KSIWSboYqIyImcBpkg4A1gLvAcclF7GZWfJcIJuZlbiIeAB4oN6+CzNun5H3oMzMCpjHIJuZmZmZZXCBbGZmZmaWIacFchbLm54labGk+ZIelbRDLuMxMzMzM2tOzgrkLJc3fR6oiIghwHRSS5yamZmZmSUmlz3I2Sxv+lhEfJTefJrU/JxmZmZmZonJZYHc0PKm2zXR/kTgLw0dkHSypEpJlStWrGjHEM3MzMzMNlQQF+lJOhqoAK5o6LiXNzUzMzOzfMnlPMhZLW+anpz+x8CXIuKTHMZjZmZmZtasXPYg1y1vKqkLqeVNZ2Y2kDQM+D0wPiLezmEsZmZmZmZZyVmBHBE1QO3yplXAXbXLm0oan252BdAduFvSPEkzGzmdmZmZmVle5HSp6SyWNz0gl49vZmZmZtZSBXGRnpmZmZlZoXCBbGZmZmaWwQWymZmZmVkGF8hmZmZmZhlcIJuZmZmZZXCBbGZmZmaWwQWymZmZmVkGF8hmZmZmZhlcIJuZlTBJYyW9KGmZpMkNHD9L0mJJ8yU9KmmHJOI0MyskLpDNzEqUpDLgGuBgYBBwpKRB9Zo9D1RExBBgOnB5fqM0Mys8LpDNzErXSGBZRLwcEZ8CdwCHZjaIiMci4qP05tNA7zzHaGZWcFwgm5mVru2A1zK2l6f3NeZE4C+NHZR0sqRKSZUrVqxopxDNzAqPC2QzM0PS0UAFcEVjbSLi+oioiIiKXr165S84M7M82yTpAMzMLGdeB7bP2O6d3rcBSQcAPwa+FBGf5Ck2M7OC5R5kM7PSNQfoL6mfpC7ARGBmZgNJw4DfA+Mj4u0EYjQzKzgukM3MSlRE1ACnAQ8CVcBdEbFI0sWSxqebXQF0B+6WNE/SzEZOZ2bWYXiIhZlZCYuIB4AH6u27MOP2AXkPysyswLkH2czMzMwsg3uQzczMrMMqn1re4P678hyHFRYXyGZmZjnWWBEGLsTMCpGHWJiZmZmZZXCBbGZmZmaWwUMszMysIHlYgpklxT3IZmZmZmYZXCCbmZmZmWVwgWxmZmZmlsEFspmZmZlZhpwWyJLGSnpR0jJJkxs4vp+k5yTVSDoil7GYmZmZmWUjZwWypDLgGuBgYBBwpKRB9Zr9CzgeuD1XcZiZmZmZtUQup3kbCSyLiJcBJN0BHAosrm0QEdXpY+tzGIeZmZmZWdZyOcRiO+C1jO3l6X1mZmZmZgWrKBYKkXQycDJAnz59Eo7GzArClB5Ztns/t3GYmVnJyWUP8uvA9hnbvdP7Wiwiro+Iioio6NWrV7sEZ2ZmZmbWkFwWyHOA/pL6SeoCTARm5vDxzMzMzMzaLGcFckTUAKcBDwJVwF0RsUjSxZLGA0gaIWk5MAH4vaRFuYrHzMzMzCwbOR2DHBEPAA/U23dhxu05pIZemJmZmZkVBK+kZ2ZWwrxgk5lZy7lANjMrUV6wycysdYpimjczM2sVL9hkZtYK7kE2Mytd7bpgk6STJVVKqlyxYkWbgzMzK1QukM3MLCuek97MOgoXyGZmpavdFmwyM+tIXCCbmZUuL9hkZtYKLpDNzEqUF2wyM2sdz2JhZlbCvGCTmVnLuQfZzMzMzCyDC2QzMzMzswwukM3MzMzMMrhANjMzMzPL4Iv0zMzMrF1UDRjY4P6BS6ryHEnx6zv5/gb3V196SJ4j6Zjcg2xmZmZmlsEFspmZmZlZBg+xMDMzM7NkTOnRyP738xtHPe5BNjMzMzPL4ALZzMzMzCyDC2QzMzMzswwukM3MzMzMMrhANjMzMzPL4ALZzMzMzCyDC2QzMzMzswwukM3MzMzMMnihELMiUj61vNk2d+UhDjMzs1LmHmQzMzMzswwukM3MzMzMMuS0QJY0VtKLkpZJmtzA8a6S7kwff0ZS31zGY2bWETkXm5m1TM4KZEllwDXAwcAg4EhJg+o1OxF4LyK+CPwGuCxX8ZiZdUTOxWZmLZfLi/RGAssi4mUASXcAhwKLM9ocCkxJ354OXC1JERE5jMvMrCNxLrZ219gFw75I2EpFLgvk7YDXMraXA3s01iYiaiS9D2wFvJPZSNLJwMnpzdWSXsxJxI1QVq0Wbk29uBtSv9um8QfN7lELlbLrf8rqNesIsv9tN/8+6zDvsWwb/kTt9z5r39dsh/Y8WRMKPhc3/qo2/n5v9H1euO/ronsuTT96w7+bQn0uTWvhc4FEn08zn69F97na6CvZnrm7aQ3m4qKY5i0irgeuTzqOpkiqjIiKpOMoJn7NWs6vWcv5NWs/+c7FpfS7K6XnAqX1fPxcClPSzyWXF+m9Dmyfsd07va/BNpI2AXoAK3MYk5lZR+NcbGbWQrkskOcA/SX1k9QFmAjMrNdmJnBc+vYRwN885s3MrF05F5uZtVDOhlikx7GdBjwIlAE3RcQiSRcDlRExE/gD8CdJy4B3SSXuYlXQQ0AKlF+zlvNr1nId+jUr8lxcSr+7UnouUFrPx8+lMCX6XOROAjMzMzOzz3glPTMzMzOzDC6QzczMzMwyuEA2MzMzM8vgAtnMzMysyEnaSdIFkhYlHUspKIqFQqx0SNoMWBMR6yXtDAwA/hIRaxMOzUqQpE5A94j4IOlYrGmStgD+IyKWprcnAJumDz8YEW8lFlwrSBoKfBFYFBFVCYfTJpI+X29XAKuKdSpASVsB3yL1+QNQBUyLiKKb+1vStsA3ST2fcuAXFM4sNFmR1BvoGxGz0ttnAd3Th2+PiGVJxOUe5DaQdIakLZTyB0nPSRqTdFwF7gmgm6TtgIeAY4BbEo2ogPk91nKSbk+/ZpsBC4HFks5JOi5r1i+BvTO2fwGMAPYDfpJIRK0k6ULgLuBw4H5JJyUcUlvNBSrT/84FngPelvSIpL5JBtZSkgaSygvDgX8CS0m9zxZIGtDUfQuJpJMlPQY8TmpZ+BOBNyPiJxGxINHgWu4KoGfG9inAh6T+I5bY376neWsDSS9ExG6SDiL1C70A+FNE7J5waAVL0nMRsbuk7wObRsTlkuZFxNCkYytEfo+1XO37SdJRwO7AZGBuRAxJODRrgqTngd1reyUlPR8Rw9K3Z0XEPokG2ALpr7hHRMRH6d7Kv0bEiKTjam+SvgGcHBFjk44lW5KmA3dFxF319h8OfCsiDk8mspaR9CnwFPDDiKhM73s5InZMNrKWq60LMrYz//b/ERH7JhGXe5DbRul/v0qqaFmUsc8aJkmjgKOA+9P7yhKMp9D5PdZynSV1Bg4DZqaH77gnoPBtUu8r+2MybvfMcyxt9UlEfASQ/tq+JD9rI+J/gC8kHUcLldcvjgEiYgawawLxtNY2wDTgV5JelPRToHPCMbVWt3rbX8m4vXU+A8lUkn+0eTRX0kOkipcHJW0OrE84pkL3A+A84M/p1bx2BB5LNqSC5vdYy/0eqAY2A56QtAPgMciFb72k/1e7ERELAdLDsYrtPb+jpJnpn3uBnTK26y/zXbQkdaf46ogPW3msoETEyoi4LiK+RKqgXAW8JalK0s+Tja7F/p2+JgmAiHgXID3k5d9JBeUhFm2QvgBoKPByRKxKf5W2XUTMTzaywpdOrETE6qRjKWR+j7UPSZtERE3ScVjjJB0NnAH8EHg+vXt3UmOTr4yIPyUVW0tJ+lJTxyPi7/mKpT2kL5qqb0tgPHB1RNyQ55BaTdJy4NcNHQJ+EBHb5zmkdpUuNCdGxMVJx5ItSWOBK4GfkRrfDqkx4v8FnBERf0kiLs9i0QbpmRh6A9+SBPD3iLg34bAKmqRy4I/A51ObWgEcmx46YPX4PdZyknoAF5G6uAvg78DFwPuJBWXNiohbJb0DXAIMTu9eCFyY1AdkG3w7Io5POoh2tHm97QD+Dzi6CC8Iu4GNn0+tG/MZSFtIOjciLk/fnhARdwNExD8l1R+yUNAi4q/p8eznAqendy8CvlH7TVIS3IPcBpIuJXX1623pXUcCcyLiv5KLqrBJehL4cUQ8lt4eDfw8IvZKMq5C5fdYy0maQaqwmpredQywW0R8I7morCOpf9GRWXvLfI81cJGb33/twAVyG0iaDwyNiPXp7TLgeV8t37jaWRma22cpfo+1XEOzonimlMIn6cqmjkfE6U0dLySSlpD6z2yDF9RGxHMN7S9UkrYGTgXeA24iNS3XvsBLpGZRSGSe2tZI965+k9RzuRc4h9S3TS8BP42IdxIML2v1Znqou93QdqFrblx+RIzPVyyZPMSi7XoC76Zv90gwjmLxsqQLgNrxhEcDLycYTzHoid9jLbFG0j4Zk87vDaxJOCZr3ndI9fzfBbxBcc/Wsh3wKxp+DgHsn99w2ux2UvMg9weeBW4GfkeqSL4RGJ1YZC33R2AtqYt4f0jqPXc1sA+pOfnHJRZZy0QjtxvaLnSjgNdIzcrxDAXyt+8e5DaQdCRwKalZGETqf6GTI+LORAMrYJK2JDXxd+2cpv8ApkTEe8lFVbj8Hms5SbuR+hDsQeo1exc4PiJeSDQwa1L6AtQJpHr3aoA7gekRsSrJuFqj2HrwmpMxH7uAVyOiT8axovp2RtLCiNhV0ibA8oj4fxnHiubbTEnrgdWkctymwEe1h4BuEVE0U76lvxk9kNS3LkNITQE7Lelrk1wgt5GkbUiNEQV4NiL+L8l4rPT4PdY6Si1dTHiZ6aKTvjB1InAW8KNimsECSm8MaCmNdy2V51Jq/wmrJakrqUL5CuAnEXF1UrF4iEXbdQLeIfVa7ixp54h4IuGYClZ6Cpqzgb5kvP8ioti+cswnv8daIJ1gDyf9HkvP/kExTXvUkUnandQH5IHAX0gtbVxsiqIXsgV2TI8TVcZt0tv9kgurVXqnx7sr4zbp7e2SC6vFSqp3M523DyH1t9+X1LRvf040Jvcgt56ky0h9HbiIzyayj6QGlBcDSS8A15H60FtXuz8iivFDMOf8Hms5SX8lNaVb/ffYrxILypol6WJSH5BVwB2klmcuyrmrS613r5TmdZZ0XFPHI2JqU8cLRRPzOQMQEY0eKzSS/khqFcMHgDuSnNotkwvkNpD0IjAkIj5JOpZiIWluRAxPOo5i4fdYy9WOMUw6DmuZ9JjKV/hsLGXth5NI/aewaGZukfQyqW/KGpReorkoSeoFEBErko6lNST9vBSmyZT0JnAtjc+U8pP8RtR66b/92lUMM4vS2r/9LfIflYdYtNXLpNY+d/HSDEmfT9+8V9L3SH11Uve61S4taRvxe6zlnpRUXoQLGHR0xfZVfVN6kJoNobFZLIqqQE5fnHch8H1SQ74kqQa4qgiHLo0ltUJbsXuzCF/7xrxQiN+4uEBuBUlXkUpyHwHzJD3KhsVe0czXmUf1h1Cck3E7gB3zGEvB83us5SQtIPWabQJ8O92L9wlF2APZQd0QEWOSDqKdvBoRJyQdRDs6k9TMQyMi4hUASTsC10o6MyJ+k2h0LVOWnk2psZ7XYumsKYip0NpJQQ5l8BCLViiVMUxWuPweazlJOzR1PCJezVcs1nKlNG63lJ4LpJ4PcGD9RTTSwy0eKqbnKukT4HUa6d2PiKLorJH0+SIq5ptUqOOp3YPcChExVdJQ4IvAooioSjikgiepP6lpW74ILADOjojXk42qcPk91ipvkVpsovY99odivcirg+ohqdHlwIts3O4x9XekV6NbGcXZK9W5oRXmImKFpKKZbzdtcTEV9I0pleI4rQzoToH1irtAboX0SnDHkBo2cLmkX0TEDQmHVehuIrV4wxPAeOAqoNEPw47O77FWmUpqhax/AAcDg4AzEo3IWqKUxu12l/Q4qUVqfkpq5dCtgU6Sjo2IvyYZXCt82spjZtkoyPHUHmLRCpIWkRqL9VF69ae/RsSI5u7XkdVfbamYJmRPgt9jLSdpQUSUp29vQmpRFb/HikQp5QRJlaQuBOsBXA8cHBFPSxpAaoWwourBlLSOz2YZ2OAQxbdq2/ERcUvScdhnCnVIknuQW+eTiPgIICJWSuqUdEBFoJukYXzWO7Rp5nZEPJdYZIXJ77GWW1t7IyJqahcIsaJRSr+wTSLiIUjN7xwRTwNExJJifF9GRFnSMbSjbzQzlMdzzOffV5IOoCEukFun/kpCO2Vs+w+sYf/HhoPwM7cD8Ep6G/J7rOV2k1S7rLRI/SfsAxKeS9OyVkrjdtdn3F5T71ixPZdSMwp4DZgGPENp/cesKBXqeGoPsWiFUlpVyAqT32PW0UjaE7iUBsbtAkU1bjdjSIKATfls8ZOiG5JQaiSVkVrG/EhgCHA/qWEvixINzAqOC2TLC0nnRsTl6dsTIuLujGMlsbJRLkg6IyJ+19w+A0kjImJOI8eOiYg/5Tsmy16pjdu1wiepK6lC+QrgJxFxdcIhWQFxgdwKGQsSbHQIWB8Ru+U5pIKXeQFO/YtxSuninPbW0GtTqBc0JE3SfGA2cF5ErErv2xX4b+DdiDgsueisOZkX8kqqioiBGcf8nrd2ky6MDyFVHPcFZgI3eepRy+QxyK0zroF9ArYHzstzLMVCjdxuaLvDk3Qk8C2gX+bYY2BzUl9B28Z2J7VC4/OSfgqUA18FfhgR9yUamWXD43Yt5yT9EdgVeIBUr/HChEOyAuUCuRUyV+RKz8TwLWAC8AowI6m4Clw0cruhbYMngTdJjcH8Vcb+fwPzE4mowKUXBfmFpBrgRuANYGREvJFsZJal2ossMy+wJL3dLbmwrMQcTWp8+BnA6RmzivhiXtuAC+RWkLQzqa9mjgTeAe4kNVzly4kGVtj84dcC6f+EvSrpifoX5Em6DPhRMpEVLkk7AdeQ+g/XQFKLhTwh6WcRcXOiwVmzSmwqMStQEeEpMy0rHoPcCpLWk1qt68SIWJbe93KxrOFuxaORMcjzI2JIUjEVKknLgMkRMT1j37akphPcPiL2Tiw4MzMrKu5Bbp1vABOBxyT9FbgDj6O1diTpu8D3SM1/nDmkYnNSF6LZxoZGxOrMHenhFRMlHZBQTGZmVoTcg9wGkjYDDiU11GJ/4I/An2tXUDJrLUk9gC2BXwCTMw79u1AnVS8UkvZraH9EPJHvWMxsQ5L6AvdFxK5Jx2LWFBfI7UTSlqQu1PtmRBTksolWnCTtA/SPiJvTK4ttHhGvJB1XoZJ0b8ZmN2AkMDcivFqjWcJcIFuxcIFsVsAkXQRUALtExM7pMbV3ezxt9iRtD/w2Ig5POhazji5dIP8VmEtqasZFwLHA2cDXSK08+CRwSkSEpNOB7wA1wOKImJj+9vYqUtO1dQamRMT/5vu5WGlzgWxWwCTNA4YBz9UulOCL9FpGqXmcFkXEoKRjMevo0gXyK8A+ETFb0k3AYlILdbybbvMn4K6IuFfSG0C/iPhEUs+IWCXp56SK5Vsl9QSeBYZFxIeJPCkrSb5Iz6ywfZruRQmoG/duTZB0FZ/Nrd0JGAo8l1hAZlbfaxFRe7HxrcDpwCuSzgU+B3yeVM/yvaTmfb9N0j3APen7jAHGSzo7vd0N6ANU5SV66xBcIJsVtrsk/R7oKekk4ATghoRjKnSVGbdrgGkZH8ZmlryGFov6b6AiIl6TNIXP5sc/BNiP1PCLH0sqJzVr1OER8WKe4rUOyEMszApUemhAb2AAqR4TAQ9GxMOJBmZm1koZQyz2ioinJN1Iquf3XKAvUAY8DUwHLgb6RES1pM7Aq8CgdNstgO+nv2EbFhHP5/3JWElzD7JZgUon/gciohxwUdwMSf2BHwPvkloc5AZgX+AlYFJEzEkwPDP7zIvAqRnjj68lNa3lQuD/gNq/1TLg1vS0lwKuTI9B/inwW2C+pE6kCu5x+X0KVurcg2xWwCRNBa52cdc8SbNIzUW+BXAm8ANSYxj3BS6JiD2Si87MzIqJC2SzAiZpCfBFUl8tfkiqFyU8i8XGJM2LiKHp28si4osNHTMzM2uOh1iYFbaDkg6giKzPuP1BE8fMzMya5B5ksyIg6XOkLk55NSJWJB1PIZL0EbAsvfnFjNsCdowIT5FnZmZZ6ZR0AGa2MUnjJVVLek7SV0nNCXo1sEDScQmHV6gGAuOBJenbX8v4uS/BuMzMrMi4B9msAEl6AZgA9AAeA4ZExMuSvgA8mp7Zwhog6bmI2L3ePq8+aGZmWfMYZLPCtD4i/gkg6ZWIeBkgIt6WVJNsaIVJ0neB7wE7SpqfcWhzwAuFmJlZ1lwgmxWmTpK2JDUMan36tmqPJRdWQbsd+AvwC2Byxv5/R8S7yYRkZmbFyEMszAqQpGpSMy+ogcMRETvmNyIzM7OOwwWymZmZmVkGD7EwK2CS9mtof0Q8ke9YzMzMOgr3IJsVMEn3Zmx2A0YCcyNi/4RCMjMzK3nuQTYrYBHxtcxtSdsDv00mGjMzs47BV8ObFZflpBbBMDMzsxxxD7JZAZN0FVA7DqoTMBR4LrGAzMzMOgCPQTYrYPWWla4BqiPCi16YmZnlkAtkMzMzM7MMHoNsVoAk9Zd0i6RfS+ot6S+SVkt6QdKIpOMzMzMrZS6QzQrTzcCTwBvAM8BNwNbA2cDVCcZlZmZW8jzEwqwASZoXEUPTt5dFxBcbOmZmZmbtzz3IZoVpfcbtD5o4ZmZmZu3MPchmBUjSR8Cy9OYXM24L2DEiNkskMDMzsw7A8yCbFaaBpIrhy4HM1fQEXJZIRGZmZh2EC2SzAhQRrwJI+mLt7VqSvJKemZlZDrlANitAkr4LfA/YUdL8jEObA14oxMzMLIc8BtmsAEnqAWwJ/AKYnHHo3xHxbjJRmZmZdQwukM3MzMzMMniaNzMzMzOzDC6QzczMzMwyuEC2DkfSaEl7ZdHueEktXtY52/ObmZlZYXKBbB3RaCCXBWyuz29mZmY55ALZSoakYyXNl/SCpD9J+pqkZyQ9L+kRSf8hqS/wHeBMSfMk7dtQu3rn3VzSK5I6p7e3qN2WdLqkxenHvaOh8+f7dTAzM7O28TzIVhIkDQbOB/aKiHckfR4IYM+ICEmTgHMj4oeSrgNWR8Qv0/fdsn474Ie1546If0t6HDgEuAeYCPxPRKyVNBnoFxGfSOoZEavqn9/MzMyKiwtkKxX7A3dHxDsAEfGupHLgTknbAF2AVxq5b+8s2t1IqnC+B/g2cFJ6/3zgNkn3pI+ZmZlZkfMQCytlVwFXR0Q5cArQrbXtImI20FfSaKAsIhamDx0CXAPsDsyR5P90mpmZFTkXyFYq/gZMkLQVQHqIRQ/g9fTx4zLa/pvUks21GmtX3x+B24Gb04/RCdg+Ih4DfpQ+T/cGzm9mZmZFxAWylYSIWAT8DPi7pBeAXwNTgLslzQXeyWh+L/D1jIvoGmtX322kln+elt4uA26VtAB4HrgyIlY1cH4zMzMrIl5q2ixLko4ADo2IY5KOxczMzHLH4yXNsiDpKuBg4KtJx2JmZma55R5kMzMzM7MMHoNsZmZmZpbBBbKZmZmZWQYXyGZmZmZmGVwgm5mZmZllcIFsZmZmZpbh/wOklXyHxmOdRAAAAABJRU5ErkJggg==\n" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "execution_count": 13, + "metadata": { + "collapsed": false, + "inputHidden": false, + "jupyter": { + "outputs_hidden": false + }, + "outputHidden": false + } + }, + { + "cell_type": "markdown", + "source": [ + "### Differing Substrates" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "Optimize aniline case with auxiliary data from benzamide case." + ], + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "#Single-Task Bayesian Optimization\n", + "for i in range(N_REPEATS):\n", + " print(f\"Repeat {i}\")\n", + " exp = get_pretrained_baumgartner_cc_emulator()\n", + " result = run_stbo(exp, max_iterations=MAX_ITERATIONS)\n", + " result.save(f\"data/cross_coupling_different/stbo_cn_noise_repeat_{i}.json\")\n", + " clear_output(wait=True)" + ], + "outputs": [], + "execution_count": null, + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "#Multi-Task Bayesian Optimization\n", + "pt_data = datasets[\"Benzamide\"]\n", + "pt_data[\"task\", \"METADATA\"] = 0\n", + "# Drop base=MTBD because not in other dataset\n", + "pt_data = pt_data[pt_data[\"base\"] != \"MTBD\"]\n", + "# Clean data\n", + "pt_data = pt_data.replace(\"≥90%\", 0.9)\n", + "for i in range(N_REPEATS):\n", + " print(f\"Repeat {i}\")\n", + " exp = get_pretrained_baumgartner_cc_emulator()\n", + " result = run_mtbo(exp, pt_data, max_iterations=MAX_ITERATIONS)\n", + " result.save(f\"data/cross_coupling_different/mtbo_cn_repeat_{i}.json\")\n", + " clear_output(wait=True)" + ], + "outputs": [], + "execution_count": null, + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "stbo_results = [summit.Runner.load(f\"data/cross_coupling_different/stbo_cn_noise_repeat_{i}.json\") \n", + " for i in range(10)]\n", + "mtbo_results = [summit.Runner.load(f\"data/cross_coupling_different/mtbo_cn_repeat_{i}.json\") \n", + " for i in range(10)]\n", + "fig, ax = make_comparison_plot(\n", + " dict(results=stbo_results, label=\"STBO\"),\n", + " dict(results=mtbo_results,label=\"MTBO, n=43\"),\n", + ")\n", + "fig.savefig(\"figures/stbo_mtbo_cn_different.png\", bbox_inches='tight', dpi=300)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEGCAYAAACD7ClEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABIeElEQVR4nO29eZxcZZXw/z331tZVvSXd2RcSIIGwB4EEkEVABEcBdzaFeUVEB9DRd3zFcRBnRl8dh/mNis7oKIgbjMrAMAoCwgvIEvawJSwhCdmXTnrvru3e8/vj3qqu3qt6qfX5fj71qbs8997T1VXnPM85z3OOqCoGg8FgqE2sUgtgMBgMhtJhjIDBYDDUMMYIGAwGQw1jjIDBYDDUMMYIGAwGQw1jjIDBYDDUMIFSC1Aora2tumTJklKLYTAYDBXDc88916aqs0Y6V3FGYMmSJTz77LOlFsNgMBgqBhF5e7Rzxh1kMBgMNYwxAgaDwVDDGCNgMBgMNYwxAgaDwVDDGCNgMBgMNYwxAgaDwVDDGCNgMBgMNYwxAoaJ4zrey2AwVCwVt1jMUEJcF5wEpBPgJAcMgBWAQHjgVVR5kuCmwAqCHQLL9GsMhkIwRsAwOhkl6yQgnQQ3PUq7NCTTkOwFEU8ZByKeQbDsKZbHN0CjyWMFIBDyZLBDU/t8g6EKMUbAMIDqQC/fSYKTmvg90glv3w56xsAOe8q5EPJR+sOu8Q0Sfd6+ZQ8YhKk2SgZDFWCMQClI9nnKbRAyvJ2McCy3rYi3nWkn1sD5QeeGvGfaqw4o/LT/PtU4Kd+Y9HjyBfxRgh0e7rpxncHy5KP0x8N1wO2HVL+3b9meYbJDngy2+QlUG8m0SzztkEy7gPdrEREsAUGyPwNLxD/nbeNvC35bGXivZswvoNjEOz0jUGpyDUGxUBdSce8Ffu885Cv/1NQo/fHIBLMzMojlGYVQfeEjFUPZkHJc4imHeMrFHfE7PbHvuW0JjZEgoUD1xpqMESgWqtDfPuAmKTXFVP6j4UzT6KMQ1B1wgdXNKG5ge5pR/3+c+Vfr0OPZ/cx5b0MQApZgWeXdA047LvG0p/wdd3q+z46rtPcliYZs6sOBqhwVGCNQDFwH+vYXp6drmBgZI11GhsB1FVcVV8n2bnP31fUUd2bfVQWdaJ93OJYIQVuwLSFoW9iWZxxKqQiLofhHoi/pkEi7VTkqMEZgukknPeWibqklMYxHxhBEmiEYmZJb5ipyRVEdUOSa8z70eBmM03BVSaQzknjTgQWwLCFoWQSGGIjpwnHVd/U4pIuo+EeSo70vSV3IpqGKRgXGCEwnyT5IdJWH66VMcVRRVWxLvKBdqVGFeAfQPMgQqA7ucWeUtuMOV+jlpMinGsVTho7rQM7AVgQCvmEIWJINtOaez27n/J8HHx9M0nGJp1xSTnl1oPqTDomUS2NdgHCg8mebGSMwXcS7vHnzZYiiJNIuqlAXLM2XWFH6kg79SSerLC3xepa2RdYnHbAs7GnocWXcKI47WKln3Cxu3x6ccBOuHalahT6VqHrB2VSNLCB3VenoSxEJujRGKntUYIzAVFNuAWCfjOJPplySrpsdnPSnHGJhm7BdPGOQcBx6E8N9uq4qrqPDFEnGBREQwbYzhsL3Tw/pPyoDvXPXH2UM7A/uyY9LXwdupMmb0mowjEA85U1FreRRgTECU4nreAZgIouspoFBit9xR+zNOq7S1Z8mZLvURwLT0uvO4KrSE0+TKHB4n3VBoBnXdBYRsC3Lc8O4U91jV6x4B264CYJ1U3pnQ/WQOypoCAfKflbVUIwRmCqclGcASpxQLaP4E74vNV+lmHRc2nuTRIIWsXBgyv3z/SmH3mR6ysMjqt6MkenESnTigjEEhjHJjAoaIgEiJXKzTgRjBKaCVNwLJpYoAOzN4nBJpgtT/ENRoD/lkkiniIbsKYkXpFyXnoQz7Yp6ujGGwJAPriqd/SkSKc8YVMKowBiBCaC5yj7RjUxDAHgkx0buYxVveXwi7ZKehOIfCVeVnkSaeNolFrIJ2YXPi1aU3kSa/lRlK/9cPEOgEIyWWhRDmRNPOyR6HRojQcIBq6wDx8YIFEDacemOp0k6LqgiiU4kHR/zmnz+9eU68yTtuHT2u4Rti1gB8YJ42gv8jrx8v7KxEl3+iMAYAsPYqEJn/0B8MJPDyMtPVFg+I1u8abfTMbIwRiAPXFfpSabpT/r+fnWReDuSRwC4GtRgwnFJ9nqLZKIhe9R4gaNK7wQCv5WGMQSGiaD4XgTNPVIYmZlytm8QbMszJNnp1RMwFEUxAiJyM/A+YI+qHjHCeQG+C7wXLwfw5ar6fDFkG4++ZJqeRE5AUxWrr63mVgAr3tL5eMolFraJDJkO159K05twqsLo5YNnCBSCsVKLYqghxpoplyEzyhgwCmPfs1hJMH4GnDPG+XOBZf7rSuDfiiDTmCTSDvt6EnTHB89okVRfzRmAXFxVuuNp2vtTpFyXlOuyvy9JTw0ZgAxWohtS5bkg0FC7KN7vNOV4KbX7kmPPWCzKSEBVHxWRJWM0OR/4uXoR1zUi0iwi81R1ZzHky8Vxle54ikR6BEWvipgfPeDFCzr6atcYZrAS3b5ryIwIDJVJucQEFgBbc/a3+ceGGYG9e/dy3HHHZfevvPJKrrzyykkLoP6MmNw0BsNIx2t6FGAYGWMIJomql2FXHcR1stsF+8xHmogwaDLDKNujtRlWc0NH3h903E/HPcakCB02wSIPWbIFoayBbcS/18jnEGuMwlQDlIsRyJtZs2bx7LPPTuk9+5MOPYn0uLNZzCjAMBpWohsSPYN+dIN+oNkf9NBqb4zQRsdWPHkooQyjKqNhx4fsi4WKBWL7ysRCLQuwvOps2XN5BiHV9ZS76yDqF/bRtKf0a6xjJVPoN83v0x+7VbkYge3Aopz9hf6xaSWZdumOp/JLT5tOIKYegGFMdJByncofe9FRF1GX3FShI6sS8YzDIINhA37v3k1796kxRV9ejP1FLBcjcDdwtYjcDqwCOqczHuC4Xg6beDr/FA9mFGAwjIR6vXkcoDxyZhkKo1hTRG8DTgdaRWQb8DUgCKCq/w7cgzc9dAPeFNG/HP1uk+te9SXT9MTThd3FSSGlLoNoMBjKF3VzXFxpv5a17+4CEPHda5IzYhLA8tyGuccG+fann2LNDrponPMK/FVeN5tEgrbMCKBQM2JGAYaqZZDy8n31Imio3ldG04ske7B6dmH17sbu3T2w3bfXL8fqK0JfQSqZeApARpFm9gcUaCb4mnVF5bwGjjnejD//3dsfoU1GmQ+KaWSUvR/QngZ3l4qV/Rs1EPFewToI1KGBuuy+BnJe/j5Dzo1FubiD8kfVS9g2gfJ/fcnCDQBuetzUEAaD1bmFwP43Rjk7So9uhJ6eOClwkt7I00kgThJxEv5oNIGkE/75hN82t41/3VClro6nsPyArPjncR1klF+EioWGm3DDTWgk896MG25Ew824kSbvfKR5UBsCdQN/V6ovq9htX7lbvbsHtnt2Y6V6JvBplycqAbACqGWDFQDLRjPBc9URDJICLuK6wMAxUb+Up2aOgyRTkOyeFrkrzwgAJLoLNgKuqwNpHwpAUn0FX2OoLcJv/oGGR66v2IkDagVAMsrLBjeNlepD4u1Y8XboLOBedgg33ISk41h5KC21Izj1s3Fjc3Hr5+LE5uDG5uDGZqN2iNxgu6cUM/uZ9AvukH0d1E6tgdlN2VlOGcWcO/NpSJtB7ayg9xlZNojtbwf8z81X+HlOx8z/g1Q/mO6N1MRJIql+JO29SPcP7Kf6kXQ8e05S/ZDZ99vA70d9VGUaATft1e8N5Z+7pT81gRWt6nofqMEwEqrUvXgL9U9/F4Dk/BM8N8rgRqNcO8pBK4jaITQQBjvkbduZ7TBqB8EOD2uTPWaHfKVkD1FcNojfO83ZHtXl46SQRBdWogMr3okkOrHiHdljEu/ESnQi8Q7vPdHptXMSnisHzyA4sbm4sdm+gp+LW+8peSc2B7d+LhpuKprvu6LwjZTjWnQlhZRr42odailuENyA4obJKYvKQI1rvE6vq+CSyXpcbUYAINnj5XbP4wukqvQmC++leaOASp7nZ5g2XIf6J/+JuldvRxF6T/zf9B95aamlmjrsIBptwYm2jJaiZmTScax4J2oH0cgMo+BHIJl22d/v0N6fZn9fmn193nt7n8M+/5i3n6Yj7pDPDPbJULlGwHU8QxBuGLdpf8opvN6LqnEFGUYmHafxoesIb34ItYJ0nfFNkgeeXWqpyoNABLfe1GQGbyLKbWv38cqufk+x+wq+O5F/EFmApohNyJZsSulMmmkrJ/20l0kUBH/bEiwGzr89xjMq1wgAJHu9pfrjpMkbL4HSiKRrO1GcYWQk3kHTfZ8juHstbqiBrrP/ldT848a/0FCBjDxNcyDtw0jpHrz3tKN87f63eeCN9mHX2wIzogFmRoPMjAaYEQ3Q4m/PjAaYGfPP1QVojgYIWJKNe2RXgI+wOnwsZn9+9HOVbQRUvYh5pGnUJvGUgzOB8ZQ1DdXCDJWN1b2dpns+S6BzM05sLp3n/gBn5sGlFmsSZKZfjuKyKVDRFP74kQKytj9vfkjHbtBQfvSUFyOt0tbM9NHxUnbkpu6YhBsrkXb429+/wp/fbCcasvn8WctY0FzHzFiImbEQjXXBbMGYfBjrLx/0P8oGyEd6H53KNgLgBYiDMbBH/lMmNApI9ZtRgGEQgbb1NN57NXZ/G+mZy+g89we4sTmTvOvgnubwXEMjKKhs4jDGaZM5zxj7eZCrSHJn52S2M73TbDt/tk5GkcvQxVA5r2mg1BG8vmSaL/3uJZ7Z3E5jXYDvfmwlh81vnL4HDjJcE7tF5RsBgEQXRGcOP5x2SE2gypVZHGbIJbjtCRof+CJWqo/k/BPoOvtf0NCQWJRYuOFGBivaMZLEVUrAdNBiLHvEJqVWvOVCdzzFF37zIi9t62RmLMRNF63koNlDZ4uVH9VhBNIJSCchEBp0uC8xkViASRRnGCD8xt00PPJ1RNPED34v3af9PdjBYe0yqzQNtUl7b5LP3b6W13d3M6cxzE0XH8vimZVRfrQ6jAB4o4FAa3Y35bheQfgCMaMAAwCqRNf+lNgz3weg7+jL6T3hc6O6MdQYgJplT3eca379Apv39bFwRh0/uPhY5jZVzveheoyAk/J8+UEvT8aERgEmUZwBwE1T//i3qFv/WxSh56QvET/i4lGbq2WPODowVD87Ovq5+tcvsL2jn4Nmxfj+RStpqQ+XWqyCqB4jAF46iUAERykoTXQGMwowkO6n8U//h/CWR1A7RNe7/i/JA88a+5pAZQz7DVPL5rZerr7tBfZ2J1gxr4HvfmwlTdHK6wxUlxFwHUj20qsTsMSuYxLF1TjSv5+m+64luOdl3HAjne/5Lum5x457nXEF1R5v7O7m2tteoL0vxTGLmrnxo0dTH65MdVqZUo+Bm+ghroVPQTOjgNrG6tpK072fJdC5Bad+Hp3n/hBnxoHjXufl6hl51oyhOnl5eyd//Z9r6Y6nWbV0Jv/04aOIBCv3O1B1RqA/mQLtzSudRBaTKK42URe7ayuBPS9Tv+ZGrP79pFsOofOcm3Bjs/O7hRkF1BTPbt7P//7tS/SnHE5fPot/uOAIQoHpr7swnVSVEVCU/pSDaB8ajObdQzOJ4moA18Hu2kJg7zoCbesItL1GoO21QfnskwtW0/XuG0fIBDoa4uXPN9QEj29o47r/eplE2uWcI+byd+9bQWCclDXFQgDbEmxLsCzBFsnu2+OsSakqIxDPJopTJNmNRprHv8gkiqs+3DR2xyZf0a8j2LaeQNtrfl71wTjRWaRbV5Cadxz9R1xc0CwfDYQrZ9GXYVI8uH431//3q6Rd5YMrF/A35xxSUOqHySJ4SeECoyh5y5q4LFVlBPpTA+sCJB1HndT4P2qTKK40pOMEdz5HaMczkI57qYutkPduB8EK+bnzQ6gV9M8HB/LnW147tYKIutj73yC4dx2Bfa8RaHsdcYYH+Z3YXNKtK0jPWuEp/tbD0GjrCMLlh3EF1Qa/f2kH3/jDelyFS1Yt5pozDkam0QAIELAtgrYQtC2CtoU9CSU/HlVjBOLp4YniJNmN1g1PJzGojRkFFAdV7PYNhLY9QWjrEwR3PT+tazKchvmkW1aQnnUYqdYVpFsPRetapu4BYpkVwjXAb5/dyj/f75UN/dQpS/nkO5dOuQEQgZCv7IO+8p9OIzOUqjECIyWKEyeJpuOj/1jTca/eqmFakHgHoe1rCG59gtD2J7F79ww6n2o9jNTCE3GjLeCk/fq4Sb92bgpx/Xq7mXcnBa63oG/gXBrUJd281Ovltx7mKfx8XIGTwIwCyhNV5a29vfz5zb28vL0Td7xB/hi6NpV2efZtLxX0589axkUnLJ4SGQOWEAxYhGyLgCUE7NLGFarCCCSc0dNFS7J71B9sTU8LTfVh9bWh4UYvGdpUTHN00wT2vJzt7Qf2vjqokLlT10pq4YkkF51EcsHqcUdp5YyagHDZkHZc1m7t4NE32/jzm3vZ0TF1630E+PK5h3LBygUTvj5oWwQDXg8/ZFtF7eXnQ1UYgf7k6OZeXAdN9UFwyKrOTM+yBpB4p+8rf81/X4/d+bZfkBsUQcMNaLgJN9yEG2lGw43+u3dMI8244Ub/vQmNNKHBeqyenQMunh1PDyourlaQ5NyVJBeeRHLRSTgzl1dFINWkiSg9PYk0a97ax5/fbOPxt9rojg8kfZwRDfLOZa2sWtpCNDS5zs3CGXUc0BKb8PXhgF32q4gr3gikXHfcdNFWsgc3MLgesVRj0RhVrL69BNrWZ5V9oO117J4dw5tKAKd+LpLqwUp0IYkuSHRhszX/x4mN6GB3WrrpAJILTyK16CSS844bbnyrgQodBagqibRLX9KhL5n23/3thLfdm0wjwPzmOhbOqGN+c13ZLITa3RXn0Tf28uc323ju7XbSOaP/JS1RTlk2i1OXt3L4/KZpDaQWQiRUHlNIx6LijUB/Poni1EVSvQPzv9004iSmV7DpRl2srm0E9r1GsO21rOK3+vcPb2pHSLcsJ916KOmWQz3f+YyDIOCn13AdJNmFFe9EEp1Y8Q4k0eW/d2IlOpF4h2csMu+JDqxUH26wntSCE7K9fbdhYsPmSqLUrqBk2qW9L8n+3uTAe2+K/b1JOvqT9CYGlHxvwnvvTzn0JRycgottQ0ssxALfICzIMQ4LmutoqQ9N21RJVeWN3T38+c29PPpGG6/vHhhlWgLHLGrmlGWtnLpsFotbyq+zYVtCOFAeBnQsKtoIOKok8kwXLclebwGZWJU9CnDT1L30C6Iv3oyV6Bp+OtQwWNm3HorTtGRsn79lo5EZOJEZhcniJL2KUTWUNsGbvjr1f2885bC3OzFIsWde7X0pX9En2d+XHOT6KJSQbREN2dSFbGKhANGwTTRkEw0F/Hcbx1V2dMTZ3tHPjo5+9vUm2deb5KVtncPuFw5YzGuKsGCGZxQWNNexYEYd0VCAtOuSdtR7uS5p19tOOZltl5SrOP75VKado/Qm0zy9aT+7uwY6a5GgxeqlLZy6fBYnHdTCjFhomDzlRF2ZjKDGo2hGQETOAb6LV57oJ6r6rSHnFwO3As1+my+r6j1j3bMvWciPQZFkDxqMVWyiOLvtNRoevYFg23rAX+jUcqin9H3F7zYsKJ7f3S7vH+F0UOgoIKPc23oStPUk/fcEbd052z1JehL5f5dtEZqjwWzN2hn++8xoiOZokPqwr9yDvmIPe0o+FrILnoniuEpbT4Lt7f1s6+hnR3s/2zv6swaivS/F5n19bN43PVOtW2IhTlnWyinLZ3H8khkV0bPOYIxADiJiAz8A3g1sA54RkbtVdV1Os68Cv1HVfxORw4B7gCWj3dNVJZEqbJGXpPq8TKOVliIinSD6/I+JvngLog5O/Ty6T/k7UotOLrVkNYYMmm7cHU+xszPOzs44uzrj7OmOT1i5B22htT6cVewzYyFmRHO3gxMuVD4ZbEuY0xhhTmOEYw8YPlLsSaTZ4RuE7R39bPeNRCLlErC96Y8Bf6Vr0La8Y5Y3U8b2p0cG/WPedEm/nSUcNr+RFfMai7oyd6oIB6xJreItJsUaCZwAbFDVjQAicjtwPpBrBBTIVGRuAoZHM3PoTzkTUuWVFgsI7Hqehke+TqBzM4rQd/hF9B1/DRqa+IwFw/ioKu39Dju7U+zqSrKjO8XOHpddvbvY2RFnZ1c/vXnEozLK3XuFvPeGge1Z/rnGukDZTR3Mh/pwgOVzGlg+p4CEjTVAuQTT86FYRmABDJp2sg1YNaTNDcD9InINEANGreSRSRRXzUiyh9jT36Nu3X8CkG5eSvepN5Cee0xpBasy4mmXF3f0sW53P7u6U+zoSrGrO8nO7hSJ9NjdjLqgzdymCHObIsxvijC7IUJrQ3Uod8PEsUSMEZggFwE/U9UbReRE4BcicoTq4MQ+e/ft4x2nnkNmdtjHL7mQT1w6eum/SiS05c/U//kfsXt3oRKgb+X/om/lp2rSBz/VqCob9iVYs6WHp97uYe2OPhLOyMq+IWwxtyHE/MYgcxtDzG2ZwbymOuY2RZjXFKGpLmgUvGEYdZNcm1BsimUEtgOLcvYX+sdy+SRwDoCqPikiEaAVGJRrYFZLC/fdczfuBKa6lTsSb6f+iX8issGLh6dmHU73qTfgtCwvsWRTj6vK/W908usX9hGwhGWtEQ5ujbCsNczBLRHqw1P3Q2rrTfH0ll7WbOnh6a297Osb7Kc/ZFaElQuiLGoKMbchxLzGIPMagoNk0GAUDTcOvbXBMIxKCQhnKJYReAZYJiJL8ZT/hcDQ7vsW4EzgZyKyAogAe4feSFWrzwCoEn7rj9Q/8W2seDtqR+g9/rP0H3EJWOU0WJsa1rzdw/cf380bbQOztF7eNTjN87yGoG8YwlkDsagplNcioHjK5YUdfTy1pYentvSwYd/gONCsWIBVi+tZvbie4xfFmBkd/zM2uYIM+RCa5oyf00FRNIyqpkXkauA+vOmfN6vqqyLy98Czqno38EXgP0Tkr/GCxJerDtf2o4zcKxarZxf1j/0j4S1/BiA5/3i6T/0abuOica6cOLu7Uzy/vZeOuMO7DmpgbkNx3Ezr9/Rz0+O7eXqrt05jdizAlatnM78xyJttCTbsi/Pm3jgb9yfY2Z1iZ3eKRzcNLBAK28KBLQNGYXlrhINawjRGbN5si/PUll6e2uK5eJI5X5RIQDh2QcxX/DGWzgwX5Mbx0kQYV5xhfCrNFQQgI+jZsuaYo4/SB+69u9RiTB51iaz/HbGn/hUr1YsbaqB39ReIH/KBKZ/nv6MryfPb+3h+ey/Pb+tle9dAziRL4KQD6rng8BmcvLSBwDT0YrZ1JPm3Nbu5/w1vcVtD2OLy42bx0aNnEhmhNF/aVbZ2JHmzLc6Gtrj3vi/Bru6Rcz1FAkI8J4grwKGzI5ywyOvtHzWvblIlADVUX0C1MUOtIgKz6gvrYBQLEXlOVY8b6Vz1+RoqALtjM/WPfp3QrucBSCx5Fz0nfyXvurZjoaps68xR+tv7hinPWMjimPlRIgGLRzd289jmHh7b3MOsWID3H9bM+YfPYH7j5Hu++/vS/PTpvdzxyn4cF0K28LGjZ3LZca00RUb/6gUsYenMMEtnhjl7eVP2eFfcYcO+jGFIsKEtzoZ9ceJpZXZ9gNWL61m1uJ7jF8aYkYeLJ1+MK8iQD5GgXZYGYDzMSKCISLyT6NqfUPfKbYibwq1rofvk60guPWvCvX9V5e32ZFbhP7+9l729gwOfjWGbY+ZHOXZBlGMXxljeGsn6Ldv70vzhtQ7ufKWdLR1ekRcBVvujg1OXNhCwC5OtN+nw6xf28cvn99GXchHgL1Y08+nVs6bc9eSq0tHvMKNuen6AagenthiNoWppiYVKXhtgNMYaCRgjUAzSCepevZ3oC/+RTbXcv/x8eld/EY00jXPxAMm0y66eFDs6U7zdkWDt9j6e39HH/iGzXZojNisXRDl2QYxjF8Q4uDU87qpLVeWFHX3c+Uo7D23oyvrUZ0YDnOePDhY2ja3A045y56vt/OSpPezv99ZxvHNJPX910hwObq3M3rQbboCgWZhnGJugbTGzjHMZGSNQKtQlvOFeYs/clE3nnJx/Ar2rv0C6dcWw5o6r7O1Nsb0zxY6uJDu6Br/v7UmPuEq6JRrwevkLYhy7IFpw4HMoHf1p7nmtk7teaWdT+8DMmlWLYnzgiBmcemADwZwej6vKg2928W9P7mFrpzeaOHJuHVefPIdjF1SyAhXc2CyvlKTBMAaNkWBZB4WNEZgiehIOt7+4jw1tCb8ItBCyvbwoIX8/Uz1oac8LnLL1R8zqexOAjtiBvLzss+yftYpAwKK9z2FHV5LtvpLf2ZViV3dqUI70oVgCc+qDzG8MsqApxBFz6zh2QYzFzaHpcYWo8tLOfu58ZT9/erMru6hqRp2djR3s7k7x/cd3s36PN91zcXOIvzppDu86qKEi/aO5qB1G6wrMrGqoOQSY1VCeAeEMxghMkmTa5Xcv7+fmZ9rojI+druIQ2cJ1gds43X4RgJ06kxvTH+G/nFNwGb9H2RINML8xyPzG0MB7k/c+tz5YsH9+quiKO9z7uhc7eGvf8PxLLdEAV66exXmHzZiWGUalwI00m2LyhnGJBG2a6sq7epiZHTRBHFf54+ud/GjNHnb6M2xWzo9yweFe7zDlKkk/P3q4fw8nbv8ZR7Xfj6DErSgPNn+UPzWcR5+GOd1Rkn4e9aSjNEXsrKJf0BRifmOIeQ1BIsHydD00Rmw+dnQLHz1qJq/s6ufOV9u5/41OApZw2TtaufCYFurKVPYJIRbY4VJLYagAKm2F8FCMERgBVeWJt3u46fHd2dWmB7WEufqkOZy8pH7QsE+S3UTX3kLd+l8iTsLL9XP4R+lb+SlOqJvJCaX6I6YJEeHIeVGOnBfl/5w+D0sYFB+oFtQOV0U9ZMP0ErBkUmtQygFjBIbw8s4+vv/4bl7Y4RXJmNsQ5KrVsznnkCF1S50UkfW/Jfb8j7Hi7QDEDzyb3uOvwW1aXArRi064wr/8Y6HByqwjbCgu5RwMzhdjBHw270/wgyd38/Bb3hTOpojNXx7XyoePmjlY2akS2vQA9U9/D7vLy46dmruSntVfID37qFKIbphqxDJpIgzjIkCkgiqdjUbNG4E9PSn+46m93L2uHVchHBAuPqaFT7yjdcRMlg0PfonIxvsBL8d/7wmfJ3nAacZ1UEVosPyKlhvKj3DArpjqYWNRs0agK+5w63Nt/OfafSQcxRb44BEzuOKEWcyqHznSb3dsIrLxfjRQR8/qLxI/9ANVmeWz1jFpIgz5EAlVhzu05jRYIu3ym5f287Nn2ujyywOeeXAjnzlxNgfMGHs2SPit+wDP9x8/7CPTLquh+KgVMIbdMC62JRVV9H4saurb/uLOPr5y71b29HhpFt6xIMo1J8/h8Ll5DP9Vs0YgcdB7plNMQwkxAWFDPlT6tNBcasoI3PjITvb0pFnWGuHqk2Zz4gH1ea/ys9s3EOjYiBtuJrWg2iZ+GrIEjBEwjE8l1RAej5oxAru7U6zfEyccEG7+yNKCF2VlRwFLzwSrvFcHGiaGtzagOvy8hukjHKi86mFjUTPf+EyFqhMX1xe+Kte4gmoCExA25EM1jQKghozAI295Va1OO6jwYuGBfa8R6NqCW9dCat6I6TcMFY+YPEGGcbFEjBGoRLoTDs9u78USL799oYTf+iMAiaVngVVdXwCDhwYiZq2HYVzKNbfXZKi+v2gEntjcg+PCMfOjNNcVGAZRJewvDkscdM40SGcoOWKZBWKGvKimWUEZaiIw/MhG3xV04ARcQXtfxu7egRObTWruMVMsmaHUaCCChhtNQNgwLiHbKtvykZOh6o1AMu3yxOYeAE47sKHg68MbMrOCzjaKopoQCzfcaOIAhryphmRxI1H1RuDZbb30plyWtYZZME6N3GGoS3hTxhVkZgVVCxqMoqEGEwMw5I1I9WbNrXojkJkaOhFXUHDXWuzePTj180nPPnKqRTMUGbVsNNxkMoQaCiYStMu6fORkqGoj4KryyMaMEZiAKygzK+igs02vsaIRNBRDgzHzfzRMiGoMCGeoaiOwbnc/bb1p5tQHOWRWgb5f1yG86U+AmRU0nWioHhBw4oiTmvr720Gv92+SwhkmSNC2qrJ6XoZRfxki8gtg3Cr0qvqJKZVoCskdBRQ6lAvufBarfx/pxsWkWw6dDvFqHMGNNOUEZmOoupBOIE4CSSfI4+s39v3D9RCMTYGshlqmmkcBMPY6gQ3AW/6rE7gAsIFt/nXnAx35PkhEzhGR10Vkg4h8eZQ2HxWRdSLyqoj8esQbuel8H8kjfpWw0w6aiCsoJ02EcSFMLWLh1s0cPjNHLAjWoZFm3Nhs3MgML4hb4AI9tcO40VZjAAyTRqjOBWK5jDoSUNWvZ7ZF5D7gL1T1zznH3gn8XT4PEREb+AHwbjwj8oyI3K2q63LaLAOuA05W1XYRmT3Svay+tnweydvtCTa1J2gIWxw7v0Bl4KYIb3oQMLOCphq1Amhkxvgrr0UgEEYDXo0HddPe6GAst5FYuKEGMOmgDVNEuIoDwhnydZSuBtYMOfYUcGKe158AbFDVjQAicjveSGJdTptPAT9Q1XYAVd0z0o2s+H6s7u24DQvGfOCjvivo5CUNBOwCXUHbn8ZKdJBuPhBnxsEFXWsYHW9hVtPERlZWAA0FGOY2cpKgLhqoQ8MNZi2HYUIIICKIDGxbAtEqXRuQS75G4AXgmyJyvar2i0gd8HVgbZ7XLwC25uxvA1YNabMcQEQex3M73aCqfxx2J1We+PZH+LvnWgH4+CUX8olLLx7W7GF/lfDpE5oVZFxBU42G6v0g8BSQcRsF67yogeuYnE6GLIIfzA1YWAKCr9xzti0RX9lT9T398cjXCFwO/BroFJF2YAbwLDBc+05OlmXA6cBC4FEROVJVOwa1EuF9i/s4+Qs34sxcNuKN9vWleXlnPyFbWH1AgYrHSRLe/BBgXEFTg3grc6fTRWMMQM0TsIRQwPJetlXzir0Q8jICqroZOElEFgPzgJ2quqWA52wHFuXsL/SP5bINeEpVU8AmEXkDzyg8k9vIjcxASBJ75ia63vPdER/2543dKHD8ohixAodzoW1PYCW7Sc9cjtO8tKBrKwqxUCvguVOm8RlupNkszjJMOZYI4aCn8EO2hVVFRV6KzVhTREdyrm7zX9nzqurm8ZxngGUishRP+V/I8FHEXcBFwC0i0ornHto49EZudBYa2E/47YcJ7FpLeoSkbgMJ4ybpCqpC1Ap4GTMDdSCCug6S7kdSfZDXvzLf59hoZKbppRumBBEI23a2t19Nlb1KzVgjgTRjT9QW//y4v3JVTYvI1cB9fvubVfVVEfl74FlVvds/d7aIrAMc4G9Udd+wm1kB+o68lNgL/0Hs6e/S+f6bB/nt+5IOT2/tRYBTlhZoBNJxQm8/DEC8qoyAeEHZYBTsIaUxLXvAX5+OI6m+SY8O1A6hkWYTpC1TcgOflojnH7cy257f3FXFUUVdstuuKjqZpRsFyhi0razSr+bFWqVmLCMwpb4QVb0HuGfIsetzthX4gv8ak/6jL6Nu3W8I7Xqe0NbHSS5+Z/bcmi29JB3lyLl1tMYKqwUc2voYVqqP1KzDcRsXjX9BuSMWGoyhwbr8FHIg4hkLN42k+pF0f8GjAw1GvdTMhqIiArav0C1riIKXAQWfOT9RVBVXPcPgquLmGIlcgwHDg69DA7KW33mzRjhnfPrFY6x1Am8PPea7gOao6s5plWocNNRA38pPUr/mX4g98z2Si07KKrmH/TKSp0+gjGTWFXRgZY8C1A75Lp8Jpkm2Ami4YWB0kO7Pa3TghhvMAq1pwBLBzih2S7Cz+94x25KiKU0RwRawMUq6WsgrMCwizcAPgQ8DKSAmIucBJ6jqV6dPvNHpP+xj1L38KwL7Xif81n0kDj6XtKM87tcOOLXQeECqj/CWRwE/YVzFId6UyWB06vLkiAxMxRxzdCBeANhf2GXIH8FT4rmvTA8+s28wTCf5Otr+HS91xAFApkv4JPCx6RAqLwIR+t5xFQCxZ24CJ8ULO3rpSjgsmRFiyYzCFFJ4y6NIOk5qztG49fOmQ+JpQS0bN9yAG5vtuWGmK1GaPzpwo7Nww01oJrYgFm60xRiAMbBECNkWkaBNLBygqS7IjGiIWfVhZjdGaKkP0xwN0RAJEg0FiARtE/w0FI18NcaZwHxVTYmIAqjq3tFSOxSL+PLzqHvxVgKdm4m8fieP7D0FmFjtgEpzBakdRIP1xVe+Q0YHiFXzAWDBc9MEhvToM24b4982lDP5GoFOoBXIxgL8NQMljQ1gBeg9/hqa/vRFos/9iKdShwJ2wVNDJdlDaOtjKELiwHdPj6xTSHb6ZamVS42lZ84o+6BlYdue0s8ofqPoDZVKvl24nwB3iMi7AEtETgRuxXMTlZTk0jNJzTocu7+N9/b/npZogMPnFrY6NfT2w4iTJDXvWNxYSQc3eSBeAjajdKYNwVuBGgkMuG9aYiFmN0ZorQ/TFA1SH/bcNgGzOtVQ4eTblfs20I+XCTQI3Az8CBh5yW4xEaH3hM/R/IcruSrwP3Qd8KHs1LN8qSRXkDudfv8axbbEU+h+zz5g5qQbaoh800YonsIvvdIfgdSCVTxnH807nBf5hN4F/J+8r5VEF6FtT6BikVh61rTJOBVoMGrSJE8hIduiLmQTqfKiIQbDWIyVNuJUVX3U3z5jtHaq+tB0CFYI2zuT3ND3Ef4n/CLLtt7B/t7LcWNz8ro2vOlBxE2TXLAKjbZMs6QTR60AGio8DYZhMAKEAzbRsG1WoRoMjD0S+KGInOHn9f/pKG0UOHDqxSqMRzd187IeyDN17+T4/seIPvcjek69fvwLgfDGCnAFiWXiAJNExCsTGA0FzNRLgyGHsVYMHyEibSLy16pa1uk0H/FXCe844tPos08Sef0u+o/6BE7zkjGvk/79BLc/jUqAxNIziyDpxPDiANXnssj0ygGSjos7DYlpbEuIhmzqaqBClMEwEcYbD38I+KqI/F5E5hdDoELp6E/zwo4+bAuOPOxw4odcgKhD9NkfjHtteNODiDokF672Ep6VIRqqn3j6hzJF/IpNLf5Mm6ZokFkNYWbVh2mOBomFA4QD1qQGPkHboqkuSGt9mGgoYAyAwTAKYwaGVfURETkKuAF4UUS+zuCSkCWPCTy+uQdX4YSFMRrCNn3HfprIm78nsvF++vdeTnrW4aNem3UFlWnGULVDU1eNqwywxOuVR0Mj98otSwhbNuGcb6XjKinH9V9K2nHHTG0bCdjUhbwVtwaDYXzGnR2kqgkR+QfgMOD/ArmV3kseE3h4SO0At34O/YdfRPSlnxF7+nt0/sWPRrxO+toI7nwOtYIkl7yraPLmjVhlOzoplIAlOb37wnrk3urbwTN40r5BSLkuqbSLo2r8/QbDBBnXCIjImcCPgeeBg0YrAF8K4mmXNW9nEsYNpIroO+Z/EXntDkLb1xDc/hSpBUPLGUN44wOIuiQWn1qGs278hGzTkI4hk7AsYFmIBek8etcTJWRbRMN21u8/VQRsi4ANdeOXsjAYDOMwphEQkZuBc4BrVfV3xREpf57e0ks8rayYHWFuw0DtAI000X/05cSe+T6xp79LxwW/GjazJlLGriA3XD/pkoy5yj5ge6kNgvbISclU1XO1uC6ptE46SBsxUzANhophvJFAEDhCVfcXQ5hCGSgjOTxhXN8RF1P3yq8J7n2V0OYHSeYsBLN6dhPc9QJqh0kuPq1o8uaDBiIF5eTPKnvbyuaxGU3Zj3oPEUIBIYQFvu1xXc8YpByXtOP55ccrMxcJ2cSMS8ZgqCjGCwx/vFiCFIrjKn/e1A3AaQeN4M4JRuk99tM0PP5NYs/cRPKA07PpFsIb7wcgufgUNFQ+RVDUstFw05htApZky+0VquwLwbKEyBBffG6ANuW4OK76M30CRIO2KfZtMFQgFZuE5uVdfbT3OyxoDHLQzJHTKccP/SDRl35OoGMTkTf+h/ihHwAg/NYfvfNl5QoaOTFcrtKfSGB1KskYngyubwTM9EuDoXKpWKftw29lRgGNoyshO0jv8X8FQPS5f4N0AqtrG8G9r6CBOpKLTymWuOOSSQwXtC2iIZumuiCzG8K01IdpiASJlOFiJ8ukUDYYKp6KHAmoKo9s9I3AOLUDEgedQ3rtLQT2v0Hduv8EN+0dP+A0CBSejE0EgpaF68vhyQOKMpFYasC2CIRjhOobCZm0xAaDochUpBHYuD/Bts4kzRGbo+ZFx24sFr0nXEvTH68m+sJPvFKIFD4rSASiQW8hkoxRZDtjDBTPSLhDDIT3rliWV3JQ7BBEy6BAjMFgqEkq0ghkRgGnHNhAII9gZHLRO0nOPZbQruexEp24wXqSC0/O61n5Kv9se2RAn4+n2MWCOpMYzmAwlI6KjAlkXUFL81zk5ReeyZBccvq4tXlFIBayaYmFvNwzeRiAgok0VWViOIPBUDlUnBFIOcq63f2EA8Kqxfnn1UnPPYbEUq9+cPyQ80dtVxTlDxCuh2B1JYYzGAyVR8W5g3qSDgKcuLieSLAwG9Z1xjexu/8Kp3l4ZuyM8o8E83P7TAgRsIIQCEG43FJVGAyGWqRoIwEROUdEXheRDSLy5THafUhEVESOG+l8d8IB4NRxZgWNiB0aZgAsEerDXs+/LjgNPX87BKGYF/ytnwOxFmMADAZD2VCUkYCI2HhF6t8NbAOeEZG7VXXdkHYNwOeAp0a7V1/SpVnglHzjAaPgpTW2pr7nbwc9xR8Ie+8m6GswGMqYYrmDTgA2qOpGABG5HTifIbUJgH8Avg38zWg3UuDoeVGa6yYm+pQrfzvov3ylb1VcmMVgMNQwxdJYC4CtOfvb/GNZRORYYJGq/mG8m50+Uq6gPGmsC0ze7ROKelM76+dArNWb5ROMGANgMBgqjrIIDIuIBfwLcHk+7X/yD1/klv52AD5+yYV84tKL83sO3mrfSWEFPKVvMBgMVUCxjMB2YFHO/kL/WIYG4AjgYT9twlzgbhE5T1Wfzb1R2BYe+q9bJyREYCry2wcml+ffYDAYyoli+S+eAZaJyFIRCQEXAndnTqpqp6q2quoSVV0CrAGGGQCAhsjEF1cF7amIAYy9yMxgMBgqiaIYAVVNA1cD9wHrgd+o6qsi8vcicl4h92qOTHzwEpisERAZd6WxwWAwVBJFiwmo6j3APUOOXT9K29NHu89kevOhybqDrKCZ8mkwGKqKmpnOYlsy+SmhJh5gMBiqjJoxAiYeYDAYDMOpISMwyT9VLDMSMBgMVUfNGIFJxwPs4NQIYjAYDGVETRgB2xKsyQZ0zawgg8FQhdSEEcin+ti4mHiAwWCoQmrCCEw6HmDZYJdFhg2DwWCYUmrECBhXkMFgMIxE1RsBEQhMNmmccQUZDIYqpeqNwKSzhoJXJ8BgMBiqkOo3ApN1BZlCMQaDoYqpeu026fTRZoGYwWCoYqraCAhTMRIw8QCDwVC9VLURCNjW5JLGiZiVwgaDoaqpaiMwJfEAkzraYDBUMVVtBCZdRMasDzAYDFVOVRuBySeNM0bAYDBUN1VrBCZdRMakijAYDDVA1RqBKYkHGAwGQ5VTxUZgsusDjCvIYDBUP8YIjIaJBxgMhhqgKo2AJYI9mamddtCkijAYDDVBVWq64GSLyJh4gMFgqBGq0wgEzPoAg8FgyIfqNAKTiQeImJGAwWCoGSrQCIzdy590ERmTKsJgMNQQFWcEdBwFP+kiMmYUYDAYaoiiGQEROUdEXheRDSLy5RHOf0FE1onISyLyoIgcMPKdLHSM6ZumnrDBYDDkT1HyIoiIDfwAeDewDXhGRO5W1XU5zV4AjlPVPhH5DPBPwMdGup+G6pH+xIjPmlQRGbFM6mhDTZBKpdi2bRvxeLzUohimiEgkwsKFCwkGC9NhxUqOcwKwQVU3AojI7cD5QNYIqOr/y2m/Brh01LvZQdQOI85gQzDpIjKmipihRti2bRsNDQ0sWbIEMTGwikdV2bdvH9u2bWPp0qUFXVssd9ACYGvO/jb/2Gh8Erh3rBtquGHYMXuyRWTMKmFDjRCPx2lpaTEGoEoQEVpaWiY0siu7NJkicilwHHDaSOf379vL2aed7LXVNB+/+GN84tKLAQhO1qSZeIChhjAGoLqY6P+zWEZgO7AoZ3+hf2wQInIW8LfAaao6otN/Zsss7n/kcW/HTWP1tWXPTSoeYAW89NEGg8FQQxTLHfQMsExElopICLgQuDu3gYisBH4EnKeqe/K6qxVAA3XZ3UkVkTHxAIPBUIMUxQioahq4GrgPWA/8RlVfFZG/F5Hz/GbfAeqB34rIWhG5e5TbDb53qB4QbEuwJpU0zriCDIZy4bHHHuOkk06iqamJmTNncvLJJ/P1r3+d+vp66uvriUQi2Lad3T/88MMBzyUSi8Wor6+ntbWViy66iI6Ojux9VZXvfOc7LFu2jLq6OhYvXsx1111HIjHybMNaoGjrBFT1HlVdrqoHqeo3/GPXq+rd/vZZqjpHVY/xX+eNfUcfy0aDdWZ9gMFQJXR1dfG+972Pa665hv3797N9+3a+9rWv8YEPfICenh56enr493//d0488cTs/quvvpq9/sUXX6Snp4eNGzfS3t7ODTfckD137bXX8uMf/5if//zndHd3c++99/Lggw/y0Y9+tAR/aXlQdoHhiaDBGEE3NfEbmFQRBkPZ8MYbbwBw0UUXAVBXV8fZZ59d8H0aGxs577zzuOuuuwB48803+eEPf8iTTz7JCSecAMDhhx/OHXfcwcEHH8xDDz3EGWecMTV/RAVRFUYAyyYYikG6f2LXm3iAocZZ8uU/FOU5m7/1F+O2Wb58ObZtc9lll3HhhReyevVqZsyYUfCz2tvbueuuu1i9ejUADz74IAsXLswagAyLFi1i9erVPPDAAzVpBCoud9BIWCLYkcaJ9+ZNPMBgKBsaGxt57LHHEBE+9alPMWvWLM477zx2796d1/XHHnsszc3NtLa2smXLFj796U8D0NbWxrx580a8Zt68ebS1tY14rtqpipFAyLa8SmDBKCR7C7tYxIwEDDVPPj30YrJixQp+9rOfAfDaa69x6aWX8vnPf57bbrtt3Guff/55Dj74YFKpFD/84Q855ZRTWLduHa2trezcuXPEa3bu3FnwSttqoSpGAtkiMqH6wkcDJmuowVDWHHrooVx++eW88sorBV0XDAa54oor2LRpE6+88gpnnHEGW7du5emnnx7UbuvWraxZs4YzzzxzKsWuGKrDCGTWB1gWhGKFXWxmBRkMZcVrr73GjTfeyLZt2wBPSd92221Z336+OI7DLbfcQl1dHQceeCDLly/nqquu4pJLLmHNmjU4jsOrr77Khz70Ic466yzOOuus6fhzyp6KNwIiQyqJBWNeNtB8MfEAg6GsaGho4KmnnmLVqlXEYjFWr17NEUccwY033pjX9UcffTT19fXMmDGDW2+9lTvvvJOZM2cCcNNNN3HFFVdw6aWXUl9fzznnnMPpp5/OHXfcMZ1/UlkjqlpqGQri6JXv0GzaCLx4wIzYEJdOohsSPePfzLKhfvYUS2gwlD/r169nxYoVpRbDMMWM9n8VkedU9biRrqn4kUAoMMKfEKrPbzRg4gEGg6HGqXgjMGJReZH8YgMmHmAwGGqcijYCYxaRCcXGzwpq4gEGg6HGqWgjELCt0XNojzcasIPebCKDwWCoYSpaC46bNC4YHX00YOIBBoPBUOlGYBzxRbwg8UiYeIDBYDBUthHIq4hMKOpVDctFxIwEDAaDgQo2ArYlWFaeKSKGxgZM6miDwWAAKtgIjOsKymXoaMCMAgwGgwGoYCNQcD3hcE5swMQDDIayZcmSJYRCoWGpnVeuXImIsHnzZs4999xsaclgMEgoFMruX3XVVTz88MNYlpU9tmDBAr72ta8Nul9HRwef+cxnmDt3LtFolCOPPJJbbrmlmH/qIJLJJCtWrGDhwoXZY21tbZx88sm0tLTQ3NzMiSeeyOOPPz7GXQqnYlNJj7hSeCyCdV6aadfxpocaDIayZenSpdx2221cc801ALz88sv09fVlz997773Z7csvv5yFCxfyj//4j9ljDz/8MPPnz88modu0aROnnHIKK1eu5IILLiCZTHLWWWcxe/ZsnnzySRYuXMiDDz7IZZddRnt7O1/4wheK9JcO8J3vfIdZs2bR3d2dPVZfX8/NN9/MsmXLEBH++7//m/e///3s2bOHQGBq1HdFjgQs8QrLF0yo3tQOMBgqgI9//OP8/Oc/z+7feuutfOITn5jw/ZYuXcpJJ53EunXrAPjFL37Bli1b+O1vf8vSpUsJBoOcc845fO973+P666+nq6tr3Hs+/PDDLFy4kBtvvJHZs2czb968CY8kNm3axC9/+Uuuu+66QccjkQiHHHIIlmWhqti2TXt7O/v375/Qc0aiIkcCBbuCMgQj468iNhhqkRuaivSczryarV69ml/84hesX7+e5cuXc/vtt/P444/z1a9+dUKPffPNN3n88ce56qqrAHjggQc499xzicUGTxr50Ic+xCWXXMKTTz7Je97znnHvu2vXLjo7O9m+fTsPPPAAH/7wh7nggguYMWMG3/rWt/jWt7416rUdHR3Z7WuuuYZvfvOb1NXVjdj2qKOO4rXXXiOVSnHFFVcwe/bUJb6syJFAtojMRDCuIIOhIsiMBh544AFWrFjBggULCrp+x44dNDc309jYyPLly1m1ahXvfOc7gdFLTQYCAVpbW/MuNRkMBrn++usJBoO8973vpb6+ntdffx2AL3/5y3R0dIz6ynDnnXfiOA4f+MAHRn3OSy+9RFdXF7/+9a+zf8NUUZEjgYJmBhkMhvHJs4deTD7+8Y9z6qmnsmnTpgm5gnJjAp2dnXz2s5/lsssu47bbbhu11GQ6naatrY3W1ta8ntHS0jLINx+NRunpySONvU9vby9f+tKXuOeee8ZtG4lEuOiii1ixYgXHHHMMRx99dN7PGYuK06Ze0riKE9tgMBTIAQccwNKlS7nnnnv44Ac/OKl7NTU1cfHFF/M///M/AJx11lnce++99PYOrkl+xx13EA6HC65iNhLf/OY3s7OTRnqB56bavHkzp5xyCnPnzuWDH/wgO3fuZO7cuWzevHnE+6ZSKTZu3Dhp+TJUnDY1a7wMhtrhpz/9KQ899NAw332h9PT0cPvtt3P44YcD3ihj4cKFfOQjH2Hz5s2kUinuu+8+rr32Wm644QaamrwYyeWXX87ll18+oWd+5StfoaenZ9QXwBFHHMHWrVtZu3Yta9eu5Sc/+Qlz5sxh7dq1LFq0iDVr1vDYY4+RTCbp7+/n29/+Nrt372bVqlWT+jxyqTh3kDECBkPtcNBBB0342h07dmR73Jne/a9+9avs/p/+9Ceuu+46Vq1aRVdXFwceeCDf+MY3uOKKK7L32Lp1KxdeeOHk/ogxCAQCzJ07N7s/c+ZMLMvKHkskElx77bVs3LiRYDDIkUceyR/+8Afmz58/ZTIUrbykiJwDfBewgZ+o6reGnA8DPwfeAewDPqaqm4fe5x3vOE6fe+7Z6RfYYKhiTHnJ8Ukmkxx99NG89NJLBIOVMaGkbMtLiogN/AA4FzgMuEhEDhvS7JNAu6oeDPx/wLdHvtd0SmowGAweoVCI9evXV4wBmCjFigmcAGxQ1Y2qmgRuB84f0uZ84FZ/+3fAmTJqxRiDwWAwTAXFMgILgK05+9v8YyO2UdU00Am0FEU6g8FgqFEqLjC8d+9ejjtuwLV15ZVXcuWVV5ZQIoPBYKhcimUEtgOLcvYX+sdGarNNRAJAE16AeBCzZs3i2WdNYNhgmCyqOnqNbkPFMdFJPsVyBz0DLBORpSISAi4E7h7S5m7gMn/7w8BDWqypSwZDjRGJRNi3b9+EFYehvFBV9u3bRyQSKfjaoowEVDUtIlcD9+FNEb1ZVV8Vkb8HnlXVu4GfAr8QkQ3AfjxDYTAYpoGFCxeybds29u7dW2pRDFNEJBIZVIsgX4q2TmCqOO6449S4gwwGgyF/Sr5OwGAwGAzlScUZgXIYvv74xz8utQhAechhZBigHOQoBxmgPOQoBxmgfOQYjYozAvnm+Z5OyuWfWg5yGBkGKAc5ykEGKA85ykEGKB85RqPijIDBYDAYpo6KCwyLSDfweonFaAVKPyQpDzmMDAOUgxzlIAOUhxzlIAOUhxwHqOqskU5UnBEwGAwGw9Rh3EEGg8FQwxgjYDAYDDVMxRgBETlHRF4XkQ0i8uUSybBIRP6fiKwTkVdF5HOlkMOXxRaRF0Tk9yWUoVlEficir4nIehE5sQQy/LX/v3hFRG4TkcLXzU/suTeLyB4ReSXn2EwReUBE3vTfZ5RAhu/4/4+XROROEWmeThlGkyPn3BdFREUkv8rtUyyDiFzjfx6visg/TacMo8khIseIyBoRWSsiz4rICdMtRyFUhBHIsyhNMUgDX1TVw4DVwF+VSA6AzwHrS/TsDN8F/qiqhwJHF1seEVkAXAscp6pH4KUkKVa6kZ8B5ww59mXgQVVdBjzo7xdbhgeAI1T1KOAN4LpplmE0ORCRRcDZwJZSyCAi78KrU3K0qh4O/HMp5AD+Cfi6qh4DXO/vlw0VYQTIryjNtKOqO1X1eX+7G0/pDa2LMO2IyELgL4CfFPvZOTI0Aafi5XxCVZOq2lECUQJAnZ95NgrsKMZDVfVRvBxXueQWRroVuKDYMqjq/X49DoA1eBl7p5VRPgvwKgR+CZj22SejyPAZ4FuqmvDb7CmRHAo0+ttNFOk7mi+VYgTyKUpTVERkCbASeKoEj/9XvB+XW4JnZ1gK7AVu8d1SPxGRWDEFUNXteL27LcBOoFNV7y+mDEOYo6o7/e1dwJwSygLwv4B7S/FgETkf2K6qL5bi+T7LgVNE5CkReUREji+RHJ8HviMiW/G+r8UYneVNpRiBskJE6oE7gM+raleRn/0+YI+qPlfM545AADgW+DdVXQn0Mv3uj0H4Pvfz8QzSfCAmIpcWU4bR8NOgl2z+tYj8LZ778lcleHYU+Aqe66OUBICZeK7bvwF+U6KStZ8B/lpVFwF/jT96LhcqxQjkU5SmKIhIEM8A/EpV/6sEIpwMnCcim/HcYmeIyC9LIMc2YJuqZkZCv8MzCsXkLGCTqu5V1RTwX8BJRZYhl90iMg/Af59298NIiMjlwPuAS0pUk+MgPMP8ov89XQg8LyJziyzHNuC/1ONpvJHztAaoR+EyvO8mwG/x3NtlQ6UYgXyK0kw7fi/ip8B6Vf2XYj8fQFWvU9WFqroE73N4SFWL3vtV1V3AVhE5xD90JrCuyGJsAVaLSNT/35xJaYPluYWRLgP+u9gCiMg5eK7C81S1r9jPB1DVl1V1tqou8b+n24Bj/e9MMbkLeBeAiCwHQpRm5e4O4DR/+wzgzRLIMDqqWhEv4L14sx3eAv62RDK8E2+I/xKw1n+9t4SfyenA70v4/GOAZ/3P4y5gRglk+DrwGvAK8AsgXKTn3oYXh0jhKblPAi14s4LeBP4EzCyBDBvw4meZ7+e/l+KzGHJ+M9Bags8iBPzS/248D5xRou/FO4HngBfxYojvKMZ3NN+XSRthMBgMNUyluIMMBoPBMA0YI2AwGAw1jDECBoPBUMMYI2AwGAw1jDECBoPBUMMYI2AwTCMi0iMiB5ZaDoNhNIwRMFQtIrJZRPp9RbxLRH7mp/yYruc9LCJX5B5T1XpV3ThdzzQYJosxAoZq5/2qWo+3sG0lZZa8y2AoNcYIGGoC9VIW3IdnDBCR1SLyhIh0iMiLInJ6pq2I/KVfJKdbRDaKyKdz7yUi5/sFQrpE5C3xCh59AzgFuMkfedzkt1UROdjfbhKRn4vIXhF5W0S+KiKWf+5yEXlMRP5ZRNpFZJOInJvzzMt9Wbr9c5dM6wdmqBkCpRbAYCgGfg2Gc4GH/GI0fwA+DvwRL+fQHSJyqKruxUv89j5gI17NhHtF5BlVfd6vCvVz4MN4KSLmAQ2q+kcRORn4paqOVufh+3j55A/ESzFxP16KgUxWyVV4dQhagSuBn/qyRoHvAcer6ut+crqZU/XZGGobMxIwVDt3iUg3Xj6dPcDXgEuBe1T1HlV1VfUBvBxI7wVQ1T+o6lvq8Qiesj7Fv98ngZtV9QH/2u2q+tp4QvjV8S4ErlPVblXdDNyIZ4gyvK2q/6GqDp4xmMdATQIXOEJE6tQrbvTqZD4UgyGDMQKGaucCVW3AS7Z3KF4v+wDgI74rqENEOvCSfGXSQJ/r14Td7597LwMpiBfhJTEslFYgCLydc+xtBhdHymbZ1IEMoPWq2gt8DLgK2CkifxCRQycgg8EwDGMEDDWB36P/GV5lp63AL1S1OecVU9VviUgYr17EP+NVCmsG7gEyxUi24uXLH/ExY4jQhpdZ8oCcY4vJsy6Gqt6nqu/GM1SvAf+Rz3UGw3gYI2CoJf4VeDfwBPB+EXmPiNgiEhGR0/24QQgI45XOTPvB2bNz7vFT4C9F5EwRsURkQU6vfDeev38YvovnN8A3RKRBRA4AvoCX6nhMRGSOH4yOAQmgh9KWFjVUEcYIGGoGP+j7c+BavLKUX8FT9lvxyg9aqtrtn/8N0A5cTE4BI/UqVP0lXhH1TuARBnr33wU+7M/u+d4IIlyDV4ZzI/AY8Gvg5jxEt/AMxg68Iuan4ZUsNBgmjaknYDAYDDWMGQkYDAZDDWOMgMFgMNQwxggYDAZDDWOMgMFgMNQwxggYDAZDDWOMgMFgMNQwxggYDAZDDWOMgMFgMNQwxggYDAZDDfP/AzR2e1d0U4zKAAAAAElFTkSuQmCC\n" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "execution_count": 15, + "metadata": { + "scrolled": true + } + }, + { + "cell_type": "code", + "source": [], + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 18, + "data": { + "text/plain": [ + "NAME catalyst base base_equivalents temperature t_res yield \\\n", + "TYPE DATA DATA DATA DATA DATA DATA \n", + "0 tBuXPhos DBU 1.375000 82.500000 1365.000000 0.888505 \n", + "1 tBuBrettPhos TMG 2.125000 47.500000 495.000000 0.086979 \n", + "2 tBuXPhos DBU 1.380267 82.829384 1395.393066 0.895618 \n", + "3 tBuXPhos DBU 1.541958 83.641937 1363.182617 0.906691 \n", + "4 tBuXPhos DBU 1.549197 71.723419 1789.764160 0.865854 \n", + ".. ... ... ... ... ... ... \n", + "16 tBuXPhos TMG 2.024388 100.000000 1159.117065 0.883003 \n", + "17 tBuXPhos TMG 1.948155 100.000000 1188.951904 0.882904 \n", + "18 tBuXPhos TMG 1.870981 100.000000 1158.173096 0.883244 \n", + "19 tBuXPhos TMG 1.913444 100.000000 1100.192871 0.883185 \n", + "20 tBuXPhos TMG 1.945152 100.000000 1147.914551 0.883768 \n", + "\n", + "NAME computation_t experiment_t strategy task \n", + "TYPE METADATA METADATA METADATA METADATA \n", + "0 0.000000 0.048193 LHS 1.0 \n", + "1 0.000000 0.052553 LHS 1.0 \n", + "2 2.136502 0.035443 MTBO 1.0 \n", + "3 2.521018 0.034423 MTBO 1.0 \n", + "4 2.032697 0.033817 MTBO 1.0 \n", + ".. ... ... ... ... \n", + "16 1.829988 0.030292 MTBO 1.0 \n", + "17 1.378010 0.027179 MTBO 1.0 \n", + "18 1.666886 0.028165 MTBO 1.0 \n", + "19 2.182215 0.032504 MTBO 1.0 \n", + "20 1.214195 0.030377 MTBO 1.0 \n", + "\n[210 rows x 10 columns]" + ], + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
catalystbasebase_equivalentstemperaturet_resyieldcomputation_texperiment_tstrategytask
0tBuXPhosDBU1.37500082.5000001365.0000000.8885050.0000000.048193LHS1.0
1tBuBrettPhosTMG2.12500047.500000495.0000000.0869790.0000000.052553LHS1.0
2tBuXPhosDBU1.38026782.8293841395.3930660.8956182.1365020.035443MTBO1.0
3tBuXPhosDBU1.54195883.6419371363.1826170.9066912.5210180.034423MTBO1.0
4tBuXPhosDBU1.54919771.7234191789.7641600.8658542.0326970.033817MTBO1.0
.................................
16tBuXPhosTMG2.024388100.0000001159.1170650.8830031.8299880.030292MTBO1.0
17tBuXPhosTMG1.948155100.0000001188.9519040.8829041.3780100.027179MTBO1.0
18tBuXPhosTMG1.870981100.0000001158.1730960.8832441.6668860.028165MTBO1.0
19tBuXPhosTMG1.913444100.0000001100.1928710.8831852.1822150.032504MTBO1.0
20tBuXPhosTMG1.945152100.0000001147.9145510.8837681.2141950.030377MTBO1.0
\n", + "

210 rows × 10 columns

\n", + "
" + ] + }, + "metadata": {} + } + ], + "execution_count": 18, + "metadata": { + "collapsed": false, + "outputHidden": false, + "inputHidden": false + } + }, + { + "cell_type": "code", + "source": [ + "fig, axes = plt.subplots(1,2, figsize=(10,5))\n", + "fig.subplots_adjust(wspace=0.2)\n", + "data = [r.experiment.data for r in mtbo_results]\n", + "big_data= pd.concat(data)\n", + "big_data[\"nucleophile\", \"METADATA\"] = \"Aniline (optimization)\"\n", + "pt_data = datasets[\"Benzamide\"]\n", + "pt_data[\"task\", \"METADATA\"] = 0\n", + "# Drop base=MTBD because not in other dataset\n", + "pt_data = pt_data[pt_data[\"base\"] != \"MTBD\"]\n", + "# Clean data\n", + "pt_data = pt_data.replace(\"≥90%\", 0.9)\n", + "pt_data[\"nucleophile\", \"METADATA\"] = \"Benzamide (pretraining)\"\n", + "big_data = big_data.append(pt_data)\n", + "# Counts of different catalysts grouped by nucleophile\n", + "(big_data.\n", + " groupby([\"nucleophile\", \"catalyst\"])\n", + " [\"yield\"].\n", + " mean().\n", + " unstack(0).\n", + " plot.bar(ax=axes[0])\n", + ")\n", + "# Counts of different bases grouped by nucleophile\n", + "(big_data.\n", + " groupby([\"nucleophile\", \"base\"])\n", + " [\"yield\"].\n", + " mean().\n", + " unstack(0).\n", + " plot.bar(ax=axes[1])\n", + ")\n", + "for ax in axes:\n", + " ax.set_ylabel(\"average yield\")\n", + "fig.tight_layout()\n", + "fig.savefig(\"figures/yield_distribution_different_catalyst_base.png\", dpi=300)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFhCAYAAABtUFzNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA8wElEQVR4nO3de5xVddX48c/ioqAQmGKZqOAjKCo4IpKXVNK8ZaJmlpe8ZGr2yx7T1IfKlKxMrUdNs4v3S4qVlpeyNFMkTRMQRAUvpJiojyEKgoqCrt8f5zBuhgFmYM45c/m8X695cfbe37PPmrOHNWv2+V4iM5EkSZJU0qnWAUiSJEmtiQWyJEmSVGCBLEmSJBVYIEuSJEkFFsiSJElSgQWyJEmSVGCBLEntWERcGRH/iYjHl3E8IuKiiJgeEVMiYmi1Y5Sk1qZLrQNornXWWSf79etX6zAkaZVMnDjx1czsU4WXuhr4GXDtMo7vDQwof30c+EX53+UyF0tqD5aVi9tcgdyvXz8mTJhQ6zAkaZVExPPVeJ3MHBcR/ZbTZD/g2iytGvVQRPSOiPUy8+XlnddcLKk9WFYutouFJHVs6wMvFLZnlvdJUodlgSxJapKIOC4iJkTEhFmzZtU6HEmqGAtkSerYXgQ2KGz3Le9bSmZempnDMnNYnz7V6D4tSbXR5vogS6ti4cKFzJw5kwULFtQ6FHUQ3bp1o2/fvnTt2rXWoSzLbcAJEXEjpcF5c1fU/1haVeZiVVtzc7EFsjqUmTNn0rNnT/r160dE1DoctXOZyezZs5k5cyb9+/evSQwRMQYYAawTETOBM4Gu5fh+CdwBfBqYDrwFfKkmgapDMRermlYmF1sgq0NZsGCBCVlVExGsvfba1LK/bmYesoLjCXytSuFIgLlY1bUyudg+yOpwTMiqJn/epMb5f0PV1NyfNwtkqYMbMWJEi89ne9RRR3HTTTcttf+ll17ic5/7HABjx47lM5/5TIu+riS1Vebi1sUCWVLVfOxjH2s0WUuSqsdcvGIWyFIbNWPGDAYNGsSxxx7LFltswR577MHbb7+9xF2IV199lcXLAb/33nuccsopbLnllgwZMoSLL754qXPeddddbL/99gwdOpSDDjqI+fPnA/C3v/2NrbfemsGDB3P00UfzzjvvAKXV1E477TQGDx7M8OHDmT59ev25xo0bxw477MDGG29cn4hnzJjBlltuudTrvvnmmxx99NEMHz6crbfemltvvbVF3ytJqhRzcfvkID21Kf1G/WmVnn/ZyPVYOHPOCtsN6dt7lV6nWp555hnGjBnDZZddxuc//3luvvnmZba99NJLmTFjBpMnT6ZLly689tprSxx/9dVX+cEPfsDdd9/Nmmuuybnnnsv555/PaaedxlFHHcXf/vY3Bg4cyBFHHMEvfvELvvGNbwDQq1cvHnvsMa699lq+8Y1v8Mc//hGAl19+mfvvv58nn3ySkSNH1n+c15gf/vCH7Lrrrlx55ZXMmTOH4cOH86lPfYo111xz1d8ktXqr+v+6aMY5+7TYuaSmMhe3P95Bltqw/v37U1dXB8A222zDjBkzltn27rvv5itf+QpdupT+Lv7whz+8xPGHHnqIqVOnsuOOO1JXV8c111zD888/z1NPPUX//v0ZOHAgAEceeSTjxo2rf94hhxxS/++DDz5Yv3///fenU6dObL755rzyyivL/T7uuusuzjnnHOrq6hgxYgQLFizg3//+d5PfB0mqJXNx++MdZKkNW3311esfd+7cmbfffpsuXbrw/vvvAzRrEv7MZPfdd2fMmDFL7H/00UeX+7ziyODi42JspZnElv/aN998M5tuummT45Wk1sJc3P54B1lqZ/r168fEiRMBlhiEsfvuu/OrX/2KRYsWASz1sd52223HAw88UN937c033+Tpp59m0003ZcaMGfX7r7vuOnbZZZf65/3mN7+p/3f77bdfqZj33HNPLr744vrkPWnSpJU6jyS1Fubits07yFI7c8opp/D5z3+eSy+9lH32+aA/5jHHHMPTTz/NkCFD6Nq1K8ceeywnnHBC/fE+ffpw9dVXc8ghh9QP/PjBD37AwIEDueqqqzjooINYtGgR2267Lccff3z9815//XWGDBnC6quvvtQdj6b67ne/yze+8Q2GDBnC+++/T//+/ev7z0lamv22Wz9zcdsWK7rd3toMGzYsW3qeQLUdLTFI7yMbbrzCdm1lkF6t9evXjwkTJrDOOuvUOpRWbdq0aQwaNGiJfRExMTOH1SikVdaSudhir/na+nvW2P8JrTxzcdM0JxfbxUKSJEkqsIuFpJW2vJHakqTqMBe3PAvkZWjJj6+WpaN8FChJktSW2MVCkiRJKrBAliRJkgoskCVJkqQCC2SpBm655RYigieffLJJ7Y855himTp0KlKbzefXVVwHYYYcdWiymCy+8kGuvvXalnjt27Fj+8Y9/1G//8pe/bPa5VvZ7Ofvss1vkPAAHH3wwzzzzzEo/X1LbYi5emrm4xEF66tBG/uyBFj1fUwdejhkzhk984hOMGTOG733veytsf/nllze6v5gIV8WiRYu48soreeSRR1bq+WPHjqVHjx71CbE4eX1Trez3cvbZZ/Ptb397lc8D8NWvfpXzzjuPyy67bKXPIan5WnpgvLnYXLyqvIMsVdn8+fO5//77ueKKK7jxxhvr948dO5YRI0bwuc99js0224zDDjusfrnPESNG0NiiDD169FjhcydOnMguu+zCNttsw5577snLL7+81Hnuuecehg4dSpcupb+ZJ0+ezHbbbceQIUM44IADeP311+vjOPHEE6mrq2PLLbfk4YcfZsaMGfzyl7/kggsuoK6ujr///e+MHj2an/zkJ/XPOemkkxg2bBiDBg1i/PjxfPazn2XAgAGcfvrpS30vZ5xxBnV1ddTV1bH++uvzpS99CYD999+fbbbZhi222IJLL70UgFGjRvH2229TV1fHYYcdtsR5MpNTTz2VLbfcksGDB9cvw7q892qnnXbi7rvvrl8CVlL7ZS42Fy+PBbJUZbfeeit77bUXAwcOZO2112bixIn1xyZNmsSFF17I1KlTefbZZ3nggabf4W7suQsXLuTrX/86N910ExMnTuToo4/mO9/5zlLPfeCBB9hmm23qt4844gjOPfdcpkyZwuDBg5e4s/LWW28xefJkfv7zn3P00UfTr18/jj/+eE466SQmT57MTjvttNT5V1ttNSZMmMDxxx/PfvvtxyWXXMLjjz/O1VdfzezZs5doe9ZZZzF58mTGjh3Lhz/84folWK+88komTpzIhAkTuOiii5g9ezbnnHMO3bt3Z/LkyVx//fVLnOf3v/89kydP5tFHH+Xuu+/m1FNPrf+FtKz3uVOnTmyyySY8+uijTX7fJbVN5mJz8fJYIEtVNmbMGA4++GCg1M9qzJgx9ceGDx9O37596dSpE3V1dc2a/L2x5z711FM8/vjj7L777tTV1fGDH/yAmTNnLvXcl19+mT59+gAwd+5c5syZwy677ALAkUceybhx4+rbHnLIIQDsvPPOvPHGG8yZM2eFsY0cORKAwYMHs8UWW7Deeuux+uqrs/HGG/PCCy8s1T4z+eIXv8jJJ59c/8vioosuYquttmK77bbjhRdeWGH/tPvvv59DDjmEzp0785GPfIRddtmF8ePHL/O9WmzdddflpZdeWuH3JKltMxebi5fHPshSFb322mvcc889PPbYY0QE7733HhHBj3/8YwBWX331+radO3du1sdLjT03M9liiy148MEHl/vc7t27s2DBgia9TkQstf3KGwuYt6gzU2bOAVhi+813FvHvOe/Sc+Ycnpv9Fu9kp/p2by98n2kvvk6ndebwflK//+f/+yO6r9WHbXY/gCkz5zD+wfu59Y6/8OCDD7LGGmswYsSIJsfbmOW9zwsWLKB79+4rfW5JrV97zcVNja1Tp05LxNmpU6dGv8fRo0fTt2/f+u4VY8eO5e677+4Qudg7yFIV3XTTTRx++OE8//zzzJgxgxdeeIH+/fvz97//vSKvt+mmmzJr1qz6pLxw4UKeeOKJpdoNGjSI6dOnA9CrVy/WWmut+piuu+66+jsYQH3/sfvvv59evXrRq1cv1lizB2++Ob9FYh771z/zz/vHMup759bvm//GG3yoV2/WWGMNnnzySR566KH6Y127dmXhwoVLnWennXbiN7/5De+99x6zZs1i3LhxDB8+fIWv//TTT7Plllu2yPciqXVqr7m4Z8+ezJs3r0Vivv3227n77ru56KKL6vfNnTuXtdZaq0PkYgtkqYrGjBnDAQccsMS+Aw88cImP9lrSaqutxk033cT//M//sNVWW1FXV9foyOK99957iY/urrnmGk499VSGDBnC5MmTOeOMM+qPdevWja233prjjz+eK664AoBddt+Le/7yRz6/50488s9VG8193WU/5z//9zKH7bsbn99zJy75ydnsOGI33lu0iEGDBjFq1Ci22267+vbHHXccQ4YMqR8YstgBBxzAkCFD2Gqrrdh1110577zz+OhHP7rc137llVfo3r37CttJatvaay7ed999+cMf/lA/SG9VnH/++bz44osMHz6curo6zjjjDPbaay8WdZBcHItHDLYVw4YNy8ZGkLa0lp5ypjFNnYZGH1jV63LZyPX4yIYbr7DdkL69V+l12qIDDjiA8847jwEDBiyzzYgRI/jJT37CsGHDlti/uGtEpVX6ulxwwQV86EMf4stf/nKLnnfatGkMGjRoiX0RMTEzhy3jKa1eS+bilsy3HSWvtvX3rLH/EypZlVzcXrSGXOwdZEkAnHPOOY1OO9SR9O7dmyOPPLLWYUjqwMzFrSMXV3SQXkTsBfwU6AxcnpnnNDi+IXAN0LvcZlRm3lHJmCQ1btNNN2XTTTddbpuxY8dWJ5gaWTwQRZJqxVzcOnJxxe4gR0Rn4BJgb2Bz4JCI2LxBs9OB32bm1sDBwM8rFY8kSZLUFJXsYjEcmJ6Zz2bmu8CNwH4N2iTwofLjXoCTj0qSJKmmKtnFYn2gOOv0TODjDdqMBu6KiK8DawKfqmA8kiRJ0grVepDeIcDVmdkX+DRwXUQsFVNEHBcREyJiwqxZs6oepCRJkjqOShbILwIbFLb7lvcVfRn4LUBmPgh0A9ZpeKLMvDQzh2XmsMVLMEptVefOnamrq2OrrbZi6NChjc6FWUvHHHMMU6dOXWr/1VdfzQknnNCsc017fApnnvL1FonrxRf+zQ033LBSz91hhx1W2GZZ33dTzJo1i7322mulniupNjpSLp40aVKLTZk2Y8aMDpGLK9nFYjwwICL6UyqMDwYObdDm38BuwNURMYhSgewtYlXNkMs3atkTjp67wibdu3dn8uTJANx5551861vf4r777mvZOFbB5Zdf3mLnuuJn53Psf3+zye0XLVpEly6Np6WXZv6bP9xwA4ce2jCNLP95QJN+8a3K992nTx/WW289HnjgAXbccceVPo/UYY3u1cLnMxcXnX322Zx++ulNbr+8nLq4QG7vubhid5AzcxFwAnAnMI3SbBVPRMRZETGy3OybwLER8SgwBjgq29rKJdIqeOONN1hrrbXqt3/84x+z7bbbMmTIEM4880yglIwGDRrEscceyxZbbMEee+zB22+/zUsvvURdXV39V+fOnXn++ee5/fbb+fjHP87WW2/Npz71KV555RUARo8ezZFHHslOO+3ERhttxO9//3tOO+00Bg8ezF577VW/ROiIESNYvADEVVddxcCBAxk+fDgPPPBAfZyzZs3iwAMPZNttt2Xbbbdl0vgPlhtd7M3583h62hNsuvlgAH5x/jl8+8SvcPh+e7DvTttw8w3XADD+wfs56rN7899fOoQDdt2O9957j/N/8F0O3WdXPrf7jvzu11cB8NMffY+///3v1NXVccEFF3D11VczcuRIdt11V3bbbTfmz5/PbrvtxtChQxk8eDC33nprfSw9evQASlMjjRgxgs997nNsttlmHHbYYSxOOcXvu0ePHnznO99hq622Yrvttqt/D//1r3+x3XbbMXjwYE4//fT68wLsv//+XH/99Sv3gyCpptpLLi4eW2zevHlMmTKFrbbaqv71Dz/8cLbffnsGDBjAZZddBpTy40477cTIkSPZfPPNee+99zj11FPr34df/epXAIwaNapD5OKK9kHOzDsyc2Bm/ldm/rC874zMvK38eGpm7piZW2VmXWbeVcl4pNbg7bffpq6ujs0224xjjjmG7373uwDcddddPPPMMzz88MNMnjyZiRMn1i85+swzz/C1r32NJ554gt69e3PzzTfzsY99jMmTJzN58mSOPfZYDjzwQDbaaCM+8YlP8NBDDzFp0iQOPvhgzjvvvPrX/te//sU999zDbbfdxhe/+EU++clP8thjj9G9e3f+9KclV+Z6+eWXOfPMM3nggQe4//77l/jI68QTT+Skk05i/Pjx3HzzzXzvtBOX+j6fmDKZTTZdcsWiZ6Y9wWU33sq1t97Fry48j//8X2ky/GmPT+G0753D7eMm8Icbr6NHz17c8Kd7uOGP9/D7G65l5r+f58RvnclOO+3E5MmTOemkkwB45JFHuOmmm7jvvvvo1q0bf/jDH3jkkUe49957+eY3v0ljf29PmjSJCy+8kKlTp/Lss882+gvlzTffZLvttuPRRx9l5513rv8FcuKJJ3LiiSfy2GOP0bdv3yWeM2zYsFVe2lVS9bTHXHzMMccs9X1OmDCBLbfccol9U6ZM4Z577uHBBx/krLPO4qWXSpOIPfLII/z0pz/l6aef5oorrqBXr16MHz+e8ePHc9lll/Hcc89xzjnndIhcXNGFQiQtrfix3oMPPsgRRxzB448/zl133cVdd93F1ltvDcD8+fN55pln2HDDDenfvz91dXUAbLPNNsyYMaP+fA888ACXXXYZ999/PwAzZ87kC1/4Ai+//DLvvvsu/fv3r2+7995707VrVwYPHsx7771X31dr8ODBS5wT4J///CcjRoxgcb//L3zhCzz99NMA3H333Usk6fnz5vHWm/NZY80P/op/9ZX/Y621117inCP2+DTdunenW/fubLvDTjw++RF69urFlnVD6bthqbvLg+Pu5elpT3D3HaW7DvPmvcG/n/sXXVdbban3cvfdd+fDH/4wAJnJt7/9bcaNG0enTp148cUXeeWVV/joRz+6xHOGDx9en1Dr6uqYMWMGn/jEJ5Zos9pqq/GZz3ym/v3+61//Wn+9brnlFgAOPfRQTjnllPrnrLvuuvW/ZCS1fu0xF7/xxhvMnz9/iTuqL7/8Mg3Hb+233350796d7t2788lPfpKHH36Y3r17M3z48Po477rrLqZMmcJNN90EwNy5c3nmmWdYrYPkYgtkqYa23357Xn31VWbNmkVm8q1vfYuvfOUrS7SZMWMGq6++ev12586defvtt4FS4vvyl7/MbbfdVp8Qv/71r3PyySczcuRIxo4dy+jRo+ufu/g8nTp1omvXrkRE/faiRYuaHPf777/PQw89RLdu3QCYMnPOUm1W79addxe8s8S+xa/XcLv7GmvU78tMRp11LjuO2G2JtuMfvH+p11hzzTXrH19//fXMmjWLiRMn0rVrV/r168eCBQuWjqvBe9nY9118b5bVpqEFCxbQvXv3FbaT1Pq0l1zcmO7duy+VC5eVi4s5NTO5+OKL2XPPPZdo29gqfu0xF9d6mjepQ3vyySd57733WHvttdlzzz258sormT9/PgAvvvgi//nPf5b53IULF3LQQQdx7rnnMnDgwPr9c+fOZf311wfgmmuuWenYPv7xj3Pfffcxe/ZsFi5cyO9+97v6Y3vssQcXX3zxB9/HE48t9fyNBwzk388/u8S+sXfdwTsLFjDn9deY8OD9bLHV1ks9b4ddduV3111Z3w9vxrPTeeutN1lzzR7MmzdvmfHOnTuXddddl65du3Lvvffy/PPPN/t7XpHtttuOm2++GYAbb7xxiWNPP/30Uh9jSmob2ksuXnxHvGjQoEFMnz59iX233norCxYsYPbs2YwdO5Ztt912qeftueee/OIXv6jPxU8//TRvvvkmPXv27BC52DvIUpUt7vcGpb/Qr7nmGjp37swee+zBtGnT2H777YHS4IRf//rXdO7cudHz/OMf/2DChAmceeaZ9YNI7rjjDkaPHs1BBx3EWmutxa677spzzz23UnGut956jB49mu23357evXvXxwxw0UUX8bWvfY0hQ4awaNEittjm43z3Rxcs8fz+mwxk/htv8Ob8eazZoycAAwZtwTFfGMmc12Zz3Imnsu5H1+P55/61xPM+e8gRvPTCvzl4713ITNZaex0uvPzXDBi0BZ07d2arrbbiqKOOWmJADcBhhx3Gvvvuy+DBgxk2bBibbbbZSn3fy3PhhRfyxS9+kR/+8Ifstdde9Or1wcj7e++9l3322afFX1NSZbTHXLzzzjvzy1/+connb7bZZsydO5d58+bRs2cpFw8ZMoRPfvKTvPrqq3z3u9/lYx/7WH23jcWOOeYYZsyYwdChQ8lM+vTpwy233MKQIUM6RC6OtjZpxLBhw3Lx6MZK6jfqTytutIpmnOMv0+Za1ety2cj1+MiGG6+w3ZC+vVfpdTqaxrpYAFx32c9Zs0cPPnvIEfzi/HNYY401OfL4lZ8XudbX5a233qJ79+5EBDfeeCNjxoypH6G98847c+utty71ywJg2rRpDBq05IDFiJiYmcOqEngFtGQubsl821Hyalt/zxr7P6HKueCCC+jZsyfHHHMMo0ePpkePHkv0221rqpGLvYMsqWI+f/jR3PWnW2odRouZOHEiJ5xwAplJ7969ufLKK4HSVEsnn3xyowlZkmrtq1/96hJdM9q6auRiC2RJFbN6t27se+DBAHz15FE1jmbV7bTTTjz66KNL7e/Tpw/7779/9QNqoojYC/gp0Bm4PDPPaXB8Q+AaoHe5zajMvKPacUqqjG7dunH44YcDLDFYsK2qRi52kJ4ktWMR0Rm4BNgb2Bw4JCI2b9DsdEqLOW1NadXTn1c3SklqXSyQ1aEk2eiE5VKltIKft+HA9Mx8NjPfBW4E9mvQJoEPlR/3ApzQWRXXCv5vqANp7s+bBbI6lOfnLGTRW2+YmFUVmcns2bOXO0dpFawPvFDYnlneVzQa+GJEzATuAFZ+JKXUBN26dWP27NnmYlXFyuRi+yCrQ7n4n6/zdWCj3q8SxDLbTZvngg/N8crrb1flddridenWrdtSS6G2QocAV2fm/0bE9sB1EbFlZr5fbBQRxwHHAWy44YY1CFPtRd++fZk5cyazZs2qdSjqIJqbiy2Q1aG88c77/HDc7BW26yhTRbWUvaswLSJ4XVbSi8AGhe2+5X1FXwb2AsjMByOiG7AOsMTqCJl5KXAplKZ5q1TAav+6du26xNLLUmtjFwtJat/GAwMion9ErEZpEN5tDdr8G9gNICIGAd0Ab+1J6rAskCWpHcvMRcAJwJ3ANEqzVTwREWdFxMhys28Cx0bEo8AY4Ki0c6ikDswuFpLUzpXnNL6jwb4zCo+nAjtWOy5Jaq28gyxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRUtkCNir4h4KiKmR8SoZbT5fERMjYgnIuKGSsYjSZIkrUiXSp04IjoDlwC7AzOB8RFxW2ZOLbQZAHwL2DEzX4+IdSsVjyRJktQUlbyDPByYnpnPZua7wI3Afg3aHAtckpmvA2TmfyoYjyRJkrRClSyQ1wdeKGzPLO8rGggMjIgHIuKhiNirgvFIkiRJK1SxLhbNeP0BwAigLzAuIgZn5pxio4g4DjgOYMMNN6xyiJIkSR1Lv1F/arFzzThnnxY7V7Uss0COiKHLe2JmPrKCc78IbFDY7lveVzQT+GdmLgSei4inKRXM4xu81qXApQDDhg3LFbyuJLUbLZCLJUnNtLw7yP9b/rcbMAx4FAhgCDAB2H4F5x4PDIiI/pQK44OBQxu0uQU4BLgqItah1OXi2WbEL0nt3armYklSMy2zD3JmfjIzPwm8DAzNzGGZuQ2wNUvfCW7s+YuAE4A7gWnAbzPziYg4KyJGlpvdCcyOiKnAvcCpmTl71b4lSWo/VjUXS5Karyl9kDfNzMcWb2Tm4xExqCknz8w7gDsa7Duj8DiBk8tfkqRlW+lcLElqnqYUyFMi4nLg1+Xtw4AplQtJktQIc7EkVUlTCuQvAV8FTixvjwN+UbGIJEmNMRdLUpWssEDOzAXABeUvSVINrGwuLs8v/1OgM3B5Zp7TSJvPA6OBBB7NzIYDqiWpQ1neNG+PUUqWjcrMIRWJSJJUb1VycUR0Bi4Bdqc0reb4iLgtM6cW2gwAvgXsmJmvR8S6LRa8JLVRy7uD/JmqRSFJWpZVycXDgemZ+SxARNwI7AdMLbQ5FrgkM18HyMz/rMLrSVK7sLxp3p5f/FXeNaD8+D/Aa1WJTpI6uFXMxesDLxS2Z5b3FQ0EBkbEAxHxULlLRqMi4riImBARE2bNmtXM70SS2o5lFsiLRcSxwE3Ar8q7+lJa4EOSVCUVzMVdKK1gOoLSwk2XRUTvxhpm5qXleZiH9enTpwVeWpJapxUWyMDXgB2BNwAy8xnAPmqSVF0rk4tfBDYobPdl6cVFZgK3ZebCzHwOeJpSwSxJHVZTCuR3MvPdxRsR0YXlDBiRJFXEyuTi8cCAiOgfEasBBwO3NWhzC6W7x0TEOpS6XDzbQjFLUpvUlAL5voj4NtA9InYHfgfcXtmwJEkNNDsXZ+Yi4ATgTmAa8NvMfCIizoqIkeVmdwKzI2IqcC9wambOrth3IUltQFMWChkFfBl4DPgKpaWjL69kUJKkpaxULs7MO8pti/vOKDxO4OTylySJpi0U8j5wWflLklQD5mJJqp7lLRTy28z8/LImqXehEEmqPHOxJFXf8u4gn1j+1wVDJKl2zMWSVGXLLJAz8+Xyw5HAdZk5pyoRSZLqmYslqfqaMovFR4AJEfHbiNgrIqLSQUmSlmIulqQqWWGBnJmnU5o0/grgKOCZiDg7Iv6rwrFJksrMxZJUPU25g7x4GqD/K38tAtYCboqI8yoYmySpwFwsSdWxwmneIuJE4AjgVUpzbp6amQsjohPwDHBaZUOUJJmLJal6mrJQyIeBz2bm88Wdmfl+RDiqWpKqw1wsSVXSlIVCzlzOsWktG44kqTHmYkmqnib1QZYkSZI6CgtkSZIkqaBJBXJEbBQRnyo/7h4RPSsbliSpIXOxJFXHCgvkiDgWuAn4VXlXX+CWCsYkSWrAXCxJ1dOUO8hfA3YE3gDIzGeAdSsZlCRpKeZiSaqSphTI72Tmu4s3IqILkJULSZLUCHOxJFVJUwrk+yLi20D3iNgd+B1we2XDkiQ1YC6WpCppSoE8CpgFPAZ8BbgDOL2SQUmSlmIulqQqacpCIe8Dl5W/JEk1YC6WpOpZYYEcEY+xdD+3ucAE4AeZObsSgUmSPmAulqTqWWGBDPwZeA+4obx9MLAG8H/A1cC+FYlMklRkLpakKmlKgfypzBxa2H4sIh7JzKER8cVKBSZJWoK5WJKqpCmD9DpHxPDFGxGxLdC5vLmoIlFJkhoyF0tSlTTlDvIxwJUR0QMISpPUHxMRawI/qmRwkqR65uKmGN2rBc81t+XOJalNacosFuOBwRHRq7xdzBi/rVRgkqQPmIslqXqacgeZiNgH2ALoFhEAZOZZFYxLktSAuViSqmOFfZAj4pfAF4CvU/pY7yBgowrHJUkqMBdLUvU0ZZDeDpl5BPB6Zn4P2B4YWNmwJEkNmIslqUqaUiAvKP/7VkR8DFgIrFe5kCRJjTAXS1KVNKUP8u0R0Rv4MfAIpZWcXOpUkqrLXCxJVbLcAjkiOgF/y8w5wM0R8UegW4PR05KkCjIXS1J1LbeLRWa+D1xS2H7HhCxJ1WUulqTqakof5L9FxIGxeE4hSVItmIslqUqaUiB/Bfgd8G5EvBER8yLijaacPCL2ioinImJ6RIxaTrsDIyIjYlgT45akjmalc7EkqXmaspJez5U5cUR0pvSR4O7ATGB8RNyWmVMbtOsJnAj8c2VeR5I6gpXNxZKk5lthgVz+OO8woH9mfj8iNgDWy8yHV/DU4cD0zHy2fJ4bgf2AqQ3afR84Fzi1ucG3eaN7Vel17KootXWrkIslSc3UlC4WP6c0If2h5e35FAaLLMf6wAuF7ZnlffUiYiiwQWb+qQnnk6SObGVzsSSpmZoyD/LHM3NoREwCyMzXI2K1VX3h8rRF5wNHNaHtccBxABtuuOGqvrQktUUVycWSpKU15Q7ywnJ/4gSIiD7A+0143ovABoXtvuV9i/UEtgTGRsQMYDvgtsYG6mXmpZk5LDOH9enTpwkvLUntzsrmYklSMzWlQL4I+AOwbkT8ELgfOLsJzxsPDIiI/uW7HAcDty0+mJlzM3OdzOyXmf2Ah4CRmTmhud+EJHUAK5uLJUnN1JRZLK6PiInAbkAA+2fmtCY8b1FEnADcCXQGrszMJyLiLGBCZt62/DNIkhZb2VwMpSk3gZ9SysWXZ+Y5y2h3IHATsK03KyR1ZE2ZxeIi4MbMbPZgkMy8A7ijwb4zltF2RHPPL0kdxcrmYqfclKTma8ogvYnA6RGxKaWP9270zoLavWpMwef0e2qelc3FTrkpSc20wj7ImXlNZn4a2BZ4Cjg3Ip6peGSSpHqrkIudclOSmqkpg/QW2wTYDNgIeLIy4UiSVqBFc3Fhys1vNqHtcRExISImzJo1a1VfWpJarRUWyBFxXvkuxVnA48CwzNy34pFJkuqtQi52yk1Jaqam9EH+F7B9Zr5a6WAkScu0srm4fspNSoXxwXywGh+ZORdYZ/F2RIwFTnGsiaSOrCnTvP0qItaKiOFAt8L+cRWNTJJUb2VzsVNuSlLzNWWat2MoTf3TF5hM6eO3B4FdKxqZJKnequRip9yUpOZpyiC9EymNmn4+Mz8JbA3MqWRQkqSlmIslqUqaUiAvyMwFABGxemY+CWxa2bAkSQ2YiyWpSpoySG9mRPQGbgH+GhGvA89XMihJ0lLMxZJUJU0ZpHdA+eHoiLgX6AX8paJRSZKWYC6WpOppyh3kepl5X6UCkSQ1jblYkiqrOSvpSZIkSe2eBbIkSZJUYIEsSZIkFVggS5IkSQUWyJIkSVKBBbIkSZJUYIEsSZIkFVggS5IkSQUWyJIkSVKBBbIkSZJUYIEsSZIkFVggS5IkSQUWyJIkSVKBBbIkSZJUYIEsSZIkFVggS5IkSQUWyJIkSVKBBbIkSZJU0KXWAUiSpBoa3asFzzW35c4l1ZB3kCVJkqQCC2RJkiSpwAJZkiRJKrBAliRJkgoskCVJkqQCC2RJkiSpwAJZkiRJKrBAliRJkgoskCVJkqQCC2RJkiSpwAJZkiRJKrBAliRJkgoskCVJkqSCihbIEbFXRDwVEdMjYlQjx0+OiKkRMSUi/hYRG1UyHkmSJGlFKlYgR0Rn4BJgb2Bz4JCI2LxBs0nAsMwcAtwEnFepeCRJkqSmqOQd5OHA9Mx8NjPfBW4E9is2yMx7M/Ot8uZDQN8KxiNJkiStUCUL5PWBFwrbM8v7luXLwJ8rGI8kSZK0Qq1ikF5EfBEYBvx4GcePi4gJETFh1qxZ1Q1Oktowx4JIUvNVskB+EdigsN23vG8JEfEp4DvAyMx8p7ETZealmTksM4f16dOnIsFKUnvjWBBJWjmVLJDHAwMion9ErAYcDNxWbBARWwO/olQc/6eCsUhSR+RYEElaCRUrkDNzEXACcCcwDfhtZj4REWdFxMhysx8DPYDfRcTkiLhtGaeTJDWfY0EkaSV0qeTJM/MO4I4G+84oPP5UJV9fktQ0hbEguyynzXHAcQAbbrhhlSKTpOprFYP0JEkV0WJjQcDxIJI6DgtkSWq/HAsiSSvBAlmS2inHgkjSyqloH2RJUm05FkSSms87yJIkSVKBBbIkSZJUYIEsSZIkFVggS5IkSQUWyJIkSVKBBbIkSZJUYIEsSZIkFVggS5IkSQUWyJIkSVKBBbIkSZJUYIEsSZIkFVggS5IkSQUWyJIkSVKBBbIkSZJUYIEsSZIkFXSpdQCS1GSje1XhNeZW/jUkSa2ad5AlSZKkAgtkSZIkqcACWZIkSSqwQJYkSZIKLJAlSZKkAmexkCRJ7Vq/UX9q0fPNOGefFj2fWh/vIEuSJEkFFsiSJElSgQWyJEmSVGCBLEmSJBVYIEuSJEkFFsiSJElSgQWyJEmSVGCBLEmSJBVYIEuSJEkFrqQnSZKkyhndqwXPNbflzrUc3kGWJEmSCiyQJUmSpAILZEmSJKnAAlmSJEkqsECWJEmSCiyQJUmSpAILZEmSJKnAAlmSJEkqqGiBHBF7RcRTETE9IkY1cnz1iPhN+fg/I6JfJeORpI7IXCxJzVOxAjkiOgOXAHsDmwOHRMTmDZp9GXg9MzcBLgDOrVQ8ktQRmYslqfkqeQd5ODA9M5/NzHeBG4H9GrTZD7im/PgmYLeIiArGJEkdjblYkpqpkgXy+sALhe2Z5X2NtsnMRcBcYO0KxiRJHY25WJKaqUutA2iKiDgOOK68OT8inqplPC0lYB3g1Yq/0Pe8EdRcVbk2Xpdma2fXZaNqvVBLaQu5uEV/RjrI/1Hfs+aLc6v0+7udaOU/Y43m4koWyC8CGxS2+5b3NdZmZkR0AXoBsxueKDMvBS6tUJw1ExETMnNYrePQ0rw2rZPXZaV0qFzsz0jz+Z41n+9Z87TF96uSXSzGAwMion9ErAYcDNzWoM1twJHlx58D7snMrGBMktTRmIslqZkqdgc5MxdFxAnAnUBn4MrMfCIizgImZOZtwBXAdRExHXiNUuKWJLUQc7EkNV9F+yBn5h3AHQ32nVF4vAA4qJIxtHKt+qPKDs5r0zp5XVZCB8vF/ow0n+9Z8/meNU+be7/CT9EkSZKkD7jUtCRJklRggSxJkiQVWCBLkiRJBW1ioRBJiohOQI/MfKPWsUhtVUR8uMGuBOY4rV/TRMR/AYcCB2fmFrWOp7WJiL5Av8y8v7x9MtCjfPiGzJxes+CayTvIVRQRJ0bEh6Lkioh4JCL2qHVc8tq0VhFxQ/m6rAk8DkyNiFNrHZdah/LPxoDC9kERcUT56yO1jK0VmwhMKP87EXgE+E9E3B0R/WoZWGsVER+LiJMiYjzwBKXayakQG/djoHdh+yvAm5T+EPteLQJaWRbI1XV0+e7XHsBawOHAObUNSWVem9Zp8/J12R/4M9Cf0rWRAH4C7FjY/hGwLbAzbeyXcbVkZv/M3Lj87+KvPsDPgV/WOr7WJCKOi4h7gbHA2sCXgZcz83uZ+VhNg2u9Ns3MPxa238rM/83M7wMb1iqolWGBXF2LFxD/NHBdZj5R2Kfa8tq0Tl0joiulAvm2zFxI6U6EBKVi+JrC9rzM/HpmHgNsWaOY2qTM/D2wbq3jaGV+RqlOOjQzT8/MKZh/VqRbg+3dCo/XqWYgq8oCubomRsRdlIqwOyOiJ/B+jWNSidemdfoVMANYExgXERsB9kHWYl0a9J0tfrrQu8qxtGkR0QNrgobWA8YA/xsRT0XE94GuNY6ptZsXEQMXb2TmawARsRkwr2ZRrQQXCqmi8iCjOuDZzJwTEWsD65f/KlUNeW3ajojokpmLah2Hai8iHgX2zMz/a7B/feDPmTmkNpG1XuVBUw2tBYwEfpaZl1U5pDahPPjsC8AhlP5g/0Nmfru2UbU+EbEXcBHwQ0r92wG2Ab4NnJiZf65VbM1lgVxlETGSUv84gPsy8/ZaxqMPeG1an4joBZxJ4boAZ2Xm3NpFpdYiIr4InAh8E5hU3j2UUt/kizLzulrF1lpFxJkNdiUwGxhnv9qmKd8hPTgzz6p1LK1RRGwJnAYsnuXjCeC8zHy8dlE1nwVyFUXEOZT6zF1f3nUIMN6/QmvPa9M6RcTNlGavWNzP9HBgq8z8bO2iUmtSvmP1bT74Zfw4cE5bulOl1ikiTsvM88qPD8rM3xWOne3vh/bNArmKImIKUJeZ75e3OwOT/Biw9rw2rVNETM7MuhXtk9Q0EbEO8DXgdeBKStNy7QT8C/hmW5qnttIi4pHMHNrwcWPbKomI25Z3PDNHViuWVeVCIdXXG3it/LhXDePQ0nrjtWlt3o6ITxQmnd8ReLvGMamViIiLlnc8M/+7WrG0ITdQmgd5APAwcBXwU0pF8uXAiJpF1vrEMh43tq2S7YEXKA1u/Cdt+H2yQK6uHwGTyvMqBqV+laNqG5LKvDat0/HAteW+yEHpD5ijahqRWpPjKXWp+C3wEm34l3EVfSQzvx0RATyfmT8u738yIr5Wy8BaoVzG48a2VfJRYHdK3RQPBf4EjClPndqm2MWiyiJiPUp9XQEebjj6WrXjtWm9IuJDAC4zraLybDMHUZpdYBHwG+CmzJxTy7haM7sNNF1EvA/Mp/SHV3fgrcWHgG6Z6ZRvyxERq1MqlH8MfC8zf1bjkJrFArnKytMPbUTh7n1mjqtdRFrMa9P6lBPsgUA/lrwujh7XEsrTcB0MnAz8jzNYNC4i5gDjKBV5O5UfU97+RGauVaPQWp2ImJSZW9c6jramnLf3oVQc9wNuA67MzBdrGVdz2cWiiiLiXEp3Op7gg0Uokg8SlGrEa9Nq3QrMBSYC79Q4FrVSETGU0i/j3SktST6xthG1avsVHv+kwbGG2x2ddxCbKSKupbSK5R2U7hq3qandiryDXEUR8RQwJDP9Rd/KeG1ap4h4PDNdMliNioizKN2pmgbcCPzFRWSaLiL6AGTmrFrH0hpFxEzg/GUdz8xlHuuoyt1S3ixvFgvMADIzP1T9qFaOd5Cr61lKy1RahLU+XpvW6R8RMdgFDLQMpwPPAVuVv84ujT2r/2XsNI0NlAfnnQF8ndLS0hERi4CL7bq0lM5ADxz82RyPtpduKRbIVRARF1P6S+otYHJE/I1CIeZURLXjtWmdIuIxStelC/CliHiW0nWx8FFR/1oH0AadBHwC2DYznwOIiI2BX0TESZl5QU2ja11e9o+GZms33RLsYlEFEXHk8o5n5jXLO67K8dq0ThGx0fKOZ+bz1YpFrVdE3JWZe9Q6jrYkIiYBu2fmqw329wHuai93/1qCg/Sarz11S/EOchVk5jURUQdsAjyRmdNqHJLKvDat1iuU5rjdBHgMuMK+pWpEn1oH0AZ1bVgcQ6kfckQ4bdmSdqt1AG1Qu+mWYoFcBRHxXeBwSiOrz4uIH2XmZTUOS3htWrFrgIXA34G9gc2BE2sakVqjXhHx2WUdzMzfVzOYNuLdlTzW4WTmaytupQbaTbcUu1hUQUQ8Qam/11vlie3/kpnbruh5qjyvTesUEY9l5uDy4y6UFm5xAQMtISJmU5oKsLG7VZmZR1c5pFYvIt7jg1kGljiEi19oFbWnbineQa6OdzLzLYDMnB0RnWodkOp5bVqnhYsfZOai8swEUkPPWwQ3T2Z2rnUMatfaTbcU7yBXQWHlIlh69SIyc2QNwhJem9aqwV2u4jKvbW4uTVVOe7pbJal1sUCugojYZXnHM/O+asWiJXltpLYrIrZsuFJXRKwDzE5/uUlaBXaxqAKLrNZr8bWJiBMz86fFYxFxIuC1q4GI2DYzxy/j2OGZeV21Y1Kr1CMixgKvAd8HrgPWATpFxBGZ+ZdaBiep7fIOchUUFj1Y6hDwfmZuVeWQ1EBEPNJwEJgf39ZOREwBHgC+lZlzyvu2BH4OvJaZ+9cuOrUWETEB+DbQC7gU2DszH4qIzYAx/v+VtLK8g1wdn2lkXwAbAN+qciwqiIhDgEOB/hFxW+FQT0p3pVQbQ4FTgUkR8X1gMPBp4JuZ+ceaRqbWpEtm3gUQEWdl5kMAmfmkAzslrQoL5CoorvoVEVtTKsgOAp4Dbq5VXALgH8DLlD6W/d/C/nnAlJpEJMqLgvwoIhYBlwMvAcMz86XaRqZW5v3C47cbHPPjUUkrzQK5CiJiIHBI+etV4DeUurd8sqaBafEfL89HxLiGfcUj4lzgf2oTWccWEf8FXEKpyBlEabGQcRHxw8y8qqbBqTXZKiLeoDzTSfkx5e1utQtLUltnH+QqiIj3Ka0I9uXMnF7e92xmblzbyLTYMvogT8nMIbWKqSOLiOnAqMy8qbDvY8D5wAaZuWPNgpMktXveQa6OzwIHA/dGxF+AG2kH65S3BxHxVeD/Af9VHhi2WE9Kg8RUG3WZOb+4o9y94uCI+FSNYpIkdRDeQa6iiFgT2I9SV4tdgWuBPyweZKLqi4hewFrAj4BRhUPzMtNBejUWETs3tj8zxzW2X5KklmCBXCMRsRalgXpfyMx2szRjWxYRnwAGZOZV5cUGembmc7WOqyOLiNsLm92A4cDEzNy1RiFJWgUR0Q/4Y2ZuWetYpOWxQJaAiDgTGAZsmpkDy/1df2df19YlIjYALszMA2sdi6Tms0BWW9Gp1gFIrcQBwEjgTajv79qzphGpMTMpzWohqe3qEhHXR8S0iLgpItaIiDMiYnxEPB4Rl0Z5IuuI+O+ImBoRUyLixvK+NSPiyoh4OCImRcR+tf121B45SE8qeTczMyIS6vuLq8Yi4mI+mM+2E1AHPFKzgCS1hE0pzer0QERcSWmg9M8y8yyAiLiO0gJbt1MaG9I/M9+JiN7l538HuCczjy7vezgi7s7MN6v9jaj9skCWSn4bEb8CekfEscDRwGU1jkkwofB4EaXlg51dRGrbXij8P/418N/AcxFxGrAG8GHgCUoF8hTg+oi4Bbil/Jw9gJERcUp5uxuwITCtKtGrQ7BAVodX/ijvN8BmwBuU7m6ckZl/rWlgIjOvqXUMklpcw8FPCfwcGJaZL0TEaD5Y6GUfYGdgX+A7ETGY0jSpB2bmU1WKVx2QfZDV4WVppOodmfnXzDw1M0+xOK6tiBgQEVdHxPkR0Tci/hwR8yPi0YjYttbxSVolG0bE9uXHhwL3lx+/GhE9gM8BREQnSgsD3UtpVdNeQA/gTuDrhX7KW1czeHUMFshSySMWXq3KVcA/gJeAfwJXAusApwA/q2FcklbdU8DXImIapXnof0GpS9vjlIrf8eV2nYFfR8RjwCTgosycA3wf6ApMiYgnyttSi3KaNwmIiCeBTYDnKc1kEZRuLrvUdA1ExOTMrCs/np6ZmzR2TJKkSrAPslSyZ60D0BLeLzx+YznHJElqcd5BlgoiYg1gc+D5zJxV63g6qoh4C5he3tyk8DiAjTPTafgkSRVjH2R1aBExMiJmRMQjEfFpSlML/Qx4LCKOrHF4HdkgSgu3PFl+vG/h6481jEuS1AF4B1kdWkQ8ChxEaXT0vcCQzHw2ItYF/paZg2saYAcXEY9k5tAG+6bYN1ySVEn2QVZH935mPg0QEc9l5rMAmfmfiFhU29A6roj4KqXVtTaOiCmFQz0BFwqRJFWUBbI6uk4RsRal7kbvlx/H4mO1C6vDuwH4M/AjSkvNLjYvM1+rTUiSpI7CLhbq0CJiBqVZEaKRw5mZG1c3IkmSVGsWyJIkSVKBXSwkICJ2bmx/Zo6rdiySJKm2vIMsARFxe2GzGzAcmJiZu9YoJEmSVCPeQZaAzNy3uB0RGwAX1iYaSZJUS47Slxo3k9ICFZIkqYPxDrIERMTFwOL+Rp2AOuCRmgUkSZJqxj7IEtBgWelFwIzMdEEKSZI6IAtkSZIkqcA+yOrQImJARFwdEedHRN+I+HNEzI+IRyNi21rHJ0mSqs8CWR3dVcA/gJeAfwJXAusApwA/q2FckiSpRuxioQ4tIiZnZl358fTM3KSxY5IkqePwDrI6uvcLj99YzjFJktRBeAdZHVpEvAVML29uUngcwMaZuWZNApMkSTXjPMjq6AZRKobPA4qr6QVwbk0ikiRJNWWBrA4tM58HiIhNFj9eLCJcSU+SpA7IAlkdWkR8Ffh/wMYRMaVwqCfgQiGSJHVA9kFWhxYRvYC1gB8BowqH5mXma7WJSpIk1ZIFsiRJklTgNG+SJElSgQWyJEmSVGCBrA4nIkZExA5NaHdURDR7uemmnl+SJLVOFsjqiEYAlSxgK31+SZJUQRbIajci4oiImBIRj0bEdRGxb0T8MyImRcTdEfGRiOgHHA+cFBGTI2Knxto1OG/PiHguIrqWtz+0eDsi/jsippZf98bGzl/t90GSJK0a50FWuxARWwCnAztk5qsR8WEgge0yMyPiGOC0zPxmRPwSmJ+ZPyk/d62G7YBvLj53Zs6LiLHAPsAtwMHA7zNzYUSMAvpn5jsR0Tsz5zQ8vyRJalsskNVe7Ar8LjNfBcjM1yJiMPCbiFgPWA14bhnP7duEdpdTKpxvAb4EHFvePwW4PiJuKR+TJEltnF0s1J5dDPwsMwcDXwG6rWy7zHwA6BcRI4DOmfl4+dA+wCXAUGB8RPhHpyRJbZwFstqLe4CDImJtgHIXi17Ai+XjRxbazqO0lPRiy2rX0LXADcBV5dfoBGyQmfcC/1M+T49Gzi9JktoQC2S1C5n5BPBD4L6IeBQ4HxgN/C4iJgKvFprfDhxQGES3rHYNXU9pWeox5e3OwK8j4jFgEnBRZs5p5PySJKkNcalpqYki4nPAfpl5eK1jkSRJlWN/SakJIuJiYG/g07WORZIkVZZ3kCVJkqQC+yBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUsH/B19uOuTGPSPzAAAAAElFTkSuQmCC\n" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "execution_count": 84, + "metadata": { + "collapsed": false, + "outputHidden": false, + "inputHidden": false + } + }, + { + "cell_type": "markdown", + "source": [ + "### Similar Substrates" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "What if our auxiliary data is similar to the task being optimized? In this case primary amine to secondary amine.\n", + "\nSince we don't have a benchmark for this, we first need to train a model." + ], + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "#Create the domain based on Baumgartner, but with different bases\n", + "bases_primary = pd.unique(datasets[\"Phenethylamine\"][\"base\"])\n", + "bases_secondary = pd.unique(datasets[\"Morpholine\"][\"base\"])\n", + "assert bases_primary.all() == bases_secondary.all()\n", + "domain = BaumgartnerCrossCouplingEmulator.setup_domain()\n", + "new_domain = deepcopy(domain)\n", + "bases = list(pd.unique(datasets[\"Morpholine\"][\"base\"]))\n", + "new_domain[\"base\"] = CategoricalVariable(name=\"base\", description=\"Base\", levels=bases)\n", + "new_domain" + ], + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 23, + "data": { + "text/html": [ + "
NameTypeDescriptionValues
catalystcategorical, inputCatalyst type3 levels
basecategorical, inputBase4 levels
base_equivalentscontinuous, inputBase equivalents[1.0,2.5]
temperaturecontinuous, inputTemperature in degrees Celsius (ºC)[30,100]
t_rescontinuous, inputresidence time in seconds (s)[60,1800]
yieldcontinuous, maximize objectiveYield[0.0,1.0]
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {} + } + ], + "execution_count": 23, + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "# Load or train primary amine benchmark model\n", + "save_dir = pathlib.Path(\"baumgartner_phenethylamine_emulator/\")\n", + "if save_dir.exists():\n", + " exp_amine = ExperimentalEmulator.load(\"baumgartner_primary_amine\", save_dir)\n", + "else:\n", + " exp_amine = ExperimentalEmulator(\n", + " domain=new_domain,\n", + " model_name=\"baumgartner_primary_amine\",\n", + " dataset=datasets[\"Phenethylamine\"].replace(\"≥90%\", 0.9)\n", + " )\n", + " exp_amine.train(max_epochs=1000, cv_fold=2, test_size=0.25, verbose=False)\n", + " exp_amine.save(\"baumgartner_phenethylamine_emulator\")\n", + "exp_amine.parity_plot()" + ], + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 24, + "data": { + "text/plain": [ + "(
,\n", + " array([],\n", + " dtype=object))" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAmUAAAFJCAYAAADaCVr3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABKuElEQVR4nO3dd3Sc133n//dFH/ROkAC72DsFiZ2okqhCUY1qlCXLjmXHVs46iZ145azXJSdx4nVynJ+dYnsVyVnZWmddIieSLQEzKOwEexc7CbCAJACizKAM5v7+AECDFSCIwcwAn9c5OMA8c+d5vsNh+fA+txhrLSIiIiISWGGBLkBEREREFMpEREREgoJCmYiIiEgQUCgTERERCQIKZSIiIiJBQKFMREREJAgolInIsGWM+cAY80o/21pjzD23eO6Txpj1g1udiMi1IgJdgIiIv1hrHw50DSIi/aWeMhEREZEgoFAmIiHNGPNlY8wvrjv2D8aY7xljyowxf9Dr+KeMMQeNMfXGmN8ZY8bf4pxpxpj3jDGNxpitwGQ/vw0REYUyEQl5/wdYZYxJBjDGRADPAz/p3cgYswZ4A3gKyAAqgZ/d4pw/AFqB0cCnur9ERPxKoUxEQpq19hxQAaztPrQKuGSt3X5d088Bf22tPWit9QJ/Bcy/vrfMGBMOPA18zVrbYq3dB7zt1zchIoJCmYgMD28DL3X//BLwbzdpMx74njGmwRjTANQBBsi+rl0GXZOgzvQ6dmpQqxURuQmFMhEZDn4NzDXGzAYeA965SZszwGettcm9vhzW2o3XtbsIeIGxvY6N80fRIiK9KZSJSMiz1rYC/w/4KbDVWnv6Js3+GfjvxphZAMaYJGPM2usbWWs7gV8CXzfGxBpjZgL9WutMRORuKJSJyHDxNjCHm9+6xFr7K+BvgHeNMY3APuBW65i9DsQD54G3gH8d7GJFRK5nrLWBrkFE5K4ZY8YBh4Asa21joOsREblT6ikTkZBnjAkD/gR4V4FMREKV30KZMeZNY0ytMWbfLZ433Qs8HjXG7DHGLPRXLSIyfBlj4oBG4AHgfwa4HBGRAfNnT9lbdK0XdCsPA1O6v14D/smPtYjIMNW9lli8tXaWtfZM368QEQlOfgtl1toKutYBupU1wE9sl81AsjFmtL/qEREREQlmgRxTls21izNWc+MijiIiIiIjQkSgC+iP+Ph423uWaHp6OhkZGQGsSERERPzlyqUr+Dp9hIX/vu+o53FSepJfrll37jLhEeFgzO8PWkunt5PU0Wm3fJ3b7aah/go+6yPMGKIioqg5W+Pu6OyIu9MaAhnKarh2xeyc7mM3mD59OlVVVUNSlIiIiATWT7/1FsmZqZiw3wck67M01Nbx4v/4pF+u+cGPfoO7yU1sQuzVYz2PH/7M6mvadnZ2smP7TpzOMi5dukxMWBSTMsczKjEdYwzPvv7ClYHUEMhQ9h7wujHmXWARcKV7Y2EREREZwVKy0m4ISJ4WDylZt+6xultz8xfgeudDABxxDjwtHjyNLSxevQyAmiPV7HJu59iZE1z0NtDqbSM7ewwvv7KOM5uO42n2YHr3sg2AP5fE+BmwCZhmjKk2xnzaGPM5Y8znupu8DxwHjgI/Aj7vr1pEREQkdMzNX4CnsQV3kxvrs7ib3HgaW5ibv8Bv18yekkPBugeJTYilobaO2IRYCtY9SPaUHE4eOMHP//XnbDy2nTOtF4gw4UyMGcMzjz7BnDmzmVew8Jp6DSZ8IDWExIr+ubm5VrcvRURERo6aI9XsKdtJ/fnLpGSlMTd/AdlTcoa0hra2Nn773u/YuGkzvjBLdGcE41NyyM4ajafZc82tzd71fvYvXz/b1NZ8x5MXQ2Kg/634fD6qq6tpaWkJdCkSRCIjI8nMzCQxMTHQpYiIyABlT8kZ8hDWw+NpZeOGTZSVVdDa2kpEuyGtM4GINkNd7QWSouKJT0mg/vzlm9a77muvDmg4VkiHskuXLmGMYdq0aYSFaccoAWstHo+HmpquOSMKZiIi0l9ut5vKig2sX7+R1tZW0uJSmJw+lqaTdXS0dRAZHQnAhZPnCI+KGPQxbiEdyhoaGpgwYYICmVxljCE2Npbs7GzOnj2rUCYiIn1qbmqmvLySTZs209bWzuzZsygqLqDiXz8iOSUVB1Gc2nscgPDICJrqm66ZBDBYQjqUdXZ2EhkZGegyJAg5HA46OjoCXYaIiASxK1euUF5WyebNW/F6vcybN4eiogKyRmcBv58FChAWEU79+Tp8nZ2kZKVenQQwmEI6lAF3Pf1Uhif9vhARkVupr6vH5Spn69YqrLUsWDifwsJ8MjOvXZh+bv4C/uuffsWl6otExzpIzkqhtaWVxPRkv9QV8qFMREREpD8uXbqE01nO9qodGGPIzV1IQWE+aWmpV9tcP+szMjqKmDgH3g4vjngHY6eNJzwqgj1lO9VTNtI8/PDDPP/887zyyiuBLkVERCQkXbhQi7PUxc6duwkPD2fJkkXkF6wkOTn5mnY1R6pxvfMhjsQ4kjNTcTe5qT58mqn3zSCx1/ZO1mevmXk5WIZVKPsfD3+ZprpGv50/ITWRb33wnT7bxcfHX/3Z7XYTHR1NeHjXOnL/8i//wrp16/p9zQ8++ODOC+02YcIELly4QHh4OPHx8axatYrvf//7V+v7zne+w9tvv82pU6dIT0/n85//PF/+8pcHfL1bKS0t5Qtf+AKnT59m0aJFvPXWW4wfP/6mbTdu3MgXv/hFDh48yMSJE/nHf/xHli9fDsBf/dVf8Vd/9VdX23Z2dtLW1kZtbS3p6emDXreIiIS2s2fPUVriYu/efURERLBi5XLy8pbfchLYnrKdOBLjru4kEJsQS1xyPDUfn7kmlPlrd4FhNW3Rn4HsTs7f3Nx89WvcuHH85je/ufq4dyDzer3+KvWqnmvv2rWLnTt38td//ddXn7PW8pOf/IT6+np++9vf8v3vf5933313UK9/6dIlnnrqKb71rW9RV1dHbm4uzz333E3b1tXVsXr1ar785S/T0NDAn/3Zn7F69Wrq6+sBeOONN675tf3zP/9z8vPzFchEREaQmiPVfPCj3/DTb73FBz/6DTVHqm9oc+ZMNW/967/x93/3Dxw+/DEFBXm88dU/Y/XqR247K7/+/GUccY5rjo25J4eWK81DsrvAsAplwa6srIycnBz+5m/+hqysLF599VXq6+t57LHHyMjIICUlhccee4zq6t//BsvPz+fHP/4xAG+99RbLly/nS1/6EikpKUycOLHfPWlZWVk89NBD7Nq16+qxP/uzP2PhwoVEREQwbdo01qxZw4YNGwb1Pf/yl79k1qxZrF27lpiYGL7+9a+ze/duDh06dEPbjRs3kpWVxdq1awkPD+ell14iIyODX/7ylze07QmUuq0rIjJy9NxedDe5r95edL3z4dVgdvLkKX78o3/lH773A44fP84DDxbxxlf/nIcfeeiau1i3kpKVhqfFc82xyJgopt4/46bbLw22YXX7MhScP3+euro6Tp06hc/nw+128+qrr/Lzn/+czs5OPvWpT/H666/z61//+qav37JlC6+88gqXLl3ihz/8IZ/+9Kepqanpc7ZhdXU1H3zwAYWFhTd93lpLZWUln/3sZ295juvvvff2la98ha985Ss3HN+/fz/z5s27+jguLo7Jkyezf/9+pk+fftM6rn+8b9++G9pVVlZSW1vL008/fcuaRERkeLnZ7UVrLeXvl9EY5eHYsePExcXx8CMPsXTpYmJiYu7o/D2zLU81NONt9xIRFUF8cjyP/uGTQ7K7gELZEAsLC+Mb3/gG0dHRQNd6Wr2DxVe/+lUKCgpu+frx48fzmc98BoBXXnmFz3/+81y4cIGsrKybtn/iiScwxtDc3ExhYSHf+MY3btru61//Oj6fj1dfffWW125oaOjr7d2gubmZjIxrpxgnJSXR1NR0Q9slS5Zw9uxZfvazn/HMM8/w05/+lGPHjuF2u29o+/bbb/PMM8/0638+IiIyPNSfv0xyZtdMSWstde4GTtZXc6W1iYSEBB5b/QhLFi8iKjrqLq5iwHZ3Etjux0NEoWyIZWRkXJPc3W43f/zHf8xvf/vbq2Onmpqa6OzsvDo5oLfe4Ss2tut/Cs3Nzbe83q9//WuKi4spLy/nxRdf5NKlSzf0eH3/+9/nJz/5CZWVlVfD4mCJj4+nsfHasXiNjY0kJCTc0DYtLY3/+I//4Etf+hJf+MIXeOihhyguLiYn59r/nbjdbv793/+d//iP/xjUWkVEJLilZKXR0tiCO6yNk5eraWptJio8kqmZE/nkH7961wvK7ynbSVpOBmNn/H4ymrvJ7ZflL25GoWyIXX+b8bvf/S6HDx9my5YtZGVlsWvXLhYsWHDDbby7lZeXxyc/+Um+9KUvXXNr9M033+Tb3/42FRUVN4Sf692uV+qNN97gjTfeuOH4rFmzePvtt68+bmlp4dixY8yaNeuWdW7btg3omggxadIk/vRP//SaNr/61a9ITU0lPz//tvWKiMjw4fP5iBmbwEZnFa2+dmIiopmYNJZ4bzRFTz40KDv89O6J6+GIc/S5/MX1a5tFhEU4bvuCW1AoC7CmpiYcDgfJycnU1dXd8vbiYPjiF7/IhAkT2L17N/PmzeOdd97hjTfewOVyMWnSpD5ff7seuVt58skn+fKXv8wvfvELHn30Ub75zW8yd+7cm44nA9i5cyezZ8/G4/Hwta99jbFjx/LQQw9d0+btt9/m5Zdf1qr9IiIjQGdnJ7t376G0pIza2lpSkpKZ6BhHtDuM1Kx05uYvGLRerJ5tlXrGrEHfy1/cbG2zuMjYUQO5/rCafZmQ6t/Np/1x/i9+8Yt4PB7S09NZvHgxq1atGvRr9MjIyODll1/mm9/8JgB/8Rd/weXLl7nvvvuIj48nPj6ez33uc4N+zV/84hd89atfJSUlhS1btlyz7MbnPve5a675t3/7t6SnpzN27FjOnTvHr371q2vOV1NTg9Pp5OWXXx7UOkVEJLh0dnaydWsV/+s7f8/PfvpzwsIM6156ga989ct86kufZt3XXuXhz6we1NuKc/MX4Glswd3k5srFBg5u2seB9Xtoutx406U34NrJBybMEJsQi8/6OgdyfTPYt8n8ITc311ZVVd1w/ODBg8yYMSMAFUko0O8PEZHQ4/V62bZ1Oy5XGfX1DWRnj6GouJBZs2YQFub/vqSaI9Ws/0UZH289SGR0FOGR4XS0dRAREc4Dn3qUBUX3XtP+p996i+TMVEzY7+/ePPv6C+ea2prH3Om1dftSREREAq69vZ0tW7ZR5qqgsbGRcePH8uRTa5g+fVq/h6tcP7ZrILc2s6fkkJiWxPhZEzl3/CzhEeFEO2JobXHz4Zv/Rea4Udec82a3PA3mxpl6/aBQJiIiIgHT2trGpk2bqShfT3NzM5MmTeS559cyZcrkOxo7fLOxXa53PhzQQq/15y/TUFtPZHQkkVFdEwhi4hy0NDTfMBNzbv4CXO98CHRNCvC0eAgzYQplIiIiEho8Hg8bNmyismI9breHKVPvobiokEmTJw7ofDdbWLbn+O1C2c1611Ky0ji57wTxyb9fvsnb7iUuOeGGmZjZU3IoWPfgNedo6XBfGMh7UCgTERGRIdPS0kJl5QY2rN9Ia2sbM2ZMp7i4gHHjx93VeQeynMWtetdmrZhHREQ4rS1uYuIceNu9eNs7SMvJuOlMzOwpOdcEP+9rXs8Njfoh5EOZtVZLI8gNfD5foEsQEZFempqaKC9fz6aNm2lvb2f2nFkUFxeSnX3H4+FvaiDLWdyqd+388bM88KlH+fDN/6KloZm45ATScjIIDw/zy0bkPUI6lMXExHD58mXS0tIUzAToCukdHR1cuHCBuLi4QJcjIjLiXblyhbKyCrZs3obX62Xe/LkUFRWQlTWgpbxu6WZjuzyNLSxeveyWr7ld79rDn1lN5rhRdz1x4E6EdCjLycmhurqaixcvBroUCSIREREkJSWRnp4e6FJEREas+rp6nK5ytm2twlrLwoULKCzKu2E/5IG41SzL68d2LV697LYhqq/etetvS/pbSIeyyMhIJk4c2IBAERERGXyXLl3C6Sxne9UOjDHk3ncvhQV5pKal9v3ifuhrluWdhKiB9K75U0iHMhEREQkOFy7UUlrqYtfO3YSHh7Nk6SLy8/NITk4a1OsMdJblzQykd82fFMpERERkwM6ePUdpiZO9e/cTERHBypXLWZm3gsTEhL5fPAAD3TT8Vob6FuXtKJSJiIjIHTtz+gwlpS4O7D9IdHQ0BYV5rFy53O+TrAYyyzJUKJSJiIhIv504cZKSEicfHz6Cw+HgwQeLWbZ8KbGxjiG5frCNAxtMCmUiIiJyW9Zajh09TkmJk2PHjhMXF8fDjzzE0qWLiYmJGdJagm0c2GBSKBMREQlRg7EB9+1Yazl8+GNKSlycOnmKxMQEVj/+KIsX3U9UdNSgXedOBdM4sMGkUCYiIhKCBnMD7utZa9m//yClJU6qq2tITk7iyScf5777c4mMjBykdyDXUygTEREJQYO5NEQPn8/H3r37KS1xcu7ceVLTUnlm7VPce+8CIiJCNzL4u0dxsITur7CIiMgINphLQ3R2drJr1x6cpS5qay+SkZHB8y+sZf78eYSHhw9WyQHhzx7FwaZQJiIiEoIGY2kIr9fLju07cTrLuHy5jqysUax76QXmzp1NWFiYP8oecv7oUfQXhTIREZEQdDdLQ3R0dLBt23ZcznIaGhrIzh7DK598iZkzZwybMNZjsBeb9SeFMhERkRA0kKUh2tvb2bJ5K2VllTQ2NjJ+/DiefvoJpk2fijFmCKsfOqG02KxCmYiISIjq79IQra1tbNq4mfLySlpaWpg0aSLPv7CWe+6ZPGzDWI9QWmxWoUxERGSY8ng8rF+/kfWVG3C7PUydOoWi4gImTZoY6NKGTCgtNqtQJiIiMsy0tLRQWbGBDRs20traxsyZMygqLmDcuLGBLi0gQmWxWYUyERGRYaKpqYny8vVs2riZ9vZ25syZTVFxAdnZY6g5Us0HP/pN0K/VNZIplImIiIS4K1euUOaqYPPmrXR2djJ//lwKiwrIyhoFBOdaXaGyoOtQUigTEREJUXV19bicZWzbth1rLffeu4CCwjwyMjKuabenbCe+Th9nPz6Dp9mDI95BUkZywNbqCsaQGAwUykRERELMvqp9fPj+R5xrrMUYw+zpM3nsyUdJTU25afuaj89wqeYiUTFRxMQ56Gjv4OyxGtpb24e48i6htKDrUFIoExERCREXzl/gN7/+Lw4fPYLBkJOcRUZ0Kr4z7Xgut8AtQpmnyU1YmCEyqmsz8cioSLztHXia3ENZ/lWhtKDrUFIoExERCXI1NWcpLXGxb99+wjCMjstgUtZ4oiOiAHCHu2/byxQT78Dd6KajrYOIqAi87V6sr+t4IITSgq5Dya+hzBizCvgeEA782Fr77eueHwe8DSR3t/mKtfZ9f9YkIiISKk6fPkNpiYsDBw4SExNNYWE+tVtPk56ViQn7/aKvffUy5UwbR5QjmsaLDVfHlKXlZJA5btRQvI0bhNKCrr35e3KC30KZMSYc+AHwAFANbDPGvGetPdCr2V8AP7fW/pMxZibwPjDBXzWJiIiEghMnTlLykZOPPz6Cw+HgwYeKWb58KQ6Hgw+qf3PHvUw9IWjM1LHXhKC5+QuG4u3cIJQWdO0xFJMT/NlTdj9w1Fp7HMAY8y6wBugdyiyQ2P1zEnDWj/WIiIgELWstx44ep6TEybFjx4mLi+ORR1axZOliYmKir7YbSC9TMIagUFnQtcdQTE7wZyjLBs70elwNLLquzdeBD40xfwTEAcU3O9HFixfJzc29+vi1117jtddeG9RiRUREAsFay+FDH1NS4uTUqdMkJibw+OOPsmjR/URFR93QfqABK9RCULAZiskJgR7o/wLwlrX2u8aYJcC/GWNmW2t9vRtlZGRQVVUVmApFRET8wOfzceDAQUpLXFRX15CcnMyTT63hvvvuJTIy8ravvT5gabV+/xuKyQn+DGU1QO9NtnK6j/X2aWAVgLV2kzEmBkgHav1Yl4iISMD4fD727tlHSamL8+fOk5qWytq1T7Hw3gVERNz5P8taiHVoDMXkBH+Gsm3AFGPMRLrC2PPAi9e1OQ0UAW8ZY2YAMcBFP9YkIiISEJ2dnezatRtnaRm1tRfJzMzg+ReeZf78uYSHhw/4vFqIdWgMxbg8v4Uya63XGPM68Du6lrt401q73xjzTaDKWvse8KfAj4wxf0zXoP9PWmutv2oSEREZal6vl+3bd+J0llF3uY6s0Vm89NILzJk7m7CwsLs+vxZiHTr+Hpfn1zFl3WuOvX/dsa/1+vkAENyLkoiIiAxAR0cH27ZW4XJV0NDQQE5ONqs/+Qlmzpw+KGGshxZiHT4CPdBfRERkWGlvb2fz5q2Ul1XQ2NjE+PHjePrpJ5g2fSrGmL5PcIdCdSFWuZFCmYiIyCBobW1j48ZNVJSvp6WlhcmTJ/HCC88x+Z5JfgljPYJxDbJb8feK+KFOoUxEROQueDwe1ldupLJyAx6Ph6nTplBcXMjEiROGrIZQWINMs0T7plAmIiIyAC0tLVRUrGfjhk20trYxc9YMiooKGDdubN8vHoE0S7RvCmUiIiJ3oLGxiYrySjZt2kJHRwdz5syisKiA7OwxgS4tqGmWaN8UykRERPqhoeEKZWXlbNm8jc7OTuYvmEdRYT6jskYFurSQoFmifVMoExERuY26y3U4XeVUbduOtZZ7cxdSUJBHRkZ6oEsLKZol2jeFMhERkZu4ePESztIyduzYiTGG++7PpaAgj9TUlECXFpJCaZZooCiUiYiI9HL+/AVKS13s3rWH8PBwli5bTF7eSpKTkwJdWsgLhVmigaRQJiIiAtTUnKW0xMXevfuIiopiZd4K8vKWk5CQEOjSZIRQKBMRkRHt9OkzlHzk5ODBQ8TERFNUXMCKFcuIi4sLdGkywiiUiYjIiHT8+AlKSpwc+fgosbEOHlr1AMuWLcHhcAS6NBmhFMpERGTEsNZy9OgxSj5ycvz4CeLj43nk0VUsWbKYmJjoQJcnI5xCmYiIDHvWWg4dOkxJiZPTp86QmJjI42seY9Gi+4iKigp0eSKAQpmIiAxjPp+P/fsPUlripKbmLMnJyTz51Bruu+9eIiMjA11eyNGG4v6lUCYiIsOOz+djz559lJY4OX/+Amlpqax99mkWLpxPRIT+6RsIbSjuf/qdKSIiw0LNkWp2uXZw/MwJLnVewd3uITMzg+dfeJb58+cSHh4e6BJDmjYU9z+FMhERCXmnD53iV//2Sy56G2jrbCc2IobxMVmsWfMkY6eNC3R5w4I2FPc/hTIREQlZHR0dbN1axQe/+S1t3nYSYuKYmjWJ9LgUPM0e9lXsVigbJNpQ3P8UykREJOS0t7WzafMWyssqaWpqIi48hmljppMWn4IxBlAvzmDThuL+p1AmIiIho7W1lY0bN1NRvp6WlhYmT57Ei+ue42PnfjzNnquBDNSLM9i0obj/KZSJiEjQc7s9rF+/gfWVG/F4PEybNpWi4gImTpwAgMNGqxdnCGhDcf9SKBMRkaDV0tJCRfl6NmzYRFtbG7NmzaSoKJ+x48Ze0069ODIcKJSJiEjQaWxsory8kk0bN+P1epkzZzZFxQWMGTP6lq9RL46EOoUyEREJGg0NDZS5KtiyZRudnZ0sWDCPwsJ8RmWNCnRpIn6nUCYiIgFXd7kOp7OMqqodWGu5N3chhYV5pKenB7o0bS0kQ0ahTEREAubixYuUlpaxY/tOANIik5iSM4lFCxYFTSDT1kIyVBTKRERkyJ0/d57SUhe7d+8lPDyctIgkxqWOISkxCU+LJ2iCj7YWkqGkUCYi0otuVflXTc1ZSkqc7Nu7n6ioKPLyVuA948br8QZl8NHWQjKUFMpERLrpVpX/nD51mpISJwcPHiYmJobi4kKWr1hKXFwcP/3WW0EbfLS1kAwlhTIRkW66VXX3ru9pTJ06it2H93Lk46PExjp4aNUDLFu2BIfDcfU1wRx8tLWQDCWFMhGRbrpVdXd6ehpjEmLxxYex7cRumg63EOtw8OijD7Nk6SKio6NveF0wBx8tSitDSaFMRKRbMPfYhILdrh20Rnk5UX+MxtZmoiOiGJ+YzYRROeQXrLzl64I9+GhRWhkqCmUiIt2CuccmmPl8PvbvP8Dmozvw+NqIiYhm2qhJjE7MxGBoqK3r8xwKPiIKZSIiVwV7j02w8fl87Nm9l9JSF+fPX8ARGcOkxLGMy8wmzIQB4G5yq6dRpJ8UykREelGPTd86OzvZuWMXTmcZFy9eIjMzkxdefJaMuDTKf1ZCa3OrehpFBkChTERE+sXr9bK9agdOZxl1dfWMHjOaT3ziRWbPmUVYWFfPmHoaRQZOoUxERG6ro6ODrVu24XJVcOXKFcaOzWHNmtXMmDkdY8w1bdXTKDJwCmUiInJT7W3tbNq0hfLySpqampgwYTxrn32KqVOn3BDGROTuKZSJiMg1Wltb2bhhMxUV62lpaeGeeyazbt3zTJo8UWFMxI8UykREBAC328P6yg2sX78Bj6eV6dOnUlRcyIQJ4wNdmsiIoFAmIjLCNTc3U1Gxno0bNtPW1sas2TMpKipg7FiNDRMZSgplIiIjVGNjI+VllWzatAWv18vcubMpLCpgzJjRgS5NZERSKBMRGWEaGhpwOcvZurUKn8/H/AXzKCzMZ9SozECXJjKiKZSJiIwQly/X4XKWUVW1A2stubkLKSjMJz19YCvu1xypvmZNsrn5C7Qchshd8GsoM8asAr4HhAM/ttZ++yZtngW+Dlhgt7X2RX/WJCIy0tTWXsRZ6mLnzt0YY7h/0X0U5K8kJTVlwOesOVKN650PcSTGkZyZirvJjeudDylY96CCmcgA+S2UGWPCgR8ADwDVwDZjzHvW2gO92kwB/juwzFpbb4xR37mIyCA5f+48paUudu/eS0REBMuWLSEvfyVJSYl3fe49ZTtxJMYRmxALcPX7nrKdCmUiA+TPnrL7gaPW2uMAxph3gTXAgV5tPgP8wFpbD2CtrfVjPSIiI0J1dQ2lJS727dtPdHQU+fkrWblyOfEJ8YN2jfrzl0nOTL3mmCPOQf35y4N2DZGRxp+hLBs40+txNbDoujZTAYwxG+i6xfl1a+1vrz/RxYsXyc3Nvfr4tdde47XXXhv0gkVEQtmpU6cp+cjJoUOHiYmJofiBQpYvX0pcXNygXyslKw13k/tqDxmAp8VDStbAxqeJSOAH+kcAU4B8IAeoMMbMsdY29G6UkZFBVVXV0FcnIhICjh07TmmJiyNHjhIbG8uqVQ+ydNkSHI4Yv11zbv4CXO98CHT1kHlaPHgaW1i8epnfriky3PkzlNUAY3s9zuk+1ls1sMVa2wGcMMZ8TFdI2+bHukREQp61liNHjlLykZMTJ04SnxDPo489zJIli4iOjvb79bOn5FCw7sFrZl8uXr1M48lE7oI/Q9k2YIoxZiJdYex54PqZlb8GXgD+1RiTTtftzON+rElEJKRZazl48BClJS5Onz5DUlIia9Y8xqLF9xMZGTmktWRPyVEIExlEfgtl1lqvMeZ14Hd0jRd701q73xjzTaDKWvte93MPGmMOAJ3Al621GiUqInIdn8/H/v0HKC1xUVNzlpSUFJ56+gnuu+9eIiICPRJFRAaDsdYGuoY+5ebmWo0pE5GRyOfzsXv3HkpLyrhw4QLp6WkUFhWwcOF8wsPDA12eiNyEMWa7tTa375bX0n+vRESCUGdnJzt27MJZ6uLSpcuMGpXJiy8+x9x5c+46jGklfpHgdNtQZoxJvd3z1tq6wS1HRGToBGM48Xq9VFXtwOUso66unjFjRvOJl9cxe/ZMwsLC7vr8WolfJHj11VO2na7tjwwwDqjv/jkZOA1M9GdxIiL+EmzhpKOjgy1btlHmquDKlSuMHZvDmidWM2PGdIwxg3YdrcQvErxuG8qstRMBjDE/An5lrX2/+/HDwBN+r05ExE+CJZy0tbWxadMWyssraW5qZuLECax99immTp0yqGGsh1biFwle/R1Tttha+5meB9baD4wxf+unmkRE/C7Q4aS1tZUNGzZRUb4et9vNPVMmU/zSC0yePMmv19VK/CLBq7+h7Kwx5i+A/9P9eB1w1j8liYj4X6DCidvtprJyAxvWb8TjaWX69GkUFRcwYcJ4v163h1biFwle/Q1lLwD/E/gVXWPMKrqPiYiEpKEOJ81NzVRUrmfjhs20tbUxa/ZMiosLycnJ9sv1bkUr8YsErztap8wYE2etbfFjPTeldcpExB+GYvZlY2MjZWUVbN60Fa/Xy9x5cygszGfMmNGDeh0RCR5+XafMGLMU+DEQD4wzxswDPmut/fydXlBEJFj4c5ug+voGylzlbN1ahc/nY8GCeRQW5ZOZmemX64lI6Ovv7cu/Bx4C3gOw1u42xqz0W1UiIiHq8uU6nM4ytlftAODe3IUUFOSRnq6B9CJye/1e0d9ae+a66dmdg1+OiEhoqq2tpbS0jF07dxMWFsaiRfeRX5BHSkpyoEsTkRDR31B2pvsWpjXGRAL/DTjov7JERELDuXPnKS11sWf3XiIiIli2fAl5eStJSkoMdGkiEmL6G8o+B3wPyAZqgA8BjScTkRGrurqGkhIn+/cdIDo6ivyClaxcsZz4hPhAlyYiIaq/oWyatXZd7wPGmGXAhsEvSUQkeJ08eYrSEheHDh0mJiaG4gcKWbFiGbGxsX2/WETkNvobyv4/YGE/jomIDEvHjh2npMTJ0SPHiI2NZdXDD7J06RIcjphAlyYiw8RtQ5kxZgmwFMgwxvxJr6cSgXB/FiYiEmjWWj7++AilJS5OnDhJfEI8jz32CIuX3E90dHSgyxORYaavnrIoutYmiwASeh1vBJ7xV1EiIoFkreXgwUOUfOTkzJlqkpISWfPEahYtuo/IyMhAlyciw9RtQ5m1thwoN8a8Za09NUQ1iYgEhM/nY9++A5SWODl79hwpKSk8/cyT5OYuJCKi3ysIiYgMSH//lvmxMWattbYBwBiTArxrrX3Ib5WJiAwRn8/H7l17KC11ceFCLenpaTz33DMsWDif8HCN1BCRodHfUJbeE8gArLX1xhjtFSIiIa2zs5MdO3bhLHVx6dJlRo0axYvrnmPevLmEhYUFujwRGWH6G8p8xphx1trTAMaY8UD/dzIXEQkiXq+Xbdu243KWU19fz5gxo3n5lXXMmjVTYUxEAqa/oeyrwHpjTDlggBXAa36rSkTEDzo6OtiyeStlZRVcudLI2LE5PPHkambMmM5128iJiAy5foUya+1vjTELgcXdh75orb3kv7JERAZPW1sbmzZtoby8kuamZiZOnMCzzz3DlCn3KIyJSNDoa52y6dbaQ92BDOBs9/dx3bczd/i3PBGRgfN4Wtm4YRMVFetxu91MmXIPRS8VMHnypECXJiJyg756yv4U+Azw3Zs8Z4HCQa9IROQuud1uKis3sGH9RjyeVmbMmEZhUQETJowPdGkiIrfU1zpln+n+XjA05YiIDFxzUzMVFevZuHETbW3tzJ49i6LiAnJysgNdmohIn/q6ffnU7Z631v5ycMsREblzV640Ul5WwebNW/F6vcybN4fCogJGj84KdGkiIv3W1+3L1d3fM+naA9PZ/bgA2AgolImEkJoj1ewp20n9+cukZKUxN38B2VNyAl3WgNXX1eMqq2Db1ip8Ph8LFsyjsKiAzMyMQJcmInLH+rp9+SqAMeZDYKa19lz349HAW36vTkQGTc2RalzvfIgjMY7kzFTcTW5c73xIwboHQy6YXbp0GZezjKqqHRhjyM1dSEFhPmlpqYEuTURkwPq7TtnYnkDW7QIwzg/1iIif7CnbiSMxjtiEWICr3/eU7QyZUFZbW0tpaRm7du4mLCyMxYvvJ78gj5SU5ECXJiJy1/obykqNMb8Dftb9+DmgxD8liYg/1J+/THLmtT1JjjgH9ecvB6ii/jt37jylJU727NlHREQEy5cvJS9/BYmJiYEuTURk0PR38djXjTFPAiu7D/3QWvsr/5UlIoMtJSsNd5P7ag8ZgKfFQ0pWWgCrur3q6hpKPnKyf/8BoqOjKSjIY8XKZcTHxwe6NBGRQdffnjKAHUCTtbbEGBNrjEmw1jb5qzARGVxz8xfgeudDoKuHzNPiwdPYwuLVywJc2Y1OnjxFaYmTQ4c+xuGI4YEHili+YimxsbF9v1hEJET1K5QZYz5D116XqcBkIBv4Z6DIf6WJyGDKnpJDwboHr5l9uXj1sqAZT2at5fixE5SUODl69BhxcXE8/PBDLF22mJiYmECXJyLid/3tKfsCcD+wBcBae8QYk+m3qkTEL7Kn5ARNCOthreXjj49QWuLixImTxCfE89hjj7BkySKioqMCXZ6IyJDpbyhrs9a292zca4yJoGubJRGRAbHWcvDAIUpKnJw5U01SUhJPPLGa+xfdR2RkZKDLExEZcv0NZeXGmDcAhzHmAeDzwG/8V5aIDFc+n499e/dTUuri3NlzpKam8MwzT3Jv7kIiIu5kmKuIyPDS378B/xz4A2Av8FngfeDH/ipKRIafzs5Odu/eQ2lJGbW1tWRkpPPcc8+wYOF8wsPDA12eiEjA9RnKjDHhwH5r7XTgR/4vSUSGk87OTnZs34nTWcalS5cZNWoU69Y9z9x5cwgLCwt0eSIiQaPPUGat7TTGHDbGjLPWnh6KokQk9Hm9XrZt3Y7LVUZ9fQPZ2WN4+ZWXmDVrhsKYiMhN9Pf2ZQqw3xizFWjpOWitfdwvVYlIyGpvb2frlm2UlVVw5Uoj48aN5ckn1zB9xjR6JguJiMiN+hvK/odfqxAJcTVHqq9Z/2tu/oKgW3rC39ra2ti0cQvl5ZU0NzczadJEnn1uLVOmTFYYExHph9uGMmNMDPA54B66Bvn/b2utdygKEwkVNUeqcb3zIY7EOJIzU3E3uXG98yEF6x4cEcHM42llw4aNVFasx+32MGXqPRQXFTJp8sRAlyYiElL66il7G+gAKoGHgZnAf/N3USKhZE/ZThyJcVf3lOz5vqds57AOZS0tLayv3Mj69RtpbW1lxoxpFBUXMn78uECXJiISkvoKZTOttXMAjDH/G9jq/5JEQkv9+cskZ6Zec8wR56D+/OUAVeRfzU3NlJdXsmnTZtra2pk9ZxbFxYVkZ48JdGkiIiGtr1DW0fODtdZ7p+NCjDGrgO8B4cCPrbXfvkW7p4H/B9xnra26o4uIBFhKVhruJvfVHjIAT4uHlKy0AFY1+K5cuUJ5WSWbN2/F6/Uyb/5cigrzyRqdFejSRESGhb5C2TxjTGP3z4auFf0bu3+21trEW72we32zHwAPANXANmPMe9baA9e1S6DrluiWAb4HkYCam78A1zsfAl09ZJ4WD57GFhavXhbgygZHfV09Llc5W7dWYa1lwcL5FBXlk5GREejSRESGlduGMmvt3SyzfT9w1Fp7HMAY8y6wBjhwXbtvAX8DfPkuriUSMNlTcihY9+A1sy8Xr14W8uPJLl26hNNZzvaqHRhjyL3vXgoK8khLS72hrWafiojcPX9uNJcNnOn1uBpY1LuBMWYhMNZa+1/GGIUyCVnZU3KGTQi5cKEWZ6mLnTt3Ex4ezpIli8gvWElycvJN24/02aciIoMlYLv/GmPCgL8DPtlX24sXL5Kbm3v18WuvvcZrr73mv+JERqCzZ89RWuJi7959REREsGLlcvLylpOYeMtRCsDInX0qIjLY/BnKaoCxvR7ndB/rkQDMBsq6JxBkAe8ZYx6/frB/RkYGVVUa/y/iD2fOVFNa4mL//gNER0dTUJDHipXLiI+P79frR9rsUxERf/FnKNsGTDHGTKQrjD0PvNjzpLX2CpDe89gYUwZ8SbMvRYbGyZOnKPnIyeHDH+NwxPDAg0UsX76M2FjHHZ1npMw+FRHxN7+Fsu4lNF4HfkfXkhhvWmv3G2O+CVRZa9/z17VF5OastRw7dpySj5wcO3acuLg4Hn7kIZYuXUxMTMyAzjncZ5+KiAwVY60NdA19ys3Ntbp9KYEyHGYWWms5fPhjSktcnDx5ioSEBPLyV7Bk8SKioqPu+vzD4ddIRGSwGGO2W2tz+2553esUykRurffMwt69QKEys9Bay4EDByktcXHmTDXJyUnkF+Rx//25REZGBro8EZFhaaChLGCzL0VCQajOLPT5fOzdu5/SEifnzp0nNS2VZ9Y+xb33LiAiQn/sRUSCkf52FrmNUJtZ2NnZya5de3CWllFbW0tGRgbPPb+WBQvmER5+N2tBi4iIvymUidxGqMws9Hq97NixC5ezjEuXLpOVNYp1L73A3LmzCQsLC3R5IiLSDwplIrcR7DMLvV4vW7dW4XKW09DQQHb2GF5+5SVmzZqhMCYiEmIUykRuI1j3tWxvb2fLlm2UuSpobGxk3PixPPX0GqZPn0b3YswiIhJiFMpE+hBM+1q2traxadNmKsrX09zczKRJE3n+hbXcc89khTERkRCnUCYSAjweDxs2bKKyYj1ut4epU6dQVFzApEkTA12aiIgMEoUykSDW0tJCZeUGNqzfSGtrGzNmTKe4uIBx48cFujQRERlkCmUiQaipqYny8vVs2riZ9vZ25syZTVFxAdnZYwJdmoiI+IlCmUgQuXLlCmVlFWzZvA2v18u8+XMpKiogK2tUoEsTERE/UyiTESuY9musr6vH6Spn29YqrLUsXLiAwqI8MjIyAlKPiIgMPYUyGZF672mZnJmKu8mN650Ph3xPy0uXLuEsLWP79p0YY8i9714KC/JITUvt+8UiIjKsKJTJiBToPS0vXKiltNTFrp27CQ8PZ8nSReTn55GcnOT3a4uISHBSKJMRKVB7Wp49e47SEid79+4nMjKSlSuXszJvBYmJCX69roiIBD+FMhmRhnpPyzOnz1BS6uLA/oNER0dTUJjHypXLiYuL88v1REQk9CiUyYg0VHtanjhxkpISJx8fPoLD4eDBB4tZtnwpsbGOQb2OiIiEPoUyGZH8uaeltZZjR49TUuLk2LHjxMXF8cgjq1iydBExMTGDUL2IiAxHCmUyYg32npbWWg4f+piSUhenTp4iMTGB1Y8/yuJF9xMVHTVo1xERkeFJoUzkLvl8Pg4cOERpiZPq6hqSk5N48snHue/+XCIjIwNdnoiIhAiFMpEB8vl87N2zj9JSF+fOnSc1LZVn1j7FvfcuICJCf7REROTO6F8OkTvU2dnJrl17cJa6qK29SEZGBs+/sJb58+cRHh4e6PJERCREKZSJ9JPX62XH9p04nWVcvlxH1ugsXnrpBebMnU1YWFigyxMRkRCnUCYBE0x7T95OR0cH27Ztx+Usp6GhgZycbF755EvMnDlDYUxERAaNQpkExGDsPenvUNfe3s6WzVspK6uksbGR8ePH8fTTTzBt+lSMMYN2HREREVAokwC5270n7zTU3UmAa21tY9PGzZSXV9LS0sLkyZN44YVnmXzPJIUxERHxG4UyCYi73XvyTkJdfwOcx+Nh/fqNrK/cgNvtYerUKRQ/UMjEiRPu4p2KiIj0j0KZBMTd7j15J6GurwDX0tJCZcUGNmzYSGtrGzNnzqCouIBx48YO9O2JiIjcMYUyCYi73XvyTkLdrQJc7dkL/Odv3mfTpi10dHQwZ84sCosKyM4ecxfvTEREZGAUyiQg7nbvyTsJddcHuLaONo5dOEWtuw5bcZz58+dSVFTAqKxRg/cGRURE7pCx1ga6hj7l5ubaqqqqQJchQaa/g/d7xpSZ2AhqW+s411iLxTJz2nQee+JRMjLSA1C9iIgMV8aY7dba3Dt9nXrKJGT1d0PxqOQYOrLDOXj4EACjkzJ56NEHmblwpr9LFBER6TeFsgALlQVUQ9GF8xcoLXWxa9cewsPDWbZ8CXn5K0lOTgp0aSIiIjdQKAugwVhANVT5M4zW1JyltMTFvn37iYyMZGXeClauXE5iYsKgnF9ERMQfFMoC6G4XUA01PUGs+vBp6s9dJmvSGNJzMgctjJ4+fYbSEhcHDhwkJiaawsJ8VqxcRlxc3CC+CxEREf9QKAugu11ANZT07hX0NHnAwLnjZ4mJc5CQlggMPIyeOHGSko+cfPzxERwOBw8+VMzy5UtxOByD/TZERET8RqEsgO52AdVQ0rtXsLXFQ0ycA2+Hlwsnz5GQlnjHYdRay9Gjxyj5yMnx4yeIi4vjkUdWsWTpYmJiov34TkRERPxDoSyA7nYB1VDSu1fQEe+go62DiKhIPM0eoP9h1FrL4UMfU1Li5NSp0yQmJvD444+yaPH9REVF+fU9iIiI+JNCWQDd7QKqoaR3r2DmhCxO7T2Ot6ODmDgH7iZ3n2HU5/Nx4MBBSktcVFfXkJyczJNPreG+++4lMjJyCN+JiIiIfyiUBVh/19oKdb17BRNSEhk1aQznj58ltvuW5q3CqM/nY++efZSUujh/7jxpaamsXfsUC+9dQESEfvuKiMjwoX/VZEhc3yuYOW4UxS+vumUg7ezsZNeu3ThLy6itvUhmZgbPv/As8+fPJTw8fIirFxER8T+FMhky/ekV9Hq9bN++E6ezjLrLdYwencVLn3iROXNmERYWNkSVioiIDD2FMgkKHR0dbNtahctVQUNDAzk52az+5CeYOXO6wpiIiIwICmUSUO3t7WzevJXysgoaG5sYP2E8Tz/zBNOmTcUYE+jyREREhoxCmQREa2sbGzduoqJ8PS0tLUyePIkXXniOyfdMUhgTEZERSaFsiGjj8S4ej4f1lRuprNyAx+Nh6rQpFBcXMnHihECXJiIiElB+DWXGmFXA94Bw4MfW2m9f9/yfAH8AeIGLwKestaf8WVMgDOXG48Ea/lpaWqioWM/GDZtobW1j5qwZFBcVMHbc2ECXJiIiEhT8FsqMMeHAD4AHgGpgmzHmPWvtgV7NdgK51lq3MeYPgb8FnvNXTYEyVBuPD2X466/GxibKyyvZtHEzXq+XOXNmUVRcyJgxowNSj4iISLDyZ0/Z/cBRa+1xAGPMu8Aa4Goos9a6erXfDLzkx3oCZqg2Hh+q8NcfDQ1XKCsrZ8vmbXR2djJ/wTyKCvMZlTVqSOsQEREJFf4MZdnAmV6Pq4FFt2n/aeCDmz1x8eJFcnNzrz5+7bXXeO211wajxiExVBuPD1X4u526y3U4XeVUbduOtZZ7cxdSUJBHRkb6kNUgIiISioJioL8x5iUgF8i72fMZGRlUVVUNbVGDaKg2Hu8d/hovX6H25Hma65uIT0mg5ki1X3vLLl68iLO0nB07dmKM4b77cykoyCM1NcVv1xQRERlO/BnKaoDeo7hzuo9dwxhTDHwVyLPWtvmxnoAZqo3He8Jfc30T54+dxYSBCQ8jKSPZb2PLzp+/QGmpi9279hAeHs7SZYvJz19JUlLSoF5HRERkuPNnKNsGTDHGTKQrjD0PvNi7gTFmAfAvwCprba0fawm4odh4vCf8/fK779LZ2UlCYgKjJowmIS0Rd5N7UMeW1dScpaTEyb69+4mKiiIvbwUr85aTkJAwKOcXEREZafwWyqy1XmPM68Dv6FoS401r7X5jzDeBKmvte8B3gHjg37sXDD1trX3cXzWNBNlTckjLTmfygqmYsN8vwjpYY8tOnz5DyUdODh48RExMNEXFBaxYsYy4uLi7PreIiMhI5tcxZdba94H3rzv2tV4/F/vz+iOVPyYWHD9+gpISJ0c+PkpsrIOHVj3AsmVLcDgcg1GyiIjIiBcUA/3vRrAulhpIgzWxwFrL0aPHKPnIyfHjJ4iPj+eRR1exZMliYmKi/VG6iIjIiBXSoSwYF0sNBj1jyzb8opx9O3YDMH72xH6/3lrLoUOHKSlxcvrUGRITE3l8zWMsWnQfUVFR/ipbRERkRAvpUBZMi6UGo/bWNiYvnHq1t6yvwOrz+di//yClJU5qas6SkpLMU089Qe59C4mMjBzi6kVEREaWkA5lwbBYarC6k8Dq8/nYs2cfpSVOzp+/QFpaKmuffZp7711AeHj4kNcuIiIyEoV0KBuqlfJDUX8Ca2dnJzt37sZZWsbFixfJzMzkhRefZd68uQpjIiIiQyykQ9lQrZQfim4XWL1eL9urduB0lVN3uY7RY0bziU+8yOw5swgLCwtg1SIiIiOXsdYGuoY+5ebm2ltts6TZlzfXexJET2BtudJE+vxsdu7fTUPDFXJysil+oJCZM2fQvU6ciIiI3CVjzHZrbW7fLa97XaiHMrm1nsB66dxF3NEdnG2pxe12M2HCeIofKCTOONhbvkuBVkREZBANNJTpXtUwljY2nehJCRzrPMvRiycZPTqLz37uD/j8Fz5LfFgsZT/9CHeT+5rlRGqOVAe6bBERkREppMeUyc253R7Wr9/A+sqNeDwepk2bSlFxARMnTrjaRsuJiIiIBBeFsrsQbOPZmpubqazYwIYNm2hra2PWrJkUFRcwduyNNWk5ERERkeCiUDZAwbSbQGNjI+Xl69m0cTNer5c5c2ZTVFzAmDGjb/kaLSciIiISXBTKBigYbv81NDRQ5qpgy5ZtdHZ2smDBPAqLChg1KrPP12o5ERERkeCiUDZAgbz9V3e5DqezjKqqHVhryc1dSEFhHunp6f0+R8/+mL1vvy5evUzjyURERAJEoWyAAnH77+LFi5SWlrFzxy6MMdx/fy4FBXmkpKYM6HzZU3IUwkRERIKEQtkADeXtv/PnzlNa6mL37r1ERESwbNkS8vJXkpSUOOjXEhERkcBQKBugobj9V1NzlpISJ/v27ic6Ooq8vBWszFtOQkLCoF1DREREgoNC2V0YzNt/vZfXCEuKoo5GTpw+RUxMDMXFhSxfsZS4uLhBuZaIiIgEH4WyINCzvEZHtOVc+0XqT18hnDCW3reIVY8/hMPhCHSJIiIi4mcKZQFmraXsv1wcbz9LU3MLkeGRTM4YT2p4IjGN4QpkIiIiI4RCWYBYazl08DAlJU5OV58hOiKKKZkTGZOUSXhYONZntbq+iIjICKJQdgv+2kLJ5/Oxf/8BSktc1NScJSUlmWmjJpEUFk98YvzVdlpdX0REZGRRKLsJf2yh5PP52LN7L6WlLs6fv0B6ehrPPvs0C+9dwPnj53C98yFhJkyr64uIiIxQCmXXqTlSzS+/+y7N9U3EpySQOSGLxLQkYGBbKHV2drJzxy6czjIuXrzEqFGZvPjic8ydN4fw8HBAq+uLiIiIQtk1enrImuqbiEuKp6Otg1N7jzN+ziQSUhLvaIyX1+ulqmoHLmcZdXX1jB4zmk984kVmz5lFWFjYDe21ur6IiMjIplDWS88m4wkpCXS0dxAZHQlA7cnzRERF9muMV0dHB1u3bMPlquDKlSuMHZvDmjWrmTFzOsYYf78FERERCVEKZb30bDI+asJoTuw9BkB4ZATN9U19jvFqb2tn06YtlJdX0tTUxMSJE1j77FNMnTpFYUxERET6NGxC2WDMluzZZDwhLZHMcaM4feAk7iY3jvhYZq2Yd9Pztba28sF7v2Pb9io6Or2kxCbx9OonWLTyfoUxERER6bcbBzeFoJ6xYO4m9zWzJWuOVN/ReebmL8DT2MLF0xe4cOo8jgQHqVlpTJw3mf2Vu685n9vt4cPflfCX3/w2G7duJi7CwcKc2UxLnshR137OHq0Z7LcpIiIiw9iw6CnrGQsWmxALcPX7nc6W7JkF+cvvvovt9OFI/P3sy9rTF/jld98lcXQyTZGtnGuqpb2jg/T4VKYkjiczLf2GmjRwX0RERPprWISynrFgvTniHANaET97Sg5p2elMXjAVE9Z1+7Hx8hXOnqihJa6d6uZ6fNZHUkQ8a595igMf7SI5ZXCuLSIiIiPXsAhlPWPBenrI4O5WxO99vtaONg6dPUrzqDYAshIyGJ+ajWmHc3vPDPq1RUREZGQaFmPKesaCuZvcWJ/F3eTG09jC3PwFAz5fQ0MD+84cYtPxHTRHthHtDmdO6hRmjp5CXHTs1d6wwb62iIiIjEzDIpT1jAWLTYilobaO2ITYAW+JVFt7kcqqjRz2nOKSp560qCTGuJOZmj6BjMyMq+16esMG89oiIiIycg2L25dw9yvinz93npJSF3t27yUiIoLlK5aSl7eSpKTEa2Z33mxvSq3GLyIiIndr2ISym+nP2mXV1TWUlrjYt28/0dFR5OevZOXK5cQnxF9to70pRURExN+MtTbQNfQpNzfXVlVV3dFrenq3HIlx1/Ru9dxaPHXqNCUfOTl06DAxMTEsX7GUFSuWERsb2/fJRURERG7BGLPdWpt7p68btj1lt1q7rPz9Mppj2jhy5CixsbGsevhBli5dgsMRE8hyRUREZIQbtqGs99pl1lrq3Vc4UXeGK61NxCfE8+hjD7NkySKio6MDXKmIiIhICIWyO93bMiUrjZbGFjxhbZy8XE1jazNRYZFMyZzIq3/8KpGRkUNYvYiIiMjthcSSGB1t7Xe0t6XP58MxLpHdFw6xp+YQ7d4OJiblMM0xjkeffESBTERERIJOSPSUuZs8/drb0ufzsXv3HkpLyrhw4QLJSUlMdIwl2h1GalZ6n71rIiIiIoESEqGs6XIje8t2Mm7mREZPHgNcu79kZ2cnO3bswlnq4tKly6SmpDBz9BSiWgypSenMXaMwJiIiIsEtJJbEGJ2UZdfNewbb6SMtJ4PJC6YQERVJTFwMafNG4ywto76+njFjRrNg1jzObDxKbFL8TZfCEBEREfGnYb0khrUWb3sHWKg9eZ4rl6+QOC0Nb3oYzUc2M3ZsDk88uZoZM6bz2x//J7FJ8X3e6hQREREJJn4d6G+MWWWMOWyMOWqM+cpNno82xvzf7ue3GGMm3Ow87nY3xhgIh7DsGDpnRtPgcEObj2zS4aCbjf/q4rc//k9qPj6DI85xzet73+qsOVLNBz/6DT/91lt88KPf3HKygAyOH/7wh4EuQe6CPr/Qpc8utOnzC3npA3mR30KZMSYc+AHwMDATeMEYM/O6Zp8G6q219wB/D/zNzc7V6m0jbKyDiPuSCZ8US1gb+Pa3EHWyk7azLbQ2e7hUc5GLpy9w+ewlLlXXXvP6ns3De+9h2Z9ZnHL39BdLaNPnF7r02YU2fX4hL2MgL/JnT9n9wFFr7XFrbTvwLrDmujZrgLe7f/5/QJExxlx/opTUFMLGxWCbOgk/2g6H3ZhmHy1XmomMjsQRH0tUTBRXLjaQNWkM54+fxd3kxvos7iY3nsYW5uYvuGaVfxNmiE2IxZEYx56ynX78ZRARERHpm98G+htjngFWWWv/oPvxJ4BF1trXe7XZ192muvvxse42l3qfKzws3IaZMGx3sY7IGGIiYjoB2+nrbOt1vvD2zvaGiLAIh9fndYebsOhO62tr9bY1eH1eT1J0woRO62u/vtZwExZ1pa3p5OD/KghdXbiX+mwlwUqfX+jSZxfa9PmFtmnW2oQ7fVFIDPTv9HXe0HsmIiIiMpz48/ZlDTC21+Oc7mM3bWOMiQCSgMt+rElEREQkKPkzlG0DphhjJhpjooDngfeua/Me8Er3z88AThsKC6eJiIiIDDK/hTJrrRd4HfgdcBD4ubV2vzHmm8aYx7ub/W8gzRhzFPgGkHu3y2dIYPRj+ZM/McYcMMbsMcaUGmPGB6JOubm+Pr9e7Z42xlhjzB0viij+0Z/PzhjzbPefv/3GmJ8OdY1ya/34u3OcMcZljNnZ/ffnI4GoU25kjHnTGFPbPT7+Zs8bY8w/dH+2e4wxC/s8qbU24F9AOHAMmAREAbuBmde1+Tzwz90/Pw/830DXra87+vwKgNjun/9Qn1/wfPXn8+tulwBUAJuB3EDXra9+/9mbAuwEUrofZwa6bn3d0ef3Q+APu3+eCZwMdN36uvrZrAQWAvtu8fwjwAeAARYDW/o6p18Xj70Dg7Z8hgREn5+ftdZlrXV3P9xM1xhDCQ79+fMH8C261hJsHcri5Lb689l9BviBtbYewFpbiwSL/nx+Fkjs/jkJODuE9cltWGsrgLrbNFkD/MR22QwkG2NG3+6cwRLKsoEzvR5Xdx+7aRvbdWv0CpA2JNVJX/rz+fX2abr+9yDBoc/Pr7vbfay19r+GsjDpU3/+7E0FphpjNhhjNhtjVg1ZddKX/nx+XwdeMsZUA+8DfzQ0pckguNN/G0NjSQwZPowxLwG5QF6ga5H+McaEAX8HfDLApcjARNB1CzOfrh7qCmPMHGttQyCLkn57AXjLWvtdY8wS4N+MMbOttb5AFyaDL1h6yrR8Rmjrz+eHMaYY+CrwuLW27frnJWD6+vwSgNlAmTHmJF1jI97TYP+g0J8/e9XAe9baDmvtCeBjukKaBF5/Pr9PAz8HsNZuAmIY4L6KMuT69W9jb8ESyrR8Rmjr8/MzxiwA/oWuQKYxLcHltp+ftfaKtTbdWjvBWjuBrjGBj1trqwJTrvTSn787f01XLxnGmHS6bmceH8Ia5db68/mdBooAjDEz6AplF4e0Shmo94CXu2dhLgauWGvP3e4FQXH70lrrNcb0LJ8RDrxpu5fPAKqste/RtXzGv3Uvn1FH129eCQL9/Py+A8QD/949P+O0tfbxW55Uhkw/Pz8JQv387H4HPGiMOQB0Al+21uouQxDo5+f3p8CPjDF/TNeg/0+qQyI4GGN+Rtd/eNK7x/z9TyASwFr7z3SNAXwEOAq4gVf7PKc+WxEREZHAC5bblyIiIiIjmkKZiIiISBBQKBMREREJAgplIiIiIkFAoUxEREQkCCiUiUjQMsZYY8z/6fU4whhz0Rjzn4Gsqy/GmOZA1yAioUehTESCWQsw2xjj6H78AH2siO0v3TuJiIj4jUKZiAS794FHu39+AfhZzxPGmDhjzJvGmK3GmJ3GmDXdxycYYyqNMTu6v5Z2Hx9tjKkwxuwyxuwzxqzoPt7c65zPGGPe6v75LWPMPxtjtgB/a4yZbIz5rTFme/f5p3e3m2iM2WSM2WuM+csh+DURkWFIoUxEgt27wPPGmBhgLrCl13NfpWvLtfuBAuA7xpg4oBZ4wFq7EHgO+Ifu9i8Cv7PWzgfmAbv6cf0cYKm19k+AHwJ/ZK29F/gS8I/dbb4H/JO1dg5w221URERuRd3xIhLUrLV7jDET6Oole/+6px8EHjfGfKn7cQwwDjgLfN8YM5+urYWmdj+/DXjTGBMJ/Npau6sfJfy7tbbTGBMPLOX3W4UBRHd/XwY83f3zvwF/0+83KCLSTaFMRELBe8D/omufubRexw3wtLX2cO/GxpivAxfo6g0LA1oBrLUVxpiVdN0OfcsY83fW2p/Qtadgj5jrrt3S/T0MaOjuZbsZ7VknIndFty9FJBS8CXzDWrv3uuO/A/7IdHddGWMWdB9PAs5Za33AJ+ja7BljzHjggrX2R8CPgYXd7S8YY2YYY8KAJ29WgLW2EThhjFnbfS5jjJnX/fQG4Pnun9fd3VsVkZFKoUxEgp61ttpa+w83eepbQCSwxxizv/sxdI31esUYsxuYzu97u/KB3caYnXSNNfte9/GvAP8JbOT2Y8LWAZ/uPu9+YE338f8GfMEYsxfIvvN3KCICxlr1uIuIiIgEmnrKRERERIKAQpmIiIhIEFAoExEREQkCCmUiIiIiQUChTERERCQIKJSJiIiIBAGFMhEREZEgoFAmIiIiEgT+f5vJLJ64wW9GAAAAAElFTkSuQmCC\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "execution_count": 24, + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "#Single-Task Bayesian Optimization\n", + "for i in range(N_REPEATS):\n", + " print(f\"Repeat {i}\")\n", + " result = run_stbo(exp_amine, max_iterations=MAX_ITERATIONS)\n", + " result.save(f\"data/cross_coupling_similar/stbo_cn_noise_repeat_{i}.json\")\n", + " clear_output(wait=True) " + ], + "outputs": [], + "execution_count": null, + "metadata": {} + }, + { + "cell_type": "code", + "source": [ + "#Multi-Task Bayesian Optimization\n", + "pt_data = datasets[\"Morpholine\"].copy()\n", + "pt_data[(\"task\", \"METADATA\")] = 0\n", + "pt_data = pt_data.replace(\"≥90%\", 0.9)\n", + "for i in range(N_REPEATS):\n", + " print(f\"Repeat {i}\") \n", + " exp_amine.reset()\n", + " result = run_mtbo(exp_amine, pt_data, max_iterations=MAX_ITERATIONS)\n", + " result.save(f\"data/cross_coupling_similar/mtbo_pre-train_repeat_{i}.json\")\n", + " clear_output(wait=True)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Repeat 9\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " \n", + " 100.00% [20/20 01:36<00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py:4152: PerformanceWarning: dropping on a non-lexsorted multi-index without a level parameter may impact performance.\n", + " obj = obj._drop_axis(labels, axis, level=level, errors=errors)\n" + ] + } + ], + "execution_count": 25, + "metadata": { + "scrolled": true + } + }, + { + "cell_type": "code", + "source": [ + "stbo_results = [summit.Runner.load(f\"data/cross_coupling_similar/stbo_cn_noise_repeat_{i}.json\") \n", + " for i in range(N_REPEATS)]\n", + "mtbo_results_list = [summit.Runner.load(f\"data/cross_coupling_similar/mtbo_pre-train_repeat_{i}.json\") \n", + " for i in range(N_REPEATS)]\n", + "fig, ax = make_comparison_plot(\n", + " dict(results=stbo_results, label=\"STBO\"),\n", + " dict(results=mtbo_results_list,label=f\"\"\"MTBO, n={datasets[\"Morpholine\"].shape[0]}\"\"\")\n", + ")\n", + "fig.savefig(\"figures/stbo_mtbo_cn_similar.png\", bbox_inches='tight', dpi=300)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n", + "/Users/Kobi/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/sklearn/metrics/_regression.py:682: UndefinedMetricWarning: R^2 score is not well-defined with less than two samples.\n", + " warnings.warn(msg, UndefinedMetricWarning)\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEGCAYAAACD7ClEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABJcklEQVR4nO2deZxcVZX4v+fV2nunu7N3VpIQSCCCISC77CACiqNsCm6Io6IyGzoOi47+mGEcB8ZtXABXGAVBUBYRBAdkC8iShRBIQtLZ0+l9qe2d3x/3VXd1p5eq7upauu7383ld9fZT1a/Ouffcc88RVcVisVgspYmTbwEsFovFkj+sEbBYLJYSxhoBi8ViKWGsEbBYLJYSxhoBi8ViKWGsEbBYLJYSxp9vATKloaFB58+fn28xLBaLpWh48cUX96nq1KH2FZ0RmD9/PqtXr863GBaLxVI0iMjbw+2z7iCLxWIpYawRsFgslhLGGgGLxWIpYawRsFgslhLGGgGLxWIpYawRsFgslhLGGgGLxWIpYYpunoClSFE1C4NfAX8wn5JZLCWNNQKWsRPrMQsMr+AHvB+GQBmU1U6cnBaLZVisEbBkjpuA3jaIR7JzvVgPqAtlU0AkO9e0WCxpYY2AJTOiXRDpGL11nynxCHQ3G0Pg+LJ77dFwExDrBsTcWxxv8YFjh80skxtrBCzpkYhBbzskohN7j6Qh8AUm7j6pxHpNr0bd4Y/pMwqOMQqp65JiNHz252QpPuxTaxkZVdPyj3bl5n5uot8Q+EMTdx9Vo/yTYxojHuv2G4nECMeJYwa5fSHwh20vwlIUWCNgGZ54xLT+3Xhu76sK3fshXAPB8uxfPx41BiDbn0td07OI9QJtpjfj9wzCRPdsEnFwY+YzOd59cz2+Eo9CImJ6dG7C6yF5MogAkvLqDLFt0L5cuwUnK6O4bq0RsByI60KkPb1W8kTS2waagFBV9q4Z6YBIZ/auNxKJmFkinV4vIWQWX2h8vYSkwk9E+98P9UP3BbwlOP57DilHzDQUElGzZHucSMQbl/GB4x+05LGX5bqYqDd30DJ4mxcpZz6M93k8I5dq7IZdFwYY8qGuf4AMg7anEZ1njUCmuC70tno/6LLJ1+WP9ZjW/0g+8lwS6TSt23Dt+Fq2bgJ6Wid2TGMk1B0YUusLpvQSRvgZJg2JGxtZ4Y90Lt1m3fH3GwV/KPOWdiLutfSjptU/0c+IKmjc67ENikQT8YzBEAYinefETVWSwynP1G2p+3JIsneUTqj1GLFGIFMSEdP6iUeAdvODCoQ9H3ARd1+zHfaZTWK94O73IofGYHRjPV6vYmJ+RGMi2XqOdJjnJtlDUHdsCj8dXE+hJg2R4xvYUxhsjNyE19JPcfEUCqopRm4QScMg0v/9HdBCLxIG9CYmhpwYARG5DTgX2KOqy4fYL8AtwDmYZssVqvpSLmTLmMFKMvljpt3zAYdHb90VGhMV9plNElEzYFxel76xdV2ItHk++gLGTUC0m74Wey7v6yb6vx9xzDMsjqf0czwWlC2Sn8uSFrnyZdwBnDXC/rOBxd5yJfC9HMg0NkZqKSdiRpl27YXOveb9UC2V8aLa/6APWNwDl2S6htSlT944dDV77p8CNgBJ3Dh07UvvO41HoXtf4RuAQkJd83zHeorXAFgyJifNVVX9s4jMH+GQ84GfqqoCz4pIrYjMVNWduZAvbRKx9H2Cbtz4syOdpmua9P+OlCcnqdzVNQOi6nrriUH7CsRfnw/UNT2CcK1xwx2wP8chrRZLkVMoPovZwLaU9SZvW2EZgfgYW5VuHKJxo5iS/l9kkHJPFEdrvBBQhZ4W0GoIVvRvT8TNoP1E9L4slklKoRiBtNm7dy8rV67sW7/yyiu58sorc3PzeBYiS/r8v5Zxk5zDEK4pjnENi6UAKRQjsB2Yk7Le6G07gKlTp7J69eqcCDUA181feKFleKLdxo9tBwItljFRKEHu9wMfEcMxQFvhjQcUYOikxWANgMUyZnIVInoncDLQICJNwPVAAEBVvw88iAkPfRMTJ/fRXMiVEYUYP2+xWCzjJFfRQRePsl+Bz+RCljFjjYDFYpmEFMqYQGGTSWioxWKx5Ju+8HIv3HwErBFIh7GGhloslslJImoy3XbvMxMYu5vNJNHuZm89ZXs8MjA5nAgwaH1A0rghEsupNxn0gPlDg5S9O7rSH4w1AumQjdBQi8VSHMSj0LoFmt+CtqaBCr17n1H2vW35lnJ0kpXxxAe0D3uYNQKjYUNDLZbJSawH9m8yS/ObRunvfxNat43emhYHyuuhvMG8VjSY9xXJ9an92/1hhsxKekAGUwWGyFyKplS2S1ay8w16n1LlLrk9lX+ZNexHsUZgNGxoqMVS3EQ6Yf9bKYreW9q2M2SGTnGgdh7UHwS1cz2F3jBQ0YdriztrcArWCIyGjQqyWAobVeOqad9ulrYm89q6zSj7zt1Dn+f4Ycp8qFsIdYuM0q9fZLZNZGnTAsMagdGwRsBiyS+q0LPftNxTlXyf0t8+co/dF4K6BVDnKfm6hea1du7El/3MEEVJuEpCFdc1710XAn4h6Pfhm4CSodYIjIQNDbVYJhY33h9Zk0zBnnzfvqNf0Y8WoReugerZZqlJvjYaxV89u6BcNwn1lLv3apQ+uN62oYgkzB+fIwR9xiAEfdlJ+GCNwEjY0FCLZWzEevuVedce73VfyjZv6d5PWpWzQjX9yr16Vr+STyr+UOWEf6RUFDXjtoCq4mr/NkjmMTTbjbI3r66r46oTlnCVHlfpibmIQNBxCAYcgj4HZ4y9BGsERsKGhlqKiUgH7F4L05dBqCr392/dBuvuhfX3G5dNWkh/NE3FVDPomnxfNctT9LNy+nkUJZpwicZd4q5R8mCUODrRxR7TRxUiCZdIwngr/D6HkE8I+B0CGZRhtUZgOGxoqKVY2L0WXrkLXv8dxHuMn3v+ibDkLDjo3RCcwFZytAs2PgJr74WmF/q3+wJQPrVfoVcmI2y898nt5fVmgDbPuOop/phL1HWLMiN5POESTwDRBI4IQb8Q8DmE/CMbhPx/+4WKDQ21FDKxHtjwoFH+u1/r3163EPZvhrceM4svBAtOhIPPgYUnQaB8/PdWhe2rYe1v4I1HIObVx/CHYfGZsOx9MGfVgbHqBUbcNa39SEKJJybX2J+rSm9M6Y25dI5yrDUCw2GjgiyFyP5N8Or/mpZ3xJsFGqo2ivfwDxkj0LkbNv4BNjwEO16CNx81i78MFp4MB59tegpDleccifbtsO635t5tKYUAZx1p7r/k7Jz75jMh1c0TS5gB2VJgtE8pWmT9npUr36mrV7848Tfq2G0jgyzD48Zhz3rjAtm+Gra/aH5tMw6DGYfDTO+1vH7890rETKv+lTth23P922ccbhT/wedAoGzoczt2mtb6hodg1yv92wPlcNApRnHPP2H42texHnjzj6bVv/VZ+lRK5XQ49AJYdgFMWTD+zzhBTAY3TzaYNnvBi6q6cqh9xWcEjnyHrn7p5Ym9SSJmIhksliTxqHG7NL0ATatNCzuWRpnQ6tmeUTjcvE47dHiFPZj2HfDar2HN3SaSBkxrfum5sOJDMH15Zp+hrckYhDcegt1r+rcHK2HRqcYgzDsWnADs/Ktp8W94CKKeQ8EXhEWnwbL3w9x3FVTY5WASqnT0xolNMjfPWJlcRuCIFaYn4JtAT1akw0w1t5QusW7Y+QpsewG2v2DeDw4UqJ0HjUdB40qYvdIoxZ2vwK7XYNerZsB2sKEQHzQsNgZhxuGm51C/qF+hqgtbnjKt/s1P9vdG6xeZVv8h50O4evyfr3WrMQYbHoa96/u3h6qhbAq0vt2/bcbhRvEffLaJxy9wIokEHb3xAmn1m8ygKtL3HpLvnf5171WFofejA3MJoUhfvqED96GKJJ8dVabNnj/JjMBfnoSy2om7SVezjQwqNXrbTeu+abVR+rvXGpdPKvWLPaV/FMx+J1ROG/mabsLkq0kahV2vwb43DkxOFig3YZ31i2DL//WHVzoBWHw6rLjYGJkJmC0KQMtmYww2PAjNG822iqlwyHnG11+/aGLuOwF0R+N0RXNYblQc1PF5ydt8aF8iN9/QidzyxIyasklmBP78iHlIJ6I76rrD5xqxTD5i3fDYjbDufgYMoYljXDeNK2H2UTD7SNNCzsb99qzvNwo7XzEDrqlUzzat/mXvN3HzuaT5LZOiYdYRBRG6mS6K0t4TJ5pV94/0K3jvVfuydPoK2h02mJGMQPH8l1NRNX7Kieia2tDQ0qHlbbj/s6b16wSMa6ZxpWnpzzxiYiJdAuWmFzH7nf3bupu9XsIGaFgK84/Pn4KpPwg4KD/3HiNx16W9N56VaB91/OALob6gGQOZqN5XAVGcRgBM1EKwyuTRziY2NLQ02PQneOgfzfjPlAVw3rc9BZgHyutN6ObCk/Nz/yKmN56gszc+5lm86vgGKf3CcN/kkuI1AqoQ68r+dHJrBHKLam5bW+rCM9+GZ79r1hedDmf+v4KOb7cciKJ0RuL0xjJ0/4iDpir9InLpTBTFawQAot0mvC1bSsRmDc0uqmZCU8dOE+441GvXPuN/PvEfYOaKiZWnp9W0/rf82bT4jvsiHPWJkujyTyYSqrT3xtOb5SsO6guivoCZPV1E4xy5ori/EXVN7pJsteJs1tDMcBPQuQvad3qKfbv36q137DD/n9HYvhru/JCJUz/+Gqidk31Z96yHBz5nIm/CtfCe/zQx8ZaiIppwae+NjRz+KQ7qD6P+soKrF1CIFLcRABNtEazITmvOZg1Nj+a3zASmdb81kSQjESg3WSCrZva/Vs2C6pnmfbACXrwdXvyJiVt/84/wjkvg6E9nLwx43f3w6L+YQf/py+C9t5oIHEtRMVr4p/oCRvH7y2zvLgOK3wi4CW+QeJyJsWzW0JGJdpnZo2vuhp0v928vbzB53qtSFH2q0g9Vj/6DPP4aEwv/9C3GsLz0EzNb9ehPwTsuG3upv0QUnvw3ePkXZn3ZhXDqdSVVOnAyoCgdPfG+lMkDETRQZlv946A45wk8+fDAjY7fpKcdD7Ee4zO29KNqFP6ae8xEouTs10A5HPweWH6h8eNns9W1Zz38+WbY+hezXj0bjv+iyY+TSeRG52743Rdgx1+Ncnj3V+CwD9oWYpExXPinbfVnxuSbJzAYN26UeLo5WYbCRgX1091sWuRr7jGFupPMOtIo/iVnGTfORDDtELjwxyZ1wp//3cTwP/j3xl100j+aGP7R2P6iMQBde02is/feOvGDzpasc2D4p231TwSTwwiAcVdYIzB23IRRvGvuNjH0yZQJ5fUmW+TyC02a4lwgAgtOMAO3a++Fv9xikrf96sMm8+UJfz+0LKrw8s+NC8iNQ+MqOPdb2cnkaUmbZJ7+1LZ7qsdh4PYDN3rZb/qSv6njRwPlttU/QUweI5CIGUU+Fn9vKYeGtm6DtfcYZZtMlyGOmbi0/AOw4KT8tbocHxz2AVh6Dqy+HVb/GN56HDY9CYd/EI75TH9ahVgPPHodvP6AWX/nx+CEa2xIYI4Z7+StfgQNlNtWfw6YXL+QaNfYjEAxhYa2bjMFQrY9Z1rvyUyDkkxc5b13fPRlInQcz5/uDFzfv2lgfvqauXDYhablXzk9Tx9wCALl8K7PGMX/zLdNeuVX7jQuq1VXmt7Bg/9g0i4EyuGMr5uMlyVC3HWJu0os4aIuVIT9+HLcYh7z5K0k4qBOAHxBbyKXVfy5YnIMDKdSXj98gYzhKOSsoaomE+Wbj8LGRwem/c0GyZKAyy80/vZi6G43vwn/9x+w6YmB26fMh/f+t0nVPElJFklJuEosocSHKJQiQEXIT1kgN7NhE6q09cQyy93TN3M34M3cnVzt0UJj8g8MpxLtBH9d+scXYmioqin6sfEPRvm3bOnfFyj38sy820x60oRxZSXziWsi5f3gZdD2YKUpRJ7t1BsTTf0iuOD7ptLVn/8d9qyDg06Fs24qvs8yAoqn6BMu8YQScxU3jUabAp2ROJG4S9UE9wp64wk6I6Pn7jeJ2YJ9rX2brqFwmHxGIB6BRDz9ojOZZg3ds94onaqZJnyxambmPY+hcBMmn/1Grx5sx87+feEao+QWnw5zj7Vx7knmHgOX3m1mAdfMKY5ezAgkVL36t8a9M96smLGES0tXlIqQj7JA9n/qnZEYPcO4f9QXACfY39IvwcRsxULOjICInAXcAviAH6nqTYP2zwV+AtR6x1yrqg+O6WbRzvRnm2YSFeQm4J6PQU9LykYxtQ2SE6ZqZhvjUD3LMxKzhi/onYjC1ufgzT/Am48NnH1bMc2U8lt8hklvbLvLQyMO1M7NtxTjJq10CGnhVaHyML2CBJG4Zq1X4KrSNkzuHvWXocFK29IvInKiWUTEB3wHOB1oAl4QkftVdV3KYV8BfqWq3xORQ4EHgfljumG81yjsdB7ETIzA/reMAQhVQcPBJjdOxy7o2mMW/jr0eeUNxiAkDUXlNJM/ftOf+uu3ghmYXXy6yWw583DbeioRemIJuiLjjagRNFiBBiog3ovEu5FErG9vtnoFQxsrMbl6rPIvSnLVvFwFvKmqmwBE5C7gfCDVCCiQLJ5aA+wY893SLTqTaWjozlfM67zjTfx58hqdu01WzPbtKYu33rELuveZZdcrB16zYYlR+ovPMO+L3KVhyYyRXCrpor4gGqru7y0GysykqkQUiXUjXvTbeHsFB+bu8SZvBSqs8i9icmUEZgPbUtabgKMHHXMD8AcR+RxQAZw2rjumU3Qm09DQna+a19TZp74A1DSaZSjchOkltKUYh44dpkj5otNMRIslL7iqROJGKbpqFGMg20WKhiEr5RDFwQ1WDT9J0gu3VDfhGYMeUDfjXoGrSkdvqqxW+U8mCsnRfDFwh6p+U0TeBfxMRJarDmyq721uZuVJZ/WtX3nFZVz50csOvFo6RWcyzRqaTJw28/D0z3F8XubMmcCQEVqWHJKq+GODFHBrd4yygENFyI8wcT2yMYVUDkID5cb9ko7L0PGhoSpzfLwbiXWDm0irVxBzXdp74l5UklX+k5FcGYHtQGqS+EZvWyofB84CUNVnRCQMNAB7Ug+aWl/PiPMEUhmp6EymoaHRThOf7vhh6qHpn2fJOyMp/sH0xFyiiRiVIT9BX/Z7BeMdAFbHb1w/vjFEpIlAwIwbaDyCxLqIJaLD9gp6YnG6Igk0OXvXKv9JSa6MwAvAYhFZgFH+FwGXDDpmK3AqcIeIHAKEgb3juutIRWcyDQ3dtQZQmLp0+GgfS8GQieIfTMI1LfVwwKEyi72C8aVUEDRYiWYrcZ8/hPpDqBtHYt10RnrojceoCvnwOeKlblZjMIIVNkhhEpMTI6CqcRH5LPAIJvzzNlVdKyJfBVar6v3A3wE/FJEvYsawrtBsTGceruhMpgnjkoO6MzJwBVlyyngU/1D0xlyi8RgVIR9h//hawF3RON0jFEQZCfWFvIHfCWiFez0LDVYSi/XQ0tOFI5DwlaFhq/xLgZyNCXgx/w8O2nZdyvt1wHFZv/FwRWcyNQJ9g8LvyIpYluwQc13iCTdrin8wfYOiPpfKsB8nw4iakQuijII4uKFqk9pjohHHhJgGK3DVtcq/hCikgeGJI9o10AhkGhqq2h8emsmgsCWruKqe0u9Pp5CrzFeRhEu0O0pFcIicPI7PBCA4AZO2w42Dm8BNJGjr7iE+Bv1vBn6r8hMybA1ASVEaRmBw0ZlMQ0M7dpg4/3CNCe205IS46xJLaNbSKIwX1UE5eRzHuBoHBB/4gRCxhEtrLIYbKoMQptHhGgMh6ppnUhOIGx/QIDEDvzU2i6YlZ5SGEYCBRWcyDg1NjgdkuZSipQ/FZMfsa+UPkR2zUIglXPZHfFRU11IeOjCPU28sQXtPbGAvRRzwOeALDCyqknzjJkwvYixRPxbLOCgdI5AsOuMEMs8aal1BWSWhRsm7femQ89/KTxf1BdBgNfgCdESV3kSU6rAfvxdO2hWJ0xmJZ35hx4eJmbBYckvpGAGASOeBA8TpsGuImcKWUUkq+0RS0SskCriFPyLDzM6NJVz2d0UpD/lJuEpvbGwRQBZLvigtI5CIQjRDDZSIwu615r0NDx2SIZV9DgdtJ5aUxGzDuAIV0wOwWIqR0jICYNxCmbB3gzEEUxaMnpCuRIi5LrG4SzTHETq5xqZFtpQCpWcEMsWOB/SVNDQFT9KrblXMpPr9LZbJjjUCo5EcD5hROuMByUidZGu/WAZtx81oWTktlkmINQKj0dcTmNxGwMTku0S9mbclovb70GDliH5/i2WyYo3ASPS0QOvb4AuZgi+TiFJz8QyP4IZrbd1mS8lijcBI7HrNvM5YXvT+4aTSjyWM0i8ZF89IiIMbnlL0/1uLZTxYIzASySIyRRgaapX+yKjjR8NTbOSPpeSxRmAkhionWaAkVD2ffmHk2Slk1Bc0BsD6/y0WawSGRd2Cnilslf7Y0EC5yc1vsVgAawSGp2ULRNqhYipUzsi3NIBR/JFYgt64a5X+GNBgVfYqc1kskwRrBIajLzT0HXl1G8Rdl0jcLFbxjxUxxVls/L/FcgDWCAxH3ySx3A8KW8WfRcQxIaA2RbPFMiTWCAxHjieJxVzj37eKP3uo40PDdTYCyGIZAWsEhiLWYxLHiQPTlw3YpSiugtDvJRLG5i6KuS6RWKK0UjPkCPUFvAggWyrRUnxE4gl2tfWyo7WX3e29VIX9TKsOM60qRENlCJ+TPRe1NQIpuKokVHF3vkZIEyQaDqbLDeL2xHBVcV0dNp2C9P0xRiF1GEGk30yIt8Tc0p2lq47PFPdxAqjjN2UWEzFwo4g7/nz86g+bEo02BNRSoLiq7O2IsKO1hx2tvexo7WF7a49Zb+tlb0dk2HN9IjRUBZnuGYVp1WGmJ1+rQ0yvDlNXEcRJ8/kvOSMQTbgkXONycV1IADpIwZdte5kQEG1YTiTNKuHa98f0FgZai9JU9jCEwvcFhmydqzdpV9WFRLTfKCTiZPL9abDSpH+2WPJIwlX2d0XZ2xFhZ5tR7DtaetjRZpT+zrYeYonhn2ufCDNqwsyqDTOtOkxXb5zdHb3sbo+wvyvK7vYIu9tHMBSOGANRZYzCSJScEWjvjY1a2Sqwx6SLiE87LAcSTSLEQX3BURX+aNfAH0b95sFVVXBjxigkIgcUZk85ETdUBYExVI6zWDKgKxJnb0fELJ0R9nRE2DdofX9nlMQoimZKeYDZU8qYVVPGrNoyZteWMas2zKzaMqZVh/A7Q/92onGXfZ0Rdrf3esaglz0d3qu33toTY2dbLzvbeoG2EeUoKSMQTaRX2tC/x0QGxaYXX7qInCCOaeGLb3wKP617CfiCxrhQYfoEfb2EGOLVi3ZDNTYJnCUruKpsbe5m3c52Nu/r6lf4npLvjqbnspxSHqChMuS16MuYVRMeoPTLgmMLWAj6HXO92uFDniPxRJ9B2NMR4WP/Nvz1SssIxEf/5zlde/B17cYNVJKoXZADqQqTfiXvB/ENWs+zr90XAF8ADSTdcJp/mSxFS0tXlLU72lmzo421O9pZv7Odjt7hy4WG/A5Tq0JMrQyZ1+SSst5QGSLoz19QQsjvY05dOXPqRu8Zl5QRiMRH7wb4+1xByws6skR9ASBVvsGfbdD6gC5Q8r30KXZ1HBC/UfLFFlJpDYAlTXpjCd7Y3WGU/naj9I3LZCBTK0Msm1XN4umVfVE5UytDNFSFqA77kUn0zJWMEYi5blrROIGkK6hAxwNM6cMqO/nJYhmFpFtn7Y521nqt/I17Og8Ixw4HHA6ZUc2y2dUsm1XDslnVow6mTiaGNQIi8jPSCMtQ1Y9kVaIJIppmlI9/zxqg8AaF1fEZ5e8vnYfTYhkLqsovn9/KHU9voX2QW0eAg6ZW9Cn7ZbOrWdBQMewgbCkwUk/gzZT3DcDlwAPA28Bc4L3ATyZOtOySVqinGyew1xiBgukJiIMbrICATXxmsYxGZ2+cr/1uHU+8sRfod+skW/lLZ1RRESoZB0haDPttqOqNyfci8gjwHlX9v5RtxwP/MrHiZYeEpjcj19fyFhLvJVE1Gy2ry4FkIyFosMLWvbVY0mTjng6uvec1mlp6qAz5ue7cQznp4Kn5FqvgSdckHgM8O2jbc8C7sivOxJBOVBBAYHdyPCCfoaGCBsrMhKcCHpi2WAqJB1/byU0PvU4k7rJ4WiU3XXgYjVPsnJF0SNcI/BX4hohcp6o9IlIG3Ai8PGGSZZF0ooIgNTIoP64g9YeN8ndsd9ViSYdIPMG3Ht3IvX/dDsB7Dp/JP555MOFAkUW45ZF0tc0VwC+BNhFpAaYAq4FLJkiurOF6FbjSIbDXGIHY9NwaAfUFvYgfW/DcYkmXHa09fPne11i/s4Ogz+Hvz1zCeStmTarwzVyQlhFQ1S3AsSIyF5gJ7FTVrRMpWLaIpmkAJNqBr2Uz6gSI1y+dYKkM6vi9iB8709ViyYS/vLWP6+9fS3tPnJk1YW668DCWzrBlQ8fCSCGiQzmkm7ylb7/qkIlchrreWcAtgA/4kareNMQxHwRuwISmvqKq4+5pRGPphoauRVBi9QdPXAy+OKiIefWX2Tw3FkuGJFzlx09t5ranNqPAcYvquf69y6gps73osTJST2C09I3i7R/V+SYiPuA7wOkYI/KCiNyvqutSjlkMfAk4TlVbRGRaGvKPiKJp9wQCGeULEhBBxTGDt6kL0qfoD9xnsVjGSmt3lOt+u5bnNu9HgKtOWsjlx85PO2WyZWhGMgLZTJyzCnhTVTcBiMhdwPnAupRjPgl8R1VbAFR1z3hvGom7aSchTn9QWHArp49LLovFkhlrtrfx5XtfY3d7hNqyAF+7YDmrFuQ7jHtyMNI8gbcHb/NcQNNVdWeG95kNbEtZbwKOHnTMEu8eT2N6Fzeo6sMZ3mcA6c4SRrUvffRo4aFabHl1LJYiRlW556XtfOvRN4i7yvLZ1XzjfYeVVFqHiSatgWERqQW+C3wAiAEVInIesEpVv5JFWRYDJwONwJ9F5DBVbU09aG9zMytPOqtv/corLuPKj1425AXTdQU5Hdtxeltww1Nwq2aPcrD1PVosuaAnmuCmh17n4bW7APjgykauPnUxAZ91rWaTdENEvw+0APPod+E8A3wTSMcIbAfmpKw3ettSaQKeU9UYsFlE3sAYhRdSD5paX8/qJ0fvIKRbOwBI6QUcNvrsXBvDb7FMOG83d3HtPa+xaV8XZQEfXz5nKWcsm5FvsSYl6Wq0U4FZqhoTES+Fu+7NYPD2BWCxiCzAKP+LOHCOwX3AxcDtItKAcQ9tSvP6B5DuLGHoLyKTziQxtUbAYhkXycpYezsi7EtW5uocWLhlV1svsYQyv76c//f+w1g41ZYMnSjS1WhtmCRyfWMB3pyBtMYGVDUuIp8FHsH4+29T1bUi8lVgtare7+07Q0TWYUr//oOqNqf/UQYSHaF+52AG9ARGw07oslhGZHd7Lxt3d7Kno5d9ndE+xb7XK8PY2hNL6zpnHDqda89eahO+TTDpfrs/Au4RkX8GHBF5F/ANjJsoLVT1QeDBQduuS3mvwDXeMi7iXiH5tEhE8e97HUVMIZmRsKGeFsuwJFyTwvl/nnxr1CLq9ZXBAdW4Gryi6A2V/VW6KsNW+eeCdL/lfwN6MLH+AeA24H8wk78KjrSjggB/8+uIGyNeu9DM3h0B6wqyWIZmR2sPX31gHX/d1grAynlTmFVb5pVaDDKtKkxDVZCplSGmVARtbH8BkW7aCMUo/IJU+oOJZOIK2p2BK8gaAYtlAKrKQ2t2cfMjG+iOJqirCPKV9xzCcYsa8i2aJU1GShtxoqr+2Xt/ynDHqerjEyHYWHFViacZGgqZZQ61PQGLpZ/W7ig3PfQ6f9pgCricvGQqXzpnKbXltvRpMTGSVvuuiJzizdz98TDHKLAw+2KNnbQqiKXQNyicTroIawQsBUZ7T4w1O9p4ramNNdvb2dHWw4mLp/I3KxuZVVs2Yfd95q1mvva7dTR3RSkP+vi7M5bwnsNm2gyeRchIM4aXi8g+EfmiqmYzhcQ4GdnVk4kRkJ79+DqaUH+YxJSDRj/BThSz5BFXlS37unhte5tZmtrY0tx9wHG/fH4rd72wlZOWTOWiVXNZ0ViTNeXcG0tw62MbueclM81nRWMNN5y3bEINjmViGa1peyHwAxH5EHClqu7IgUwj074DVIec1KVk5grq6wVMXTZ6K18cW+bRklM6emOs3dHOa01G6a/d0U5nZGDh9KDPYenMKpbPruGw2TVMKQ9w38s7+OO63fxpw17+tGEvS2dUcdGqOZx2yPRxzbZdt6Od6+9fy9b93fgd4VMnLeTSo+fhc+zvopgZUfOp6pMicjgmvfMrInIjA5O+5X5MoKcFXrwdVn7sgF2ZJIyDTMcDbC/AMrE0tXTz0tZW1mxv49WmNrbs6zrgeZ5eHeKw2TV9Sv/gGVUHKPYj5k7hs+9exD0vNfGbl7bz+q4Obrh/Hd9+/E0+8M5G3nfE7Iz89nHX5Y6nt3DbU1tIqLKwoYIbz1/GkukjR9NZigPRNHIriEg5cCdwCrAvZZeqak7HBFbO8unqK6vggu/CwncP2NfeEyOSQU+g5vefIrj9WdpO/ybRBaeNeKwGKtCQfegt2ScST/C9J97izue3Ddge8AlLZ1R7Sr+awxprmFaVWeK03liCR9bu4q7nt7FpXxcAIb/DWctncNFRc0adibt1fzc33L+WtTvaAbhk1VyuOnkhIb9NpFhMzKgpe1FVVw61b1QjICKnAj8AXgI+k40Uz+Nh5ZKZuvqSblOQ5eK7oGEJYFxBzV3RtPMFoS71d5yAE+uk+dJHcStGzoDhhmogYP2eluzyxu4Obrh/LW/t7cInwolLGlgxp5bls2s4eHoVQX92JieqKi9saeHO57fyl7f6J+KvWlDHRUfN4V0H1Q+I3VdV7v3rdm55bCO9MZdpVSGuf++hrJxv0zcXIyMZgRHdQSJyG3AWcLWq3j0RwmVMxTQ4+FDY8CDc92m45NdQXpdRwjgAX+tmnFgniYrpoxoAwEYGTUJUlZ1tvazf2U7cVU4+eGrOWriDZ9fOrSvnxvOWceisiSmRKCKsWlDHqgV1vN3cxf++sI3fv7aT5zfv5/nN+5lXV86HjprDOYfNpDsa519/v77PWJy1bAZ/f+YSqsLWJToZGU2zBYDlqro/F8KkzRnfgNZtsPs1eOBzcOHtRBOZDU71jwekWUnMGoGiZ39XlHU721m/o9287mynpbs/j8306hBXnriQs5fPnNDBzl1tvdz4wFpe2toKwIVHzuZzpyymLJgbAzSvvoJ/PGspnzrpIO5/eQe/Wr2Nt/d38++PbOB7T76FI0JbT4yqsJ9/Omsppx9qiyhNZtIaEygkVh6xQlc/+TB07oZfftC8Lns/zcddTyYzBCr//FXKXr+HzqOvoWfF5SMeq44PLZ86PsEtOaUzEuf1nUbZr9vRzvqdHexq7z3guOoyP4fOrGZfR5Q393YCsLChgr9990Ecv6ghq3Hvqsoja3dz8yMb6IzEC2Z2bTzh8sSGvdz5wlbWbDe+/1Xz6/iX9x6S8RiEpTAZszuooKmcDud/F/73Ulj7G0JV8+k5fGRlnkpg7xogvcggOz+gsInEE7yxu3NAC//t5u4DImvKAj6WzqjikFnVHDrTLLNqw4gIriqPrN3F/zy5iU37uvj7X7/K4Y01fPbdi1gxp3bcMrb3xPi3h1/nj+vNkNqJSxr48tmHMKUi/7Nr/T6H0w6dzmmHTmftjjb2dkQ4cclUm9+nRCjenkCSNx6G330BRWg/8xai804a/SKxbhruOA4Q9n30afCPPOCrwUo0aPOZ55OEq+xu72Xr/m627e9mW0uP99rNjpZeEoOeY78jLJlexSEzqzjUU/rz6itGdfNE4y6/eamJ257eQpuX8viExQ387ckHjTmn/Qub93Pj79axtyNCWcDHNacv4b0r7OxaS+6YnD2BJEvOovuoz1D+wneoevxaWs//KYm6xSOeEti7DlGXWP3SUQ0A2JxBucJVZW9HZICSTyr97a09w6YnFowLJ7WFv2ha5Zgia4J+h4tWzeXcFbP4xbNv88vnt/J/G/fx9Jv7OOewmVx54sK069sODv08bHYNN5x3KI1TyjOWy2KZKIpeuyVU6XrHJ3H2v0X4rYepeeRqWi74BVo2fChbXyWxdPIFgXUHZRFVpbU7xlZPwQ9u2Y+U9qOhMsjcunLm1JUzZ0o5c+rKmFtXzqzaMsKB7A6qVob8fOqkg/jAOxv58VObue/lHfzu1Z38Ye1u/mZlI5cfO5+asuGfi8Ghn584YQEfOXYefsfWo7AUFkVvBCKxBIjQcdKN+Nq3Edi7lppHr6H1PT8A39D+1owqiSHg2IkxmdIZiQ9oyW/b39On9AenPkiltizA3PqBSn5OXTmNU8ooD+b+ca2vDPGPZy3l4lVz+f6Tb/HH9Xv4xXNb+e3LO/jIu+bxoaPmDDBAuQ79tFjGS9GPCbT0xPryBTnde6m99xJ8XXvoXXIeHSd99cB8P6rU/eJ0fN172f/B+0jUjpwbT30BtKw+659jMhCNuzS1JBV9z4DW/f6u6LDnVYR8zK0rNwp+SvkApV/osejrd7bznT+9yQtbWgCYWhniEycs4NwVM9nbEeGrD6zLW+inxTIc45oxXGikGgFXzSzhVPz71lP72yuQRO+Q4Z9O5y7qf3kmbrCK5sv/PGq5SPWXoeGa7H6IIiMad3l7fxeb93axaV//a1NLN8NV8Qz6HObUlTEnqey917l15UwpDxT9oOhzm5v5zp/eYsOuDgDm1pWzvytaUKGfFkuSSTswPJT/ON5wCO3v/jo1f/w7Kp77FonaeUTnndy3v3+S2PK06gWrr6i/ooyIxl227u9m095Oo+w9hd/U0nNA9A2AI9A4pWyAgjcKv4zp1eFJHWJ49IJ6jppfxx/X7eb7T25i636T0rmQQj8tlnQoag03XC3h6MLT6Fr5GSpWf4eqx780IGIo4A0Kx9KaKQxIUX9FQ9ITTbCtpZu3m/sV/pZ9XWzbP7yyn1NXxoKGChY2VLJwagULGiqYV19e0onEHBHOWDaDdy+dxsNrdlEW8HHqIdOKvpdjKS2KVsMpSmyEjKHdR3wSX8smwm895EUM/Rwtq+8bFE5rkhiAr7B91MMRT7jsaO0d4KdPDtLu6YgMeY5gWvYLpxplv6ChgoVTK5hbV5716JvJRMDn8N4Vs/IthsUyJorWCIxaO0CEjpNu8CKG1lDzh2toPed7+PeacghpRQaJk5bLKF8k4+q3Ng9S9MNMoErid6TPjZOq8OfVW2VvsZQaRWsEhnMFDcAfpv3M/6L23ksJ7H6Z2of+FklEiFfPRcO1o55eSJPEVJWmlh5ebWrjlaZW1u1oZ+sIcfUCzKwJH+Cvn1tXzvSakI1Xt1gsQDEbgTSLx7jlU2k/8xZq77+CwK6/At6gcDrk0QjEEi4bdnX0Kf1Xm9qGDLusqwj2DcamKvrZU8pK2l9vsVjSoyiNQKa1A/oihh79OyD9QeFc9gTae2K85pUVfLWplbU72g9o5deWBVgxp5bDG2s4vLGGhQ2VVIaL8l9osVgKhKLUINF4IvNzFpxGx3FfIrzxd0QXjlxKso8JMgKqyo7W3r4W/ivbWvtK/6Uyv76cwxuN0l/RWMucujIbeWKxWLJKURqBSHxsE9x6l11E77KL0j8hJWdQLOGyZnsbz23az862XuKuSzyhJFSJJ3T4dVeJuwPXowmX7uhAQxbwCYfMrGZFY39LP5Ni4BaLxTIWis4IKCYqZuLvI2zd38Nzm5t5bvN+Xny75QDFPR5qygJ9LfzDG2tYOrPK+vAtFkvOKT4jMIEGoK03zuptXTy7tYvntnWxs33gQOzChgqOXljHkulV+B3B73O8V8HnCH4n/fXKkN+6diwWS94pOiMwXK6asRBPKGt2dxul/3Yn6/b0DLh+bVmAVQvqOHqhKdBtS+1ZLJbJRtEZgfGyrTVilP7WTlZv66Ir1h+B43eEI2eXc/TcClYtmsGS2Q2TOv+NxWKxlJQR+J9n9/Cj5/cO2LZgSoij51VwzNxKjphVTrmX9tctn3JgGmqLxWIpAkRMbitHhNG0WM6MgIicBdwC+IAfqepNwxx3IXA3cJSqrs7W/be0RLj9hb04AqcsquaYuZUcPbeCGVVDReAIiB2ktVgs+UUAETOm6AgIgjhJBW9exdueXHdGqaM9mJwYARHxAd8BTgeagBdE5H5VXTfouCrg88Bz2ZbhO3/ZTULh/GW1fOXU2SMeq47P9gIsFktOEAG/4+ATwecTfCI4jrctQ4U+FnLVE1gFvKmqmwBE5C7gfGDdoOO+Bvwb8A/ZvPkrO7p54q0Own7hU0dPG/2EAsoZZLFYihsBfI4MWBwR/N77fEcJ5krbzQa2paw3AUenHiAiRwJzVPX3IpI1I6Cq3PLULgAuPbKBqZVppIa2heUtFkuGJFv0fl+/gg84TsbumVxTEE1eEXGA/wSuGO3Y5uZmTj/7vL71D196ER+57JJhj//TWx28tquHujIfHz4yvVrBagvLWyyWYRCBgOPg85R9cv5PoSv74ciVEdgOzElZb/S2JakClgNPeF2jGcD9InLe4MHh+vp6Hn3o/rRuGku4fPvp3QB88uhpVKRb8Nv2BCyWkqfPZeMzLXoz4bN4lf1w5MoIvAAsFpEFGOV/EdDXfFfVNqCvKreIPAH8/Xijg+5d08K2tijzpgS5YNmUNM8SsD0Bi2XS43hRN/kakC0UcmIEVDUuIp8FHsGEiN6mqmtF5KvAalVNr2mfAZ2RBD98zswJ+Oyx0/H70vunllJheYtlMiMCPjHuGsdJGZyVwhiQLRRypvFU9UHgwUHbrhvm2JPHe7+fvriP1t4EK2aWc9LCqvRPnISF5S2WUiPs91FdZvNzpcOk1Hi7O2L88q/NAHz++OkZPQi2J2CxFC8CVIb9lAft7zhdJuU39T/P7SGSUE5dVM1hM8szO9n2BCyWosQRobY8QMBn62dnwqTTeG/u6+V361rxOfCZY9OYGDYYn40MsliKjZDfoTocmHSRO7lg0hmBW5/ejQIfOKyOObWhzE4WxywWi6VoqAz5qQhNOlWWMybVN/fc1k6eebuTiqDDx4+amvH5uSwsb7FYxocI1JYFCfptw208TBqt56ry397EsMvf2cCU8jF8NGsELJaiIOBzqC2z7p9sMGm03sMb2tiwt5dplX4uPiK99BCDsT0Bi6XwKQ/6qArbsbtsMSm0XiTu8r1n9gBw1THTCI+1e2jTRVgsBYsIVIcDhAN2Rn82mRRG4Fev7GdXR4xF9SHOWVo79gvZnoDFUpD4HaG2PFhS6RxyRdFrvdaeOLe9YNJDXH38jDE/JLaQjMVSmJQFfVSF7OzfiaLojcDtL+yjM+qyak4Fx8ytGPuF7CQxi6WgEKC6zLp/Jpqi1nzb26L86tX9CHD1cZmlhzgAO0nMYikIBPD7HKrDfvx29u+EU9RG4LvP7CbuKucsreHgaWXjupbawvIWS85JKny/l7Pf7xOb9iHHFK0RWLu7hz+80U7QJ3z6XWNIDzEY2xOwWCaUZEWupKL3O2Jb+gVAURoBVeVWr27wRe+oY0ZVcJxXFBsZZLFkEUeEgM8oeb9jlL6N7ClMilLzPbWlk5e2d1MT9nHFyszTQwzG1hS2lBqJeJz25t3Eo5GsX9sRbCRPHgiHwzQ2NhIIZObVKDojoCnpIT521FSqQllQ4LYXYCkx2pt3U1tTTV1dXdYUtiNiDUCeUFWam5tpampiwYIFGZ1bdA651t4Em/dHmFUd4AOHpVs3eBTsTGFLiRGPRrJmAAQzmcuWbMwfIkJ9fT29vb0Zn1t0RmBfVxyAzxw7PWvZA607yFKKZENh+8T4/a3yzz9j/R8UnR8k7iqHTi/j9MXV2buo7QlYLBkhYFv+k4SiMwKQhYlhAxCwPQGLJW18juBY5T9pKDp3UGXQxzsbx5EeYhC2sLxlMjGRqtkR4/vPhQF46qmnOPbYY6mpqaGuro7jjjuOG2+8kcrKSiorKwmHw/h8vr71ZcuWAcYlUlFRQWVlJQ0NDVx88cW0trb2XVdVufnmm1m8eDFlZWXMnTuXL33pS0Qi2Y+SKhaKzghMq8yy0rauIEsR43OEcMBHdThAfUWQadVh6iuC1JQFKAv6CPiccRuGpOvH5+TG99/e3s65557L5z73Ofbv38/27du5/vrred/73kdnZyednZ18//vf513velff+tq1a/vOf+WVV+js7GTTpk20tLRwww039O27+uqr+cEPfsBPf/pTOjo6eOihh3jsscf44Ac/OOGfq1ApumZwKMul5OygsKWY8DtCwO8Q9JllqMpaJg0DfYnXVJW4q8QSLrG4EnPdtO/niOR8ktcbb7wBwMUXXwxAWVkZZ5xxRsbXqa6u5rzzzuO+++4DYOPGjXz3u9/lmWeeYdWqVQAsW7aMe+65h0WLFvH4449zyimnZOdDFBFFZwSyju0JWAoUwZRRDPgdAj4hOMYoHPFm7wZ8DniT6/d4yl3VGIlF//xQdoUfhi03vWfUY5YsWYLP5+Pyyy/noosu4phjjmHKlMzDwVtaWrjvvvs45phjAHjsscdobGzsMwBJ5syZwzHHHMOjjz5akkag6NxBWcdOFLMUCCKmp1sV9lPnuXamVASpDPkJ+X1ZdcWI9LfyCy1/T3V1NU899RQiwic/+UmmTp3Keeedx+7du9M6/8gjj6S2tpaGhga2bt3Kpz71KQD27dvHzJkzhzxn5syZ7Nu3L2ufoZgobQ0ojlksljwimMIpFUF/3gqnp9NCzyWHHHIId9xxBwCvv/46l112GV/4whe48847Rz33pZdeYtGiRcRiMb773e9ywgknsG7dOhoaGti5c+eQ5+zcuTPjmbaThZLWgLawvCXfhP0+6itDVIUDeTMAhc7SpUu54oorWLNmTUbnBQIBPvGJT7B582bWrFnDKaecwrZt23j++ecHHLdt2zaeffZZTj311GyKXTSUtBGw4wGTGyGZzdIh5HcIB3yUB31UhvxUhwPUlAWYUh6koTJEXUWQcMA3oSGWqQR8DlPKg9SUB2x2zUG8/vrrfPOb36SpqQkwSvrOO+/s8+2nSyKR4Pbbb6esrIyFCxeyZMkSrrrqKi699FKeffZZEokEa9eu5cILL+S0007jtNNOm4iPU/CUdFPYRgYVB4IZ3Ez6sR0BQRCnf90ZsD/zRGY+hJoyBzfkpyeWoDuawFXN+mdxRKgK+23JxBGoqqriueee4z//8z9pbW2ltraWc889l5tvvjmt81esWIGI4DgOBx98MPfeey91dXUAfPvb3+bmm2/msssuY/v27X1zCb761a9O5EcqaEQn4EGfSN6x4nB99KH7s3Itt6zeFpPJAwI4jpiJR44MUORwoGLPV2qCXs8YxBLph1QOhwAVIT/lwewO8I6V9evXc8ghh+RbDEuWGe7/KiIvqurKoc4p6Z6AjQyaOBzpV/LJDJOp24qBcMBHOOAjlnDpjiaIxBKMpckUDvioCuVv0NdiGYmS1YLq+EycnCVtxPvjiPT52x0RfD7BJ4LjgN+ZfBWkAj6nz1XUHUvQk6arKOgz4Z6FFoJpsaRSskYAKZ2PnlTeQr+v3PjZzXsn9ZWkC2agss+nW6ZQcByhMuSnIugjEneHdRX5HOP3D/mt399S+ORME4rIWcAtgA/4kareNGj/NcAngDiwF/iYqr49YQIV4ViAiNfS9lrfSUWe9KXLEIreuiCyj4gMdBVFEkTiCRCoDPkpD5ZOA8NS/OTkaRURH/Ad4HSgCXhBRO5X1XUph/0VWKmq3SLyaeDfgQ9NlEwqhddKSyptX4qLxef50/02d3tBEvA51JQ7uK7f9pYsRUmumiyrgDdVdROAiNwFnA/0GQFV/VPK8c8Cl02oRDnuCaT60x0Z6EOfrL70UsL2uCzFSq6MwGxgW8p6E3D0CMd/HJjAjFYyrsggnzMwFv2A+PXUdVt822KxFDAF57wUkcuAlcBJQ+1vbm7m9LPP61v/8KUX8ZHLLsnoHmOZJCYCZQEf5UG/bbFbLJZJQ66MwHZgTsp6o7dtACJyGvDPwEmqOmSpn/r6esY9WSyDXoDPEcqDPsoChTHJx2KxWLJJrgKYXwAWi8gCEQkCFwEDNLmIHAH8D3Cequ6ZUGnSyBkU9DnUlAVoqAxRHvRbA2Cx5Ij58+cTDAYPSO18xBFHICJs2bKFs88+u6+0ZCAQIBgM9q1fddVVPPHEEziO07dt9uzZXH/99QOu19rayqc//WlmzJhBeXk5hx12GLfffnsuPyoAN9xwA4FAoE/WyspKNm3a1Lc/kUjwla98hVmzZlFVVcURRxwxoGTmeMlJT0BV4yLyWeARTIjobaq6VkS+CqxW1fuBm4FK4Neewt2qqucNe9HxyDNMT0CAUMBHRdBnJ/hYLHlkwYIF3HnnnXzuc58D4LXXXqO7u7tv/0MP9Q8ZXnHFFTQ2NvKv//qvfdueeOIJZs2a1ZeEbvPmzZxwwgkcccQRXHDBBUSjUU477TSmTZvGM888Q2NjI4899hiXX345LS0tXHPNNTn6pIYPfehD/PznPx9y3/XXX89f/vIXnnnmGebOncvatWsJh8NZu3fONJ2qPqiqS1T1IFX9urftOs8AoKqnqep0VX2HtwxjAIRxl9MeZAQcESpCfhoqQ9SUBawBsFjyzIc//GF++tOf9q3/5Cc/4SMf+ciYr7dgwQKOPfZY1q0zAYk/+9nP2Lp1K7/+9a9ZsGABgUCAs846i1tvvZXrrruO9vb2Ua/5xBNP0NjYyDe/+U2mTZvGzJkzs96TaGlp4b/+67/44Q9/yLx58xARli9fnlUjUHADw6Ohjh+3YhokokgiColexE2kfwFxwBsY9jtG+Yf8uSmgbbEULDfU5Og+bWkddswxx/Czn/2M9evXs2TJEu666y6efvppvvKVr4zpths3buTpp5/mqquuAuDRRx/l7LPPpqKiYsBxF154IZdeeinPPPMMZ5555qjX3bVrF21tbWzfvp1HH32UD3zgA1xwwQVMmTKFm266iZtuumnYc1NdOg888AB1dXXMnDmTz372s3z6058GTA/I7/dz9913861vfYvq6mo+//nP85nPfGYM38LQFJ0RALypsyHUHwKqUDcBiQiSNAw6fNZHdXyE/A7lQT/BLBett1gs2SPZGzjppJM45JBDmD17dkbn79ixg9raWlzXpaOjg/e9730cf/zxgCk1uXLlgUk1/X4/DQ0NaZeaDAQCXHfddfj9fs455xwqKyvZsGEDxxxzDNdeey3XXnvtqNf44Ac/yJVXXsn06dN57rnnuPDCC6mtreXiiy+mqamJtrY23njjDTZv3szGjRs59dRTWbJkCaeffnpG38dwFKcRGIzjA6ccDZSbLI+JWH8vIREHFBEI+x3KKirwlQfzLLDFUmCk2ULPJR/+8Ic58cQT2bx585hcQaljAm1tbfzt3/4tl19+OXfeeeewpSbj8Tj79u2joaEhrXvU19fj9/er0fLycjo7OzOS89BDD+17f+yxx/L5z3+eu+++m4svvpiysjIArrvuOsrKyjj88MO56KKLePDBB7NmBCZnU9gXQIMVaFk9UjWditoG6mtrqSwrw+cvvpxBFkspMm/ePBYsWMCDDz7I+9///nFdq6amhksuuYQHHngAgNNOO42HHnqIrq6uAcfdc889hEKhjKuYDcU3vvGNARE/g5fhEBGSdV4OP/zwvm2p+7PJ5DQCQMjvUFseoKEqTHl5JVJWC5VTIVgx6rkWi6Uw+PGPf8zjjz9+gO8+Uzo7O7nrrrtYtmwZYHoZjY2N/M3f/A1btmwhFovxyCOPcPXVV3PDDTdQU2PGSK644gquuOKKMd3zy1/+Mp2dncMuSX7729/S0tKCqvL8889z6623cv755wNw0EEHccIJJ/D1r3+dSCTC+vXrueuuuzj33HPH9X2kMjncQR4ChIM+ygM2xNNimQwcdNBBYz53x44dfS3uZOv+F7/4Rd/6H//4R770pS9x9NFH097ezsKFC/n617/OJz7xib5rbNu2jYsuumh8H2IU7rrrLj72sY8RiURobGzkn/7pn7j88sv79t955518/OMfp76+nmnTpvG1r32NU089NWv3L7rykiuOeKf+4cmnB2yzs3otlsyw5SVHJxqNsmLFCl599VUCgeJwI5dcecmgz6Es6LNFuy0WS9YJBoOsX78+32JMOEVnBAQosy4fi8ViyQpFZwT8PqE6XBxdM4vFYil0bFPaYrFYShhrBCyWEqXYgkIsIzPW/6c1AhZLCRIOh2lubraGYJKgqjQ3N48psVzRjQlYLJbx09jYSFNTE3v37s23KJYsEQ6HaWxszPg8awQslhIkEAiwYMGCfIthKQCsO8hisVhKmKIzAoXQff3BD36QbxGAwpDDytBPIchRCDJAYchRCDJA4cgxHEVnBNLN8z2RFMo/tRDksDL0UwhyFIIMUBhyFIIMUDhyDEfRGQGLxWKxZI+iSyAnIh3AhjyL0QDkv0tSGHJYGfopBDkKQQYoDDkKQQYoDDnmqerUoXYUnRGwWCwWS/aw7iCLxWIpYawRsFgslhKmaIyAiJwlIhtE5E0RuTZPMswRkT+JyDoRWSsin8+HHJ4sPhH5q4j8Lo8y1IrI3SLyuoisF5F35UGGL3r/izUicqeIZD5vfmz3vU1E9ojImpRtdSLyqIhs9F6n5EGGm73/x6sicq+I1E6kDMPJkbLv70RERSS9yu1ZlkFEPud9H2tF5N8nUobh5BCRd4jIsyLysoisFpFVEy1HJhSFERARH/Ad4GzgUOBiETk0D6LEgb9T1UOBY4DP5EkOgM8D+a54cQvwsKouBVbkWh4RmQ1cDaxU1eWAD5jYWoD93AGcNWjbtcBjqroYeMxbz7UMjwLLVfVw4A3gSxMsw3ByICJzgDOArfmQQUTeDZwPrFDVZcB/5EMO4N+BG1X1HcB13nrBUBRGAFgFvKmqm1Q1CtyF+efmFFXdqaovee87MEpvdq7lEJFG4D3Aj3J97xQZaoATgR8DqGpUVVvzIIofKBMRP1AO7MjFTVX1z8D+QZvPB37ivf8JcEGuZVDVP6hq3Ft9Fsg8mUwW5PD4FvCPwIRHnwwjw6eBm1Q14h2zJ09yKFDtva8hR89ouhSLEZgNbEtZbyIPyjcVEZkPHAE8l4fb/xfmx+Xm4d5JFgB7gds9t9SPRKQilwKo6nZM624rsBNoU9U/5FKGQUxX1Z3e+13A9DzKAvAx4KF83FhEzge2q+or+bi/xxLgBBF5TkSeFJGj8iTHF4CbRWQb5nnNRe8sbYrFCBQUIlIJ3AN8QVXbc3zvc4E9qvpiLu87BH7gSOB7qnoE0MXEuz8G4Pncz8cYpFlAhYhclksZhkNN7HXe4q9F5J8x7stf5OHe5cCXMa6PfOIH6jCu238AfiUikgc5Pg18UVXnAF/E6z0XCsViBLYDc1LWG71tOUdEAhgD8AtV/U0eRDgOOE9EtmDcYqeIyM/zIEcT0KSqyZ7Q3RijkEtOAzar6l5VjQG/AY7NsQyp7BaRmQDe64S7H4ZCRK4AzgUu1fxMBDoIY5hf8Z7TRuAlEZmRYzmagN+o4XlMz3lCB6iH4XLMswnwa4x7u2AoFiPwArBYRBaISBAz+Hd/roXwWhE/Btar6n/m+v4AqvolVW1U1fmY7+FxVc1561dVdwHbRORgb9OpwLoci7EVOEZEyr3/zankd7D8fswPHu/1t7kWQETOwrgKz1PV7lzfH0BVX1PVaao633tOm4AjvWcml9wHvBtARJYAQfIzc3cHcJL3/hRgYx5kGB5VLYoFOAcT7fAW8M95kuF4TBf/VeBlbzknj9/JycDv8nj/dwCrve/jPmBKHmS4EXgdWAP8DAjl6L53YsYhYhgl93GgHhMVtBH4I1CXBxnexIyfJZ/P7+fjuxi0fwvQkIfvIgj83Hs2XgJOydNzcTzwIvAKZgzxnbl4RtNdbNoIi8ViKWGKxR1ksVgslgnAGgGLxWIpYawRsFgslhLGGgGLxWIpYawRsFgslhLGGgGLZQIRkU4RWZhvOSyW4bBGwDJpEZEtItLjKeJdInKHl/Jjou73hIh8InWbqlaq6qaJuqfFMl6sEbBMdt6rqpWYiW1HUGDJuyyWfGONgKUkUJOy4BGMMUBEjhGRv4hIq4i8IiInJ48VkY96RXI6RGSTiHwq9Voicr5XIKRdRN4SU/Do68AJwLe9nse3vWNVRBZ572tE5KcisldE3haRr4iI4+27QkSeEpH/EJEWEdksImen3PMKT5YOb9+lE/qFWUoGf74FsFhygVeD4Wzgca8Yze+BDwMPY3IO3SMiS1V1Lybx27nAJkzNhIdE5AVVfcmrCvVT4AOYFBEzgSpVfVhEjgN+rqrD1Xn4b0w++YWYFBN/wKQYSGaVPBpTh6ABuBL4sSdrOXArcJSqbvCS09Vl67uxlDa2J2CZ7NwnIh2YfDp7gOuBy4AHVfVBVXVV9VFMDqRzAFT196r6lhqexCjrE7zrfRy4TVUf9c7drqqvjyaEVx3vIuBLqtqhqluAb2IMUZK3VfWHqprAGIOZ9NckcIHlIlKmprjR2vF8KRZLEmsELJOdC1S1CpNsbymmlT0P+BvPFdQqIq2YJF/JNNBnezVh93v7zqE/BfEcTBLDTGkAAsDbKdveZmBxpL4sm9qfAbRSVbuADwFXATtF5PcisnQMMlgsB2CNgKUk8Fr0d2AqO20DfqaqtSlLhareJCIhTL2I/8BUCqsFHgSSxUi2YfLlD3mbEUTYh8ksOS9l21zSrIuhqo+o6ukYQ/U68MN0zrNYRsMaAUsp8V/A6cBfgPeKyJki4hORsIic7I0bBIEQpnRm3BucPSPlGj8GPioip4qIIyKzU1rluzH+/gPwXDy/Ar4uIlUiMg+4BpPqeEREZLo3GF0BRIBO8lta1DKJsEbAUjJ4g74/Ba7GlKX8MkbZb8OUH3RUtcPb/yugBbiElAJGaipUfRRTRL0NeJL+1v0twAe86J5bhxDhc5gynJuAp4BfArelIbqDMRg7MEXMT8KULLRYxo2tJ2CxWCwljO0JWCwWSwljjYDFYrGUMNYIWCwWSwljjYDFYrGUMNYIWCwWSwljjYDFYrGUMNYIWCwWSwljjYDFYrGUMNYIWCwWSwnz/wEvZt68Nd90SQAAAABJRU5ErkJggg==\n" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "execution_count": 40, + "metadata": { + "scrolled": true + } + }, + { + "cell_type": "code", + "source": [ + "fig, axes = plt.subplots(1,2, figsize=(10,5))\n", + "fig.subplots_adjust(wspace=0.2)\n", + "data = [r.experiment.data for r in mtbo_results_list]\n", + "big_data= pd.concat(data)\n", + "big_data[\"nucleophile\", \"METADATA\"] = \"Phenylethylamine (optimization)\"\n", + "pt_data = datasets[\"Morpholine\"].copy()\n", + "pt_data[(\"task\", \"METADATA\")] = 0\n", + "pt_data = pt_data.replace(\"≥90%\", 0.9)\n", + "pt_data[\"nucleophile\", \"METADATA\"] = \"Morpholine (pretraining)\"\n", + "big_data = big_data.append(pt_data)\n", + "big_data[\"yield\"] = big_data[\"yield\"].astype(float)\n", + "# Counts of different catalysts grouped by nucleophile\n", + "(big_data.\n", + " groupby([\"nucleophile\", \"catalyst\"])\n", + " [\"yield\"].\n", + " mean().\n", + " unstack(0).\n", + " plot.bar(ax=axes[0])\n", + ")\n", + "# Counts of different bases grouped by nucleophile\n", + "(big_data.\n", + " groupby([\"nucleophile\", \"base\"])\n", + " [\"yield\"].\n", + " mean().\n", + " unstack(0).\n", + " plot.bar(ax=axes[1])\n", + ")\n", + "for ax in axes:\n", + " ax.set_ylabel(\"average yield\")\n", + "fig.tight_layout()\n", + "fig.savefig(\"figures/yield_distribution_similar_catalyst_base.png\", dpi=300)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7CklEQVR4nO3deZzVddn4/9cFLpALmEu3SgWUCyojIOAWbrmVivsvzSVvw7K0bNHirlTyzm7trrSwr1u5Zu7damZlFmSkJjsqGqKORZrhRm4oy/X74xymzwwDzMCcZWZez8eDB+ezX+cc5uKa9+f9eb8jM5EkSZJU0qPWAUiSJEn1xAJZkiRJKrBAliRJkgoskCVJkqQCC2RJkiSpYK1aB9Bem2yySfbv37/WYUjSGpk6deqLmblpreNYXeZiSV3BinJxpyuQ+/fvz5QpU2odhiStkYh4ttYxrAlzsaSuYEW52C4WkiRJUoEFsiRJklRggSxJkiQVdLo+yKpfixYtYt68eSxcuLDWoUh1o1evXvTr14+111671qGomzAXS8trby62QFaHmTdvHhtssAH9+/cnImodjlRzmclLL73EvHnzGDBgQK3DUTdhLpaaW51cbBcLdZiFCxey8cYbm5Clsohg4403tiVPVWUulppbnVxsgawOZUKWmvNnQrXgvzupufb+TFggS5IkSQUWyFIns9dee3X4BA0nnXQSt91223Lrn3vuOY466igAJk6cyMEHH9yh15Wkzsg83PVZIEtaoS222KLVhC1Jqg7zcG1YINfSuD7V+aO60NjYyKBBgzjllFPYfvvt2X///XnrrbeatUS8+OKL9O/fH4AlS5Zw5plnssMOO9DQ0MD48eOXO+e9997LrrvuyrBhwzj66KN5/fXXAfjd737H0KFDGTx4MCeffDJvv/02UJoe+Ctf+QqDBw9m5MiRzJ07t+lc999/P7vtthsDBw5sSsaNjY3ssMMOy133jTfe4OSTT2bkyJEMHTqUO++8s0M/K0lV9Nz0jvtT58zDaisLZKmKnnzySU477TQee+wx+vbty+23377Cfa+44goaGxuZMWMGs2bN4rjjjmu2/cUXX+Rb3/oW9913H9OmTWP48OF8//vfZ+HChZx00kncfPPNPPLIIyxevJhLL7206bg+ffrwyCOPcPrpp/OFL3yhaf3zzz/PpEmTuPvuuxk7duxK38f555/PPvvsw8MPP8yECRM466yzeOONN1bvQ5GkKjIPqy0skKUqGjBgAEOGDAFgp512orGxcYX73nfffXz6059mrbVKw5W/+93vbrb9oYceYvbs2ey+++4MGTKEa6+9lmeffZa//OUvDBgwgK233hqAT3ziE9x///1Nxx177LFNfz/44INN6w877DB69OjBdtttxwsvvLDS93HvvfdywQUXMGTIEPbaay8WLlzIX//61zZ/DpJUK+ZhtYUThUhVtO666za97tmzJ2+99RZrrbUWS5cuBWjXGI2ZyX777ceNN97YbP3MmTNXelxxqJvi62JsmbnKa99+++1ss802bY5XkuqBeVhtYQuyVGP9+/dn6tSpAM0exNhvv/24/PLLWbx4MQAvv/xys+N22WUX/vSnPzX1X3vjjTeYM2cO22yzDY2NjU3rr7/+evbcc8+m426++eamv3fdddfVivmAAw5g/PjxTQl8+vT673soSStiHlZLFshSjZ155plceumlDB06lBdffLFp/ZgxY3jf+95HQ0MDO+64Iz/72c+aHbfppptyzTXXcOyxx9LQ0MCuu+7KE088Qa9evbj66qs5+uijGTx4MD169ODUU09tOu6VV16hoaGBH/zgB1x00UWrFfPZZ5/NokWLaGhoYPvtt+fss89evTcvSXXAPKyWYlVN+PVm+PDh2dFjD9ZMtUaYGLegKpd5/PHHGTRoUFWupdXTv39/pkyZwiabbFLrULqV1n42ImJqZg6vUUhrrEvl4i6m3bm4I0ef2GJox52rizIP1057crEtyJIkSVKBD+lJ3cjKntaWJFWeebhzsAVZkiRJKrBAliRJkgoskCVJkqQCC2RJkiSpwIf0VDH9x/6yQ8/XeMFBq9wnIjjuuOP46U9/CsDixYvZfPPN2Xnnnbn77rvXPIbGRg4++GAeffTRNh9z0kkncfDBB3PUUUcxZswYvvSlL7HddtutcSzTp0/nkksu4Sc/+ckan6uxsZEHHniAj3/84+0+drfdduOBBx5Y6T5r8r7nz5/PCSecwK9//et2HyupArn481usch9z8eoxF9cPW5DVpay33no8+uijvPXWWwD89re/Zcstt2zXOZbNmFQJP/7xjzskIQN8+9vf5vOf/3yb91/Z+2psbFxuAPy2HAesMiHDmr3vTTfdlM0335w//elPq3W8pOozF6+YubhzsEBWl/PRj36UX/6y1GJy4403cuyxxzZte/nllznssMNoaGhgl112YdasWQCMGzeOE044gd13350TTjiBa665hkMPPZS99tqLrbbaim9+85tN51iyZAmnnHIK22+/Pfvvv3/TfwAzZsxgl112oaGhgcMPP5xXXnlludj22msvlk2usP766/P1r3+dHXfckV122YUXXngBKP2WfuSRRzJixAhGjBjRajJ67bXXmDVrFjvuuGOz+HfddVe22morrrzySgAmTpzIqFGjGD16NNtttx1LlizhrLPOYsSIETQ0NHD55ZcDMHbsWP74xz8yZMgQLrroIq655hpGjx7NPvvsw4c//GFef/11PvzhDzNs2DAGDx7MnXfe2RTL+uuv33Stvfbai6OOOoptt92W4447rmkK1La876eeeopddtmFwYMH841vfKPpvACHHXYYN9xwQ1u+fkl1wlxsLu7MLJDV5RxzzDHcdNNNLFy4kFmzZrHzzjs3bTv33HMZOnQos2bN4tvf/jYnnnhi07bZs2dz3333ceONNwLw8MMPc/vttzNr1ixuvfXWpqTy5JNPctppp/HYY4/Rt29fbr/9dgBOPPFELrzwQmbNmsXgwYObJfLWvPHGG+yyyy7MnDmTPfbYoymRnnHGGXzxi19k8uTJ3H777YwZM2a5Y6dMmcIOO+zQbN2sWbP4/e9/z4MPPsh5553Hc889B8C0adP4wQ9+wJw5c/jJT35Cnz59mDx5MpMnT+bKK6/kmWee4YILLmDUqFHMmDGDL37xi03H3XbbbfzhD3+gV69e/N///R/Tpk1jwoQJfPnLX6a1WTinT5/OxRdfzOzZs3n66adb/Q9lZe/7jDPO4JFHHqFfv37Njhk+fDh//OMfV/p5Sqov5mJzcWdmgawup6GhgcbGRm688UY++tGPNts2adIkTjjhBAD22WcfXnrpJf71r38BMHr0aHr37t2073777cfGG29M7969OeKII5g0aRIAAwYMYMiQIQDstNNONDY2smDBAl599VX23HNPAD7xiU9w//33rzTOddZZh4MPPrjZeQDuu+8+Tj/9dIYMGcLo0aP517/+xeuvv97s2Oeff55NN9202bpDDz2U3r17s8kmm7D33nvz8MMPAzBy5EgGDBgAwL333st1113HkCFD2HnnnXnppZd48sknW41vv/32493vfjcAmcnXvvY1Ghoa2Hffffn73//e1NpQNHLkSPr160ePHj0YMmRIqwPir+h9P/jggxx99NEAy/W/22yzzZr+k5HUOZiLzcWdmQ/pqUsaPXo0Z555JhMnTuSll15q0zHrrbdes+WIaHV53XXXbVrXs2fPptt67bX22ms3nbNnz55N/cuWLl3KQw89RK9evVZ4bO/evVm4cGGb4i2+r8xk/PjxHHDAAc32nThx4nLXKB53ww03MH/+fKZOncraa69N//79l7s+LP/ZtNZnbkXve2UWLlzY7D9MSZ2Dudhc3FnZgqwu6eSTT+bcc89l8ODBzdaPGjWqqf/UxIkT2WSTTdhwww1bPcdvf/tbXn75Zd566y3uuOMOdt999xVer0+fPmy00UZNt56uv/76phaM9tp///0ZP3580/KMGTOW22fQoEHMnTu32bo777yThQsX8tJLLzFx4kRGjBix3HEHHHAAl156KYsWLQJgzpw5vPHGG2ywwQa89tprK4xpwYIFbLbZZqy99tpMmDCBZ599drXe28rssssuTbdIb7rppmbb5syZs9xtTEn1z1xsLu6sbEFWxbRlWLZK6devX6tPFY8bN46TTz6ZhoYG3vWud3Httdeu8BwjR47kyCOPZN68eRx//PEMHz681dtUy1x77bWceuqpvPnmmwwcOJCrr756tWL/4Q9/yGmnnUZDQwOLFy9mjz324LLLLmu2z7bbbsuCBQt47bXX2GCDDYDS7cy9996bF198kbPPPpstttiCOXPmNDtuzJgxNDY2MmzYMDKTTTfdlDvuuIOGhgZ69uzJjjvuyEknncRGG23U7LjjjjuOQw45hMGDBzN8+HC23Xbb1XpvK3PxxRdz/PHHc/7553PggQfSp0+fpm0TJkzgoINq9+9J6sxWmYufm16xa5uLzcWdVbTWubueDR8+PJd10O/0xvVZ9T4dcp0FVbnM448/zqBBg6pyrUq75pprmDJlCpdcckmtQ1mhiy66iA022IAxY8Ywbtw41l9/fc4888xah7Xa3nzzTXr37k1EcNNNN3HjjTc2PaG9xx57cOeddy73n0Vn0drPRkRMzczhNQppjXWpXNzFtDsXd2SBvMXQjjsX5uJaMBeX2IIsdVKf+cxnuPXWW2sdRoeZOnUqp59+OplJ3759ueqqq4DSUEtf+tKXOm1CltS1mYu7JluQa8kWZKlbsAVZ1dSVWpCljtSeXFzRh/Qi4sCI+EtEzI2Isa1sf19ETIiI6RExKyI+2tp5JEmSpGqpWIEcET2BHwEfAbYDjo2IlvMbfgO4JTOHAscA/69S8UiSJEltUckW5JHA3Mx8OjPfAW4CDm2xTwLLxnXpA3SP0aclSZJUtyr5kN6WwN8Ky/OAnVvsMw64NyI+B6wH7FvBeCRJkqRVqvUoFscC12Tm9yJiV+D6iNghM5cWd4qITwGfAnjf+95XgzC1Wjr6IcQ2PGzYs2dPBg8ezOLFixk0aBDXXnst//znPzn44IN59NFHOzaegokTJ/Ld736Xu+++e4X7zJgxg+eee65pytX2DgfU2NjYYe/jsssu413vehcnnnjiGp/rrbfe4sADD+T3v/89PXv2bPfx3/72t/na177WtLzbbrvxwAMPtPn41X0vEydOZJ111mG33XZbo/MAPPLII3zve9/jmmuuafexUsV1dC7+1MRV7mIubhtzcf3m4kp2sfg78N7Ccr/yuqJPArcAZOaDQC9gk5YnyswrMnN4Zg5vOee5VNS7d29mzJjBo48+yjrrrLPcoO61NGPGDO65555ahwHAqaee2iEJGeCqq67iiCOOWK2EDKWkXNSehAyr/14mTpzY7Fpr8pkMHjyYefPm8de//nW1jq80H5hWtZmL28ZcXL+5uJIF8mRgq4gYEBHrUHoI764W+/wV+DBARAyiVCDPr2BM6kZGjRrVNAXokiVLOOWUU9h+++3Zf//9eeuttwB46qmnOPDAA9lpp50YNWoUTzzxBAAnnXQSn//859ltt90YOHAgt912GwAnnngid9xxR9M1jjvuuKYB1Jd54403OPnkkxk5ciRDhw7lzjvv5J133uGcc87h5ptvZsiQIdx8880AzJ49m7322ouBAwfywx/+EIBzzjmHiy++uOl8X//61/nBD37Q7BqNjY2MGjWKYcOGMWzYsKbkMnHiRPbcc08OPfRQBg4cyNixY7nhhhsYOXIkgwcP5qmnngJKLSbf/e53Adhrr7346le/ysiRI9l6662bpmhdsmQJZ511FiNGjKChoYHLL7+81c/5hhtu4NBDS48XZCZnnXUWO+ywA4MHD256nxMnTmSPPfbgoIMOYptttuHUU09l6dKljB07lrfeeoshQ4Zw3HHHAbD++uuv1nt57rnnGDJkSNOfnj178uyzz/KLX/yCnXfemaFDh7Lvvvvywgsv0NjYyGWXXcZFF13EkCFD+OMf/9jsM5kxYwa77LILDQ0NHH744bzyyisr/awADjnkkOWmZa0HPjCtWjMXm4s7Yy6uWIGcmYuB04HfAI9TSr6PRcR5ETG6vNuXgVMiYiZwI3BSdraBmVWXFi9ezK9+9SsGDx4MwJNPPslpp53GY489Rt++fZvmmf/Upz7F+PHjmTp1Kt/97nf57Gc/23SO559/nkmTJnH33Xczdmyp0e2Tn/xk062bBQsW8MADDyw37eb555/PPvvsw8MPP8yECRM466yzWLRoEeeddx4f+9jHmDFjBh/72McAeOKJJ/jNb37Dww8/zDe/+U0WLVrEySefzHXXXQfA0qVLuemmmzj++OObXWOzzTbjt7/9LdOmTePmm29uNpXrzJkzueyyy3j88ce5/vrrmTNnDg8//DBjxoxh/PjxK/y8Hn74YS6++GK++c1vAvCTn/yEPn36MHnyZCZPnsyVV17JM8880+y4d955h6effpr+/fsD8POf/5wZM2Ywc+ZM7rvvPs466yyef/55AB5++GHGjx/P7Nmzeeqpp/j5z3/OBRdc0NTSdMMNNywXV3veyxZbbMGMGTOYMWMGp5xyCkceeSTvf//7+dCHPsRDDz3E9OnTOeaYY/jOd75D//79OfXUU/niF7/IjBkzGDVqVLNznXjiiVx44YXMmjWLwYMHN30mK/qsAIYPH94sSdcRH5hWzZiLzcWdNRdXtA9yZt4D3NNi3TmF17OB3SsZg7qXZb8BQ6nV4pOf/CTPPfccAwYMaFq/00470djYyOuvv84DDzzA0Ucf3XT822+/3fT6sMMOo0ePHmy33Xa88MILAOy555589rOfZf78+dx+++0ceeSRrLVW8x+je++9l7vuuqvpN+CFCxeu8HbPQQcdxLrrrsu6667LZpttxgsvvED//v3ZeOONmT59Oi+88AJDhw5l44035rXXXms6btGiRZx++unMmDGDnj17MmfOnKZtI0aMYPPNNwfgAx/4APvvvz9QuvU0YcKEVuM44ogjmn02y97HrFmzmlpsFixYwJNPPsmAAQOajnvxxRfp27dv0/KkSZM49thj6dmzJ+95z3vYc889mTx5MhtuuCEjR45k4MCBABx77LFMmjSJo446qtV41uS9/OlPf+LKK69k0qRJAMybN4+PfexjPP/887zzzjvN4m/NggULePXVV9lzzz0B+MQnPtHs30hrnxWU/qN87rm6rCs77IFpnwdRW5mLzcWdPRfX+iE9qUMt+w24pXXXXbfpdc+ePXnrrbdYunQpffv2bXX/lscUb2yceOKJ/PSnP+Wmm27i6quvXu64zOT2229nm222abb+z3/+8yrjWrx4MQBjxozhmmuu4R//+Acnn3zycsdddNFFvOc972HmzJksXbqUXr16tXrOHj16NC336NGj6fwriqMYQ2Yyfvx4DjjggFaPgdLnvXDhwhVuL4qIlS6vLC5o23t5/vnn+eQnP8ldd93VdHvwc5/7HF/60pcYPXo0EydOZNy4cW2Kd1UxFT8rKP3n27t37zU6dw216YHpzLwCuAJKM+nVIE51EuZic3Fnz8UVnUlPqmcbbrghAwYM4NZbbwVKSWjmzJmrPO6kk05q6pe23XYtu3LCAQccwPjx45sS+fTppWlcN9hgg2YtDytz+OGH8+tf/5rJkye3mhQXLFjA5ptvTo8ePbj++utZsmRJm87bHgcccACXXnopixYtAmDOnDm88cYbzfbZaKONWLJkSVNiHjVqFDfffDNLlixh/vz53H///YwcORIo3dZ75plnWLp0KTfffDMf+tCHAFh77bWbrrEmFi1axNFHH82FF17I1ltv3bR+wYIFbLnllgBce+21TetX9H306dOHjTbaqOkW3fXXX9/UgrEyc+bMYYcddljTt1EJHfbAtFQJ5uKVMxfXJhfbgqzKacOwbLV2ww038JnPfIZvfetbLFq0iGOOOYYdd9xxpce85z3vYdCgQRx22GGtbj/77LP5whe+QENDA0uXLmXAgAHcfffd7L333lxwwQUMGTKE//qv/1rpNdZZZx323ntv+vbt2+oTyZ/97Gc58sgjue666zjwwANZb7312vye22rMmDE0NjYybNgwMpNNN9202UMxy+y///5MmjSJfffdl8MPP5wHH3yQHXfckYjgO9/5Dv/xH//BE088wYgRIzj99NOZO3cue++9N4cffjhQ6nvY0NDAsGHDWu371lYPPPAAU6ZM4dxzz+Xcc88F4J577mHcuHEcffTRbLTRRuyzzz5NffcOOeQQjjrqKO68887l+tBde+21nHrqqbz55psMHDiw1dapliZMmLBcH8g60fTANKXC+Bjg4y32WfbA9DU+MN0FrSoXPze9OnGshLl4xczFtcnF0dmeiRs+fHhOmTKl1mF0jI4em3KF16lOofr4448zaNCgqlyrlt58800GDx7MtGnT6NOnMt/h0qVLGTZsGLfeeitbbbVVRa7RUaZNm8ZFF13E9ddfv8J92jI2aWf29ttvs+eeezJp0qTl+kFC6z8bETE1M4dXI77ysG0XAz2BqzLz/Ig4D5iSmXeVR7W4Elif0gN7X8nMe1d2zi6Vi7uYdufijiyQtxjacedaBXNxc+bijs3FdrGQ2uG+++5j0KBBfO5zn6tYQp49ezYf/OAH+fCHP1z3CRlg2LBh7L333hW5tdhZ/PWvf+WCCy5oNSHXg8y8JzO3zswPZOb55XXnZOZd5dezM3P3zNwxM4esqjiWas1cvDxzccfmYluQa8kWZKlbqHULciV0qVzcxXSXFmSpvWxBVs10tl+4pErzZ0K14L87qbn2/kzU5/1AdUq9evXipZdeYuONN27TsDF1rRoPrdjS0uVlJi+99FKzoZ+kSutSuVjqAKuTiy2Q1WH69evHvHnzmD+/Czz8/uo/K3+NBY9X/hqquV69etGvX79ah6FupN25uCPznXlNdaq9udgCWR1m7bXXXuXMOJ3GuF2qcI36HwZPUufT7lzckfnOvKYuwj7IkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklSwVq0DkCRJUhc2rk8HnmtBx51rJWxBliRJkgoskCVJkqQCC2RJkiSpwAJZkiRJKrBAliRJkgoskCVJkqQCC2RJkiSpwAJZkiRJKnCiEElS19EJJySQVH9sQZYkSZIKLJAlSZKkAgtkSZIkqcACWZIkSSqwQJYkSZIKLJAlSZKkAgtkSZIkqcACWZIkSSqwQJYkSZIKLJAlSZKkAgtkSZIkqaCiBXJEHBgRf4mIuRExdgX7/H8RMTsiHouIn1UyHkmSJGlV1qrUiSOiJ/AjYD9gHjA5Iu7KzNmFfbYC/gvYPTNfiYjNKhWPJEmS1BaVbEEeCczNzKcz8x3gJuDQFvucAvwoM18ByMx/VjAeSZIkaZUqWSBvCfytsDyvvK5oa2DriPhTRDwUEQe2dqKI+FRETImIKfPnz69QuJLU9djVTZLab4VdLCJi2MoOzMxpHXT9rYC9gH7A/RExODNfbXGtK4ArAIYPH54dcF1J6hTWJBfb1U2SVs/K+iB/r/x3L2A4MBMIoAGYAuy6inP/HXhvYblfeV3RPODPmbkIeCYi5lAqmCe3KXpJ6vrWJBc3dXUDiIhlXd1mF/axq5sktbDCLhaZuXdm7g08DwzLzOGZuRMwlOUL3dZMBraKiAERsQ5wDHBXi33uoNR6TERsQqnLxdPtfROS1FWtYS7usK5uYHc3Sd1HW/ogb5OZjyxbyMxHgUGrOigzFwOnA78BHgduyczHIuK8iBhd3u03wEsRMRuYAJyVmS+1901IUjewWrm4DYpd3Y4FroyIvq3tmJlXlAv04ZtuumkHXFqS6lNbhnmbFRE/Bn5aXj4OmNWWk2fmPcA9LdadU3idwJfKfyRJK7Y6udiubpK0GtrSgvyfwGPAGeU/s8vrJEnVszq52K5ukrQaVtmCnJkLgYvKfyRJNbA6uTgzF0fEsq5uPYGrlnV1A6Zk5l3lbfuXu7otwa5ukrTSYd4eAVY4pFpmNlQkIklSkzXNxXZ1k6T2W1kL8sFVi0KStCLmYkmqshUWyJn57LLXEfF+YKvMvC8ieq/sOElSxzEXS1L1rfIhvYg4BbgNuLy8qh+lhzokSVViLpak6mnLKBanAbsD/wLIzCcBpyKVpOoyF0tSlbSlQH47M99ZthARa7GSB0YkSRVhLpakKmlLgfyHiPga0Dsi9gNuBX5R2bAkSS2YiyWpStpSII8F5gOPAJ+mNFzQNyoZlCRpOeZiSaqStkwUshS4svxHklQD5mJJqp6VTRRyS2b+fysapN6JQiSp8szFklR9K2tBPqP8t4PUS1LtmIslqcpWNlHI8+WXo4HrM/PVqkQkSWpiLpak6mvLQ3rvAaZExC0RcWBERKWDkiQtx1wsSVWyygI5M78BbAX8BDgJeDIivh0RH6hwbJKkMnOxJFVPW1qQycwE/lH+sxjYCLgtIr5TwdgkSQXmYkmqjlUO8xYRZwAnAi8CPwbOysxFEdEDeBL4SmVDlCSZiyWpelZZIAPvBo7IzGeLKzNzaUT4VLUkVYe5WJKqpC0ThZy7km2Pd2w4kqTWmIslqXra1AdZkiRJ6i4skCVJkqSCNhXIEfH+iNi3/Lp3RGxQ2bAkSS2ZiyWpOlZZIEfEKcBtwOXlVf2AOyoYkySpBXOxJFVPW1qQTwN2B/4FkJlPAptVMihJ0nLMxZJUJW0pkN/OzHeWLUTEWkBWLiRJUivMxZJUJW0pkP8QEV8DekfEfsCtwC8qG5YkqQVzsSRVSVsK5LHAfOAR4NPAPcA3KhmUJGk55mJJqpK2TBSyFLiy/EeSVAPmYkmqnlUWyBHxCMv3c1sATAG+lZkvVSIwSdK/mYslqXpWWSADvwKWAD8rLx8DvAv4B3ANcEhFIpMkFZmLJalK2lIg75uZwwrLj0TEtMwcFhHHVyowSVIz5mJJqpK2PKTXMyJGLluIiBFAz/Li4opEJUlqyVwsSVXSlhbkMcBVEbE+EJQGqR8TEesB/1PJ4CRJTczFklQlbRnFYjIwOCL6lJcXFDbfUqnAJEn/Zi6WpOppSwsyEXEQsD3QKyIAyMzzKhiXJKkFc7EkVccq+yBHxGXAx4DPUbqtdzTw/grHJUkqMBdLUvW05SG93TLzROCVzPwmsCuwdWXDkiS1YC6WpCppS4G8sPz3mxGxBbAI2LxyIUmSWmEulqQqaUsf5F9ERF/gf4FplGZycqpTSaouc7EkVclKC+SI6AH8LjNfBW6PiLuBXi2enpYkVZC5WJKqa6VdLDJzKfCjwvLbJmRJqi5zsSRVV1v6IP8uIo6MZWMKSZJqwVwsSVXSlgL508CtwDsR8a+IeC0i/lXhuCRJzZmLJalKVlkgZ+YGmdkjM9fOzA3Lyxu25eQRcWBE/CUi5kbE2JXsd2REZEQMb0/wktRdrEkuliS1T1smComIOD4izi4vvzciRrbhuJ6U+sx9BNgOODYitmtlvw2AM4A/tzd4SeouVjcXS5Lary1dLP4fpQHpP15efp3CwyIrMRKYm5lPZ+Y7wE3Aoa3s99/Ahfx7jE9J0vJWNxd7N0+S2qktBfLOmXka5QI2M18B1mnDcVsCfysszyuvaxIRw4D3ZuYvV3aiiPhUREyJiCnz589vw6UlqctZrVzs3TxJar+2FMiLygk2ASJiU2Dpml64PK7n94Evr2rfzLwiM4dn5vBNN910TS8tSZ3R6uZi7+ZJUju1pUD+IfB/wGYRcT4wCfh2G477O/DewnK/8rplNgB2ACZGRCOwC3CXt/YkqVWrm4u9mydJ7bTKqaYz84aImAp8GAjgsMx8vA3nngxsFREDKBXGx/DvvnOUB7nfZNlyREwEzszMKe16B5LUDaxBLl6pwt28k9oQwxXAFQDDhw/PNb22JNWrVRbIEfFD4KbMbNPDIMtk5uKIOB34DdATuCozH4uI84ApmXnXakUsSd3Q6uZi2nc3D+A/KN3NG22DhaTuapUFMjAV+EZEbEPp9t5NbU2amXkPcE+LdeesYN+92nJOSeqmVjcXezdPktqpLROFXJuZHwVGAH8BLoyIJysemSSpyerm4sxcDCy7m/c4cMuyu3kRMbqiQUtSJ9WWFuRlPghsC7yfUpKVJFVfu3Oxd/MkqX3aMpPed8qtFOcBjwLDM/OQikcmSWpiLpak6mlLC/JTwK6Z+WKlg5EkrZC5WJKqpC3DvF0eERtFxEigV2H9/RWNTJLUxFwsSdXTlmHexlCafrQfMIPShB4PAvtUNDJJUhNzsSRVT1tm0juD0lPTz2bm3sBQ4NVKBiVJWo65WJKqpC0F8sLMXAgQEetm5hPANpUNS5LUgrlYkqqkLQ/pzYuIvsAdwG8j4hXg2UoGJUlajrlYkqqkLQ/pHV5+OS4iJgB9gF9XNCpJUjPmYkmqnvZMFEJm/qFSgUjSKo3rU4VrLKj8NdaQuViSKqstfZAlSZKkbsMCWZIkSSqwQJYkSZIKLJAlSZKkAgtkSZIkqcACWZIkSSqwQJYkSZIKLJAlSZKkAgtkSZIkqcACWZIkSSqwQJYkSZIK1qp1APWq/9hfVvwajb0qfglJkiS1ky3IkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUoEFsiRJklRggSxJkiQVWCBLkiRJBRbIkiRJUkFFC+SIODAi/hIRcyNibCvbvxQRsyNiVkT8LiLeX8l4JEmSpFWpWIEcET2BHwEfAbYDjo2I7VrsNh0YnpkNwG3AdyoVjyR1RzZUSFL7VbIFeSQwNzOfzsx3gJuAQ4s7ZOaEzHyzvPgQ0K+C8UhSt2JDhSStnkoWyFsCfysszyuvW5FPAr9qbUNEfCoipkTElPnz53dgiJLUpdlQIUmroS4e0ouI44HhwP+2tj0zr8jM4Zk5fNNNN61ucJLUeXVYQwXYWCGp+6hkgfx34L2F5X7ldc1ExL7A14HRmfl2BeORJK3AqhoqwMYKSd1HJQvkycBWETEgItYBjgHuKu4QEUOByykVx/+sYCyS1B3ZUCFJq6FiBXJmLgZOB34DPA7ckpmPRcR5ETG6vNv/AusDt0bEjIi4awWnkyS1nw0VkrQa1qrkyTPzHuCeFuvOKbzet5LXl6TuLDMXR8SyhoqewFXLGiqAKZl5F80bKgD+mpmjV3hSSeoGKlogS5Jqy4YKSWo/C2RJkiQ103/sLzvsXI29OuxUVVMXw7xJkiRJ9cIWZEmSOpnu3ronVZotyJIkSVKBBbIkSZJUYBcLSVJN2V1AUr2xBVmSJEkqsECWJEmSCiyQJUmSpAILZEmSJKnAAlmSJEkqsECWJEmSCiyQJUmSpAILZEmSJKnAAlmSJEkqsECWJEmSCiyQJUmSpAILZEmSJKnAAlmSJEkqsECWJEmSCiyQJUmSpAILZEmSJKnAAlmSJEkqsECWJEmSCiyQJUmSpIK1ah2AJElSpzKuTweea0HHnUsdxhZkSZIkqcACWZIkSSqwQJYkSZIKLJAlSZKkAgtkSZIkqcACWZIkSSqwQJYkSZIKLJAlSZKkAgtkSZIkqcACWZIkSSqwQJYkSZIKLJAlSZKkAgtkSZIkqcACWZIkSSqwQJYkSZIKLJAlSZKkgrVqHYDUHv3H/rIq12nsVZXLSJKkOlTRFuSIODAi/hIRcyNibCvb142Im8vb/xwR/SsZjyR1R+ZiSWqfihXIEdET+BHwEWA74NiI2K7Fbp8EXsnMDwIXARdWKh5J6o7MxZLUfpXsYjESmJuZTwNExE3AocDswj6HAuPKr28DLomIyMysYFyS1J2Yi9XtdXT3PLvhdX2VLJC3BP5WWJ4H7LyifTJzcUQsADYGXizuFBGfAj5VXnw9Iv5SkYirLGATWrzXivhmVPwSXU1Vvhu/l9XRlb6X91fpOt0qF3foz243+Rn1M2s/P7P2qfPPq9Vc3Cke0svMK4Arah1HR4uIKZk5vNZxaHl+N/XJ76W2OkMu9t9I+/mZtZ+fWft0xs+rkg/p/R14b2G5X3ldq/tExFpAH+ClCsYkSd2NuViS2qmSBfJkYKuIGBAR6wDHAHe12Ocu4BPl10cBv7fPmyR1KHOxJLVTxbpYlPuxnQ78BugJXJWZj0XEecCUzLwL+AlwfUTMBV6mlLi7k7q+VdnN+d3UJ7+XduqGudh/I+3nZ9Z+fmbt0+k+r7CRQJIkSfo3p5qWJEmSCiyQJUmSpAILZEmSJKnAAlmSJEkq6BQThUhSRPQA1s/Mf9U6FtWHiNgQeE9mPllePhroXd78m8x8oWbB1bGIGAJ8EHgsMx+vcTh1LyLe3WJVAq86FOKKRcTGwMeBbcurHgduzMxOM766LchVFBFnRMSGUfKTiJgWEfvXOi753dSriPhZ+XtZD3gUmB0RZ9U6LtWN7wK7F5b/BxgB7AF8syYR1bmIOAe4BTgS+GVEnFLjkDqDqcCU8t9TgWnAPyPivojoX8vA6lFEDKKUr3cC5gBPUvq5fCQitl3ZsfXEYd6qKCJmZuaOEXEA8GngbOD6zBxW49C6Pb+b+hQRMzJzSEQcBwwDxgJTM7OhxqGpDkTEdGDYspa8iJiemUPLrydl5odqGmAdiojHgBGZ+Wa5le/XmTmi1nF1RhFxBPCpzDyw1rHUk4i4DbglM29psf5I4OOZeWRtImsfW5CrK8p/f5RS8fVYYZ1qy++mPq0dEWsDhwF3ZeYiSrc3JYC1WtzmPqHwum+VY+ks3s7MNwHKt7utA1ZTZv4c2KzWcdShwS2LY4DMvB3YoQbxrBb7IFfX1Ii4FxgA/FdEbAAsrXFMKvG7qU+XA43ATOD+iHg/YB9kLbM0Iv4jM/8BkJmPAkTElvjzuyIDI2LZVOMBfKCwTGaOrk1YnU9ErI+/YLTmjdXcVlfsYlFF5YeMhgBPZ+ar5dtbW2bmrNpGJr+bziMi1srMxbWOQ7UXEccDZwBfBqaXVw+j1Df5h5l5fa1iq1cRsefKtmfmH6oVS2cREV9qZfVGwGjgksy8ssoh1bWImAd8v7VNwBcy871VDmm12IJcRZm5NCL6AR+PCIA/ZOYvahyW8LupVxHRBziX0kNXAH8AzgMW1Cwo1Y3M/GlEvAh8C9i+vPpR4JzM/FXtIqtr/5mZJ9U6iE5mgxbLCfwDOD4zH6lBPPXuSpb/zJb5cTUDWRO2IFdRRFxA6UnOG8qrjgUmZ+bXaheVwO+mXkXE7ZQKnmvLq04AdszMI2oXldR5RcQ0Hz6WVs0CuYoiYhYwJDOXlpd7AtN9Ir/2/G7q07JRLFa1Tt1TRPxwZdsz8/PViqWziIgnKDUAtPoQcmZOq25E9S8iNgFOA14BrgL+FxgFPAV8OTPn1jC8uhMRvYCPUfq8fgGcReku4FPAf2fmizUMr83sYlF9fYGXy6/71DAOLa8vfjf15q2I+FBmTgKIiN2Bt2ock+rHqZTuMNwCPIcjz7TFlsD3aP2zSmCf6obTKfyM0jjIWwEPA1cDP6BUJP8Y2KtmkdWn64BFwHqUng94FLgE+BBwDXBwzSJrBwvk6vofYHpETKCUnPagNK6ras/vpj6dClxX7osclH6BOammEamebA4cTam1ajFwM3BbZr5ay6Dq3NzMtAhun/dk5tei9IDKs5n5v+X1T0TEabUMrE5tl5k7RMRawLzMXPZg6K8jYmYtA2sPC+QqyswbI2Iipb6uAF9dNjyRasvvpj5l5kxgx/KUwjjNtIrK4/heBlxWfsj2GEqzLX7VESxWyH6V7bcEIDOz/FBokcMJLu8dgMxcHBHPtdi2pAbxrBYL5OrrAbxI6bPfOiK2zsz7axyTSvxu6kxErEtpStz+wFrlEUbIzPNqGJbqTEQMo9Svdj/gV5SmA1brdqx1AJ3QsrGjg+XHkR5Qu7DqVr/y8wFReE15ecvahdU+PqRXRRFxIaVbgY/x798604HZa8/vpj5FxK8pDek2lULLQ2Z+r2ZBqW5ExHnAQcDjwE2Upk12jOyVKE7HrbZx7Oj2iYhPrGx7Zl67su31wgK5iiLiL0BDZr5d61jUnN9NfYqIRzOz00xNquqKiKXAM8Cb5VXL/kMLSr/gOgpNCxHxNHDmiraXp0/WCkTEpgCZOb/WsdSriPh2Vxgi1S4W1fU0sDZgEVZ//G7q0wMRMdjB+LUC3t5uvz6URhFY0SgWFsgtlB/OOwf4HKWueBERi4Hxdvdq1YGABbJWLSLGU0o8bwIzIuJ3FAoxx+qsHb+b+hQRj1D6XtYC/rPc6vU2tgyquSszc/9aB9HJPJuZJ9c6iE7mi5SGKBuRmc8ARMRA4NKI+GJmXlTT6OpPz4jYiBWPtf1ya+vrjV0sqqCr9Mfpivxu6lNEvH9l2zPz2WrFovplf9r28zNrv4iYDuzXcoKLcneLe/08m4uIt4G/s4K7FJk5sMohrRYL5CqJiCHAB4HHMvPxGoejAr+b+lOeielUSt/LI8BPfPhKLdmftv0iYofMfLTFuk2Al9KCoFUrexbC5ySW11V+CetR6wC6g4g4m9JMT0cCv4yIU2ocksr8burWtcBwSsXxRyjN/CW1tKw/7SGt/OkUs3XVwPoRMTEifh4RQyPiUUoznb0QEQfWOrg69c5qblMnZgtyFUTEY5T6Lr0ZERtTGopoxKqOU+X53dSniHgkMweXX68FPJyZw2oclupMREzz30X7RMQUSg9Q9QGuAD6SmQ9FxLbAjV2h5a+jRcQS4I3WNgG9MnPtKodU1yLipMy8ptZxrCkf0quOtzPzTSjN/BQRttzXD7+b+rRo2YvybEy1jEX1y38Y7bdWZt4LpXGkM/MhgMx8wp+z1mVmz1rH0MkcERFHrGhjZ5lfwAK5OlrOvPOBwnKn+cfSRfnd1KcdI2LZtNIB9C4vLxvFYsPahaY6ckLLFfanXaXi1MhvtdjmZ6aOsCvwN+BG4M900l9k7WJRBc7CU7/8bqTOKyJ2AS4AXgb+G7ge2ITS8zUnZuavaxheXSp0FwigN/+eZMXuAuoQEdGT0rTvxwINwC8pdd95rKaBtZMFsgRExBmZ+YNVrVN1RMSIzJy8gm0nZOb11Y5J9cf+tFJ9i4h1KRXK/wt8MzMvqXFIbWaBXAWFSQ+W2wQszcwdqxySWmjtYZ+uMlRNZxQRs4A/Af+Vma+W1+0A/D/g5cw8rHbRqV5ExIzMHFJ+/XhmDips8+dXqpFyYXwQpeK4P3AXcFVm/r2WcbWHfZCro7XhhgJ4L/BfVY5FBRFxLPBxYECx7zGwAaXbtqqNYcBZwPSI+G9gMPBR4MuZeXdNI1M9sT+tVGci4jpgB+AeSq3Gj67ikLpkC3KVRcRQSgXZ0cAzwO2d6ZZDV1OesW0A8D/A2MKm14BZTk5RWxFxFnAh8BwwMjOfq3FIqiP2p5XqT0Qs5d/D4hWLzE71kLUtyFUQEVtTus1wLPAicDOlX072rmlgWjZl8bMRcX/LB/Ii4kLgq7WJrHuLiA8AP6KUXAdRmizk/og4PzOvrmlwqhsOvyXVn8zsEsOl2oJcBeXfpv4IfDIz55bXPd1Z5iPvDlbQB3lWZjbUKqbuLCLmAmMz87bCui2A7wPvzczdaxacJKnLswW5Oo4AjgEmRMSvgZvopOMCdjUR8Rngs5TGP55V2LQBpYfEVBtDMvP14opy94pjImLfGsUkSeombEGuoohYDziUUleLfYDrgP9bNquRqi8i+gAb0Uof5Mz0Ib0ai4g9WlufmfdXOxZJay4i+gN3Z+YOtY5FWhkL5BqJiI0oPaj3scz8cK3jEUTEh4CtMvPq8mxcG2TmM7WOqzuLiF8UFnsBI4GpmblPjUKStAYskNVZWCBLQEScCwwHtsnMrcv9XW+1r2t9iYj3Ahdn5pG1jkVS+5UL5F8DUykN5/gYcCJwJnAIpdFIHgA+nZkZEZ8HTgUWA7Mz85jy3djxlIYSWxsYl5l3Vvu9qGuzQJYoTTgADAWmLZtcwIf06k9EBPBYZm5X61gktV+5QH4G+FBm/ikirgJmU5pE4uXyPtcDt2TmLyLiOWBAZr4dEX0z89WI+DalYvmnEdEXeBgYmplvtHpRaTX4kJ5U8k65tSKhqb+4aiwixvPvcTR7AEOAaTULSFJH+FtmLnsI+qfA54FnIuIrwLuAd1NqWf4FMAu4ISLuAO4oH7M/MDoiziwv9wLeBzxelejVLVggSyW3RMTlQN+IOAU4GbiyxjEJphReLwZuLPzHKqlzannrOilNIz88M/8WEeMoFb1Qmq54D0rdL74eEYMpjQJ1ZGb+pUrxqhuyi4W6vfJt+37AtpRaJgL4TWb+tqaBSVIXU+hisVtmPhgRP6bU8vsVoD/QE3gIuA04D3hfZjZGxNrAs8B25X03BD5XvvM3NDOnV/3NqEuzBVndXjnB3pOZgwGL4joQEVsBXwdepjQ5yJXAKOApYExmTq5heJLWzF+A0wr9jy+lNNzmo8A/gGU/3z2Bn5aH4wzgh+U+yP8NXAzMiogelArug6v7FtTV2YIsARFxLXCJhVd9iIhJlMYJ3xD4IvAFSv0RRwHfysydaxedJKmrs0CWgIh4AvggpVt4b1BqrUhHsaiNiJiRmUPKr+dm5gdb2yZJUiXYxUIqOaDWAaiZpYXX/1rJNkmSOpwtyFJBRLyL0kMgz2bm/FrH011FxJvA3PLiBwuvAxiYmQ7DJ0mqmB61DkCqpYgYHRGNETEtIj5KaezNS4BHIuITNQ6vOxsEjAaeKL8+pPDn7hrGJUnqBmxBVrcWETOBo4E+wASgITOfjojNgN+VR7ZQjUTEtMwc1mKdMxxKkirKPsjq7pZm5hyAiHgmM58GyMx/RsTi2obWfUXEZ4DPAgMjYlZh0waAE4VIkirKAlndXY+I2IhSd6Ol5dexbFvtwur2fgb8CvgfYGxh/WuZ+XJtQpIkdRd2sVC3FhGNlEZFiFY2Z2YOrG5EkiSp1iyQJUmSpAK7WEhAROzR2vrMvL/asUiSpNqyBVkCIuIXhcVewEhgambuU6OQJElSjdiCLAGZeUhxOSLeC1xcm2gkSVIt+ZS+1Lp5lCaokCRJ3YwtyBIQEeOBZf2NegBDgGk1C0iSJNWMfZAloMW00ouBxsx0QgpJkrohC2RJkiSpwD7I6tYiYquIuCYivh8R/SLiVxHxekTMjIgRtY5PkiRVnwWyururgQeA54A/A1cBmwBnApfUMC5JklQjdrFQtxYRMzJzSPn13Mz8YGvbJElS92ELsrq7pYXX/1rJNkmS1E3YgqxuLSLeBOaWFz9YeB3AwMxcryaBSZKkmnEcZHV3gygVw98BirPpBXBhTSKSJEk1ZYGsbi0znwWIiA8ue71MRDiTniRJ3ZAFsrq1iPgM8FlgYETMKmzaAHCiEEmSuiH7IKtbi4g+wEbA/wBjC5tey8yXaxOVJEmqJQtkSZIkqcBh3iRJkqQCC2RJkiSpwAJZ3U5E7BURu7Vhv5Miot3TTbf1/JIkqT5ZIKs72guoZAFb6fNLkqQKskBWlxERJ0bErIiYGRHXR8QhEfHniJgeEfdFxHsioj9wKvDFiJgREaNa26/FeTeIiGciYu3y8obLliPi8xExu3zdm1o7f7U/B0mStGYcB1ldQkRsD3wD2C0zX4yIdwMJ7JKZGRFjgK9k5pcj4jLg9cz8bvnYjVruB3x52bkz87WImAgcBNwBHAP8PDMXRcRYYEBmvh0RfTPz1ZbnlyRJnYsFsrqKfYBbM/NFgMx8OSIGAzdHxObAOsAzKzi2Xxv2+zGlwvkO4D+BU8rrZwE3RMQd5W2SJKmTs4uFurLxwCWZORj4NNBrdffLzD8B/SNiL6BnZj5a3nQQ8CNgGDA5IvylU5KkTs4CWV3F74GjI2JjgHIXiz7A38vbP1HY9zVKU0kvs6L9WroO+BlwdfkaPYD3ZuYE4Kvl86zfyvklSVInYoGsLiEzHwPOB/4QETOB7wPjgFsjYirwYmH3XwCHFx6iW9F+Ld1AaVrqG8vLPYGfRsQjwHTgh5n5aivnlyRJnYhTTUttFBFHAYdm5gm1jkWSJFWO/SWlNoiI8cBHgI/WOhZJklRZtiBLkiRJBfZBliRJkgoskCVJkqQCC2RJkiSpwAJZkiRJKrBAliRJkgr+f/ug2az2faSVAAAAAElFTkSuQmCC\n" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "execution_count": 72, + "metadata": { + "collapsed": false, + "outputHidden": false, + "inputHidden": false + } + }, + { + "cell_type": "code", + "source": [ + "fig, axes = plt.subplots(1,3, figsize=(10,5))\n", + "fig.subplots_adjust(wspace=0.2)\n", + "data = [r.experiment.data for r in mtbo_results_list]\n", + "big_data= pd.concat(data)\n", + "big_data[\"nucleophile\", \"METADATA\"] = \"Phenylethylamine (optimization)\"\n", + "pt_data = datasets[\"Morpholine\"].copy()\n", + "pt_data[(\"task\", \"METADATA\")] = 0\n", + "pt_data = pt_data.replace(\"≥90%\", 0.9)\n", + "pt_data[\"nucleophile\", \"METADATA\"] = \"Morpholine (pretraining)\"\n", + "big_data = big_data.append(pt_data)\n", + "plots = [\"base_equivalents\", \"temperature\", \"t_res\"]\n", + "for col in plots:\n", + " big_data[col, \"DATA\"] = big_data[col].astype(float)\n", + "# Counts of different catalysts grouped by nucleophile\n", + "(big_data.\n", + " groupby([\"nucleophile\",])\n", + " [\"base_equivalents\"].\n", + " mean().\n", + "# unstack(0).\n", + " plot.bar(ax=axes[0])\n", + ")\n", + "# Counts of different bases grouped by nucleophile\n", + "(big_data.\n", + " groupby([\"nucleophile\"])\n", + " [\"temperature\"].\n", + " mean().\n", + "# unstack(0).\n", + " plot.bar(ax=axes[1])\n", + ")\n", + "(big_data.\n", + " groupby([\"nucleophile\"])\n", + " [\"t_res\"].\n", + " mean().\n", + "# unstack(0).\n", + " plot.bar(ax=axes[2])\n", + ")\n", + "for plot, ax in zip(plots, axes):\n", + " ax.set_ylabel(f\"average {plot}\")\n", + "fig.tight_layout()\n", + "fig.savefig(\"figures/yield_distribution_similar_equiv_time_temp.png\", dpi=300)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": [ + "iVBORw0KGgoAAAANSUhEUgAAAs8AAAFgCAYAAABE0JQRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABBc0lEQVR4nO3deZwcVb3+8c9DWILIKlFRCEGNcFEWMYIoV2URwQVEuAqKIoq4oKLc3/2Jy0VAvSJuP3EDRBAUQUSWqChGRFCRJYlIWC9hExAEWaNA2J7fH1UjnWEyU5N0V01XP+/Xq1/Tdaqr55thHuZ01alzZJuIiIiIiBjbMk0XEBERERHRL9J5joiIiIioKJ3niIiIiIiK0nmOiIiIiKgoneeIiIiIiIqWbbqAblpzzTU9bdq0psuI6Ko5c+b83faUpuvoteQ32mgQ8pvsRhuNlt1WdZ6nTZvG7Nmzmy4joqsk3dR0DXVIfqONBiG/yW600WjZzbCNiIiIiIiK0nmOiIiIiKgoneeIiIiIiIrSeY6IiIiIqCid54iIiIiIitJ5joiIiIioqFVT1UU7TDvw502XsERuPOx1TZcQi9GPv1P5fYqIOuX/k9Wl81xRP/5SQf4AR0RERHRThm1ERERERFTU086zpGMl3SHp8sXsf5Wk+yRdWj4O6ti3g6RrJM2XdGAv64yIiIiIqKLXZ56/B+wwxmt+Z3vT8nEogKRJwDeBHYENgT0kbdjTSiMiIiIixtDTzrPt84G7l+DQzYH5tq+3/TBwMrBzV4uLiIiIiBinSp1nSc+VtEL5/FWSPixptS7VsKWkP0v6haQXlG3PBm7ueM0tZdtIte0rabak2XfeeWeXSoqIiIiIeLKqZ55/Ajwm6XnA0cA6wA+78P3nAuva3gT4OnDGeN/A9tG2Z9ieMWXKlC6UFBERERExsqqd58dtPwrsAnzd9n8Bay3tN7d9v+1/lM/PApaTtCZwK0UHfcjaZVtERERERGOqdp4fkbQHsBfws7JtuaX95pKeKUnl883Leu4CLgGmS1pP0vLA7sDMpf1+ERERbTTS7FaSvijpakmXSTp9aLilpGmSHuyY6erIjmNeLGleOdPVEUN/oyPiCVU7z3sDWwKfs32DpPWA7491kKSTgD8C60u6RdK7Jb1P0vvKl+wGXC7pz8ARwO4uPAp8EDgbuAo4xfYV4/unRUREDIzv8eTZrWYBL7S9MfC/wMc79l3XMdPV+zravw28B5hePsaaMSti4FRdYfDVtj88tFF2oB8a6yDbe4yx/xvANxaz7yzgrIr1RUREDCzb50uaNqztVx2bF1KcsFosSWsBq9i+sNw+AXgj8IuuFhvR56qeed5rhLZ3drGOiIiI6J13sWgneD1Jf5J0nqR/L9ueTTG71ZDFznQVMchGPfNcjnN+K0XIOsccr8ySzd8cERERNZL0SeBR4MSy6TZgqu27JL0YOKNjqtiq77kvsC/A1KlTu1luxIQ31rCNCyhCtibw5Y72BcBlvSoqIiIilp6kdwKvB7a1bQDbC4GF5fM5kq4Dnk8xq9XaHYcvdqYr20dTTF3LjBkz3Kv6IyaiUTvPtm8CbqK4WTAiImKxph3486ZLWCI3Hva6pkvoCUk7AP8XeKXtBzrapwB3235M0nMobgy83vbdku6X9FLgIuAdFGswRESHqisMvknStZLuK4O1QNL9vS4uIiIixjbS7FYUN+SvDMwaNiXdK4DLJF0KnAq8z/bQUMwPAMcA84HryM2CEU9SdbaNw4E32L6ql8VERETE+C1mdqvvLua1P6FYOXikfbOBF3axtIjWqTrbxt/ScY6IiIiIQVf1zPNsST8CzqC8yQDA9mm9KCoi6iXp+RSLIzzD9gslbQzsZPuzDZcWERExoVQ987wK8ACwPfCG8vH6XhUVEbX7DsXqY48A2L4M2L3KgZJWk3RquQzwVZK2lLSGpFnlvRKzJK3ew9ojIiJqU+nMs+29e11IRDTqKbYvltTZ9mjFY78G/NL2bpKWB54CfAI4x/Zhkg4EDgQ+1tWKIyIiGlB1to3nSzpH0uXl9saSPtXb0iKiRn+X9FzAAJJ2o5jjfVSSVqW4c/+7ALYftn0vsDNwfPmy4ymW+I2IiOh7VYdtLPEl3YjoC/sBRwEbSLoV+AjwvgrHrQfcCRxXLvV7jKSVKMZOD3W+bweeMdLBkvaVNFvS7DvvvHOp/xERERG9VrXz/BTbFw9rq3pJNyImMEmTgA/Y3g6YAmxge6tykaSxLAtsBnzb9ouAf1IM0fiXclWzEVcgs3207Rm2Z0yZMmWp/h0RERF1qNp5XqJLuhEx8dl+DNiqfP5P2wvGcfgtwC22Lyq3T6XoTP9N0loA5dc7ulhyREREY6pOVbcfxRr2Q5d0bwD2HOsgScdSzMpxh+0nTbou6W0UNxEJWAC83/afy303lm2PAY/anlGx1ogYvz9Jmgn8mOLsMTD2dJS2b5d0s6T1bV8DbAtcWT72Ag4rv57Zs8ojIiJqVHW2jeuB7cqxjMuM48zU9yiWBz1hMftvAF5p+x5JO1J00Lfo2L+17b9X/F4RseQmA3cB23S0Gagyl/uHgBPLmTauB/amuKp1SrlE8E3Am7tbbkRERDNG7TxLOmAx7QDY/spox9s+X9K0UfZf0LF5IbD2aO8XEb2xNNNR2r4UGOnK0LZLXFBERMQENdaZ55VrqaLwbuAXHdsGfiXJwFG2j66xloiBIuk4Rripz/a7GignIiJiwhq182z7kDqKkLQ1Red5q47mrWzfKunpwCxJV9s+f4Rj9wX2BZg6dWod5Ua00c86nk8GdgH+2lAtERERE1alMc+SJlN0bl9A8YcV6M5ZKUkbA8cAO9q+q+O9by2/3iHpdGBz4Emd5/KM9NEAM2bMGHE6rIgYne2fdG5LOgn4fUPlRERETFhVp6r7PvBM4DXAeRRjk8czndWIJE2luCHp7bb/t6N9JUkrDz0HtgcuX9rvFxGVTQee3nQRERERE03VqeqeZ/s/JO1s+3hJPwR+N9ZB5dmrVwFrSroF+DSwHIDtI4GDgKcB3ypvQhyaku4ZwOll27LAD23/clz/soioTNICFh3zfDvFNJIRERHRoWrn+ZHy672SXkjxh3XMs1K29xhj/z7APiO0Xw9sUrG2iFhKtuu8OTgiIqJvVR22cbSk1YH/BmZSLIDwhZ5VFRG1knROlbaIiIhBV7XzfJzte2yfZ/s5tp9u+6ieVhYRPSdpsqQ1KIZWrS5pjfIxDXh2w+VFREWSjpV0h6TLO9rWkDRL0rXl19XLdkk6QtJ8SZdJ2qzjmL3K118raa8m/i0RE13VzvMNko6WtK2GVkiJiDZ4LzAH2KD8OvQ4k2J10IjoD98DdhjWdiBwju3pwDnlNsCOFDcFT6eY6vXbUHS2Ke5N2oJihqtPD3W4I+IJVTvPGwC/BvYDbpT0DUlbjXFMRExwtr9mez3g/5RXldYrH5vYTuc5okaSXl7OMIWkPSV9RdK6VY4t10G4e1jzzsDx5fPjgTd2tJ/gwoXAapLWophRa5btu23fA8ziyR3yiIFXqfNs+wHbp9h+E7ApsArFlHUR0QK2vy7phZLeLOkdQ4+m64oYMN8GHpC0CfCfwHXACUvxfs+wfVv5/HaKmaygGJJ1c8frbinbFtceER2qnnlG0islfYviku5k4M09qyoiaiXp08DXy8fWwOHATo0WFTF4HrVtijPD37D9TaArM+GU79u1hcQk7StptqTZd955Z7feNqIvVOo8S7oR+AjF3M4b2X7z8BXJIqKv7QZsC9xue2+KqSJXbbakiIGzQNLHgbcDP5e0DOXaCEvob+VwDMqvd5TttwLrdLxu7bJtce1PYvto2zNsz5gyZcpSlBjRf6qeed7Y9i62T7L9z55WFBFNeND248Cjklah+CO7zhjHRER3vQVYCLzL9u0UndcvLsX7zQSGZszYi+JG4KH2d5SzbrwUuK8c3nE2sH05887qFKv7nr0U3z+ilUZdJEXS/7V9OPDZkSbZsP3hXhUWEbWaLWk14DsUQ7P+Afyx0YoiBozt2yX9hGIWDIC/A6dXOXYxK/oeBpwi6d3ATTwx3PIs4LXAfOABYO/y+98t6TPAJeXrDrU9/CbEiIE31gqDV5Vf5/S6kIhoRjn95Odt3wscKemXwCq2L2u2sojBIuk9FFPHrQE8l+JmvSMphlSNapQVfZ90bDn+eb/FvM+xwLEVS44YSKN2nm3/tPx6/Givi4j+ZduSzgI2KrdvbLaiiIG1H8X8yhcB2L5W0tObLSkihhvrzDMAks5lhLt0bW/T9YoioglzJb3E9iVjvzQiemSh7YeHhklKWpYuzpAREd1RqfMM/J+O55OBXYFHu19ORDRkC+Btkm4C/gmI4qT0xs2WFTFQzpP0CWBFSa8GPgD8tOGaImKYSp1n28PHPP9B0sU9qCcimvGapguICD4G7APMA95LcWPfMY1WFBFPUnXYxhodm8sALyZzwEa0hu2bJG0FTLd9nKQpwFObritiUEiaBFxhewOKWW8iYoKqOmxjDsW4K1EM17gBePdYB0k6Fng9cIftF46wX8DXKKbMeQB4p+255b69gE+VL/1sblqM6J1yhcEZwPrAcRQLM/wAeHmTdUUMCtuPSbpG0lTbf2m6noli2oE/b7qEcbvxsNc1XUL0WNVhG+st4ft/D/gGcMJi9u9IMZ/ldIoxl98GtijPdA/9MTcwR9JM2/csYR0RMbpdgBcBcwFs/1VSV5YFjojKVgeuKIdF/mtBMts7NVdSRAxXddjGm0bbb/u0xbSfL2naKIfuDJxQzjl5oaTVyiVEXwXMGpqcXdIsYAfgpCr1RsS4PVxOWWcASSs1XVDEAPrvpguIiLFVHbbxbuBlwG/K7a2BC4A7Kc4Mj9h5ruDZwM0d27eUbYtrfxJJ+1JMKs/UqVOXsIyIgXeKpKOA1cqFGt5Fxl1G1Mr2eaPtl/RH21vWVU9EjKxq53k5YEPbtwGUZ4e/Z3vvnlVWke2jgaMBZsyYkfkwI5aA7S+VU2PdDzwfOMj2rIbLiohFTW66gIio3nleZ6jjXPob0I3TvLcC63Rsr1223UoxdKOz/bdd+H4RsXjzgBUpribNa7iWiHiynCCKmACWqfi6cySdLemdkt4J/Bz4dRe+/0zgHSq8FLiv7KSfDWwvaXVJqwPbl20R0QOS9gEuBt4E7EZxD8K7mq0qIiJi4qk628YHJe0CvKJsOtr26WMdJ+kkijPIa0q6hWIGjeXK9zySYgL41wLzKaaq27vcd7ekzwBDSwUfOnTzYET0xH8BL7J9F4Ckp1Hc13Bso1VFRCc1XUBEVB+2AcUUVgts/1rSUyStbHvBaAfY3mOM/Qb2W8y+Y8kf7oi63AV05nlB2RYRNZH0BdsfG6Xt7Q2UFRHDVBq2Ud59fypwVNn0bOCMHtUUEfWbD1wk6eBywZQLgf+VdICkAxquLWJQvHqEth2Hnti+vMZaImIxqp553g/YHLgIwPa1kp7es6oiom7XlY8hZ5Zfs1BKRI9Jej/wAeA5ki7r2LUy8IdmqoqIxanaeV5o++FiNW2QtCy56zeiNWwfsjTHS5oEzAZutf16SesBJwNPA+YAb7f98NJXGtFKPwR+AXweOLCjfUHu94mYeKrOtnGepE8AK5Zzwf4Y+GnvyoqIOkmaIel0SXMlXTb0GMdb7A9c1bH9BeCrtp8H3EOx0FJEjMD2fbZvtL2H7Zs6Huk4R0xAVTvPB1KsJjgPeC/FLBmf6lVREVG7E4HjgF2BN3Q8xiRpbeB1wDHltoBtKO6TADgeeGN3y42IKiStL+nSjsf9kj5S3t9wa0f7azuO+bik+ZKukfSaJuuPmIiqTlX3OMVSvSMu1yvpJ7Z37WZhEVGrO23PXMJj/x/wf3lifPTTgHttP1pu30Jxk/GTSNoX2Bdg6tRurLsUEZ1sXwNsCv8aXnUrcDrF1LBftf2lztdL2hDYHXgB8Czg15Keb/uxOuuOmMiqnnkey3O69D4R0YxPSzpG0h6S3jT0GOsgSa8H7rA9Z0m+qe2jbc+wPWPKlClL8hYRrSJpXUnblc9XlNTNm3a3Ba6zfdMor9kZONn2Qts3UMzEs3kXa4joe+OZ53k0uXkwor/tDWxAsYjR42WbgdPGOO7lwE7lJd/JwCrA14DVJC1bnn1em+JsV0SMopwWdl9gDeC5FNk5kqLT2w27Ayd1bH9Q0jsobvb9T9v3UFwlurDjNSNeOcpVoxhk3TrzHBH97SXlGeC9bO9dPsZcntv2x22vbXsaxR/m39h+G3AuxTLfAHvxxNR3EbF4+1F8IL0fimlhga5MCytpeWAnihv+Ab5N0UHfFLgN+PJ43i9XjWKQdavznCVDI/rbBeVYx275GHCApPkUY6C/28X3jmirhZ1TOnZ5Wtgdgbm2/wZg+2+2H+u4p2loaMatwDodx+XKUcQwlYdtSFoRmFrefDDcx0Zoi4j+8VLgUkk3AAspPhDb9sZV38D2b4Hfls+vJ+MkI8Zr+LSwH6B708LuQceQDUlr2b6t3NwFGFq9cCbwQ0lfobhhcDpwcZdqiGiFSp1nSW8AvgQsD6wnaVPgUNs7Adj+Vc8qjIg67NB0ARHBgRRzondOC3vM0r6ppJUolv5+b0fz4eXfcgM3Du2zfYWkU4ArgUeB/TLTRsSiqp55PpjiLNJvAWxfWq4gFhEtYPsmSVsB020fJ2kK8NSm64oYJGNNC7sU7/tPiuFTnW1vH+X1nwM+180aItqkauf5Edv3DS3PXcoMGxEtIenTwAxgfYrFUpYDfkBx81JE1EDSPJ78t/U+itkwPmv7rvqriojhqnaer5D0VmCSpOnAh4ELqhwoaQeKqasmAcfYPmzY/q8CW5ebTwGebnu1ct9jFJevAP4yNEwkIrpuF+BFwFwA23/t8vyyETG2XwCPAT8st3en+Lt4O/A9Kq76GRG9VbXz/CHgkxQ3Ep0EnA18ZqyDytWMvkkx1uoW4BJJM21fOfQa2x/teP2HKP6AD3nQ9qYVa4yIJfewbUsy/GuMZETUazvbm3Vsz5M01/ZmkvZsrKqIWESlqepsP2D7k7ZfAmwBfMH2QxUO3RyYb/v6cvqdkylWL1qcRe4GjojanCLpKIrFTd4D/Jou3KgUEeMySdK/ZqmR9BKKq7ZQ3LwXERNA1dk2fgi8j+Jy0iXAKpK+ZvuLYxz6bODmju1bKDrfI32PdYH1gN90NE+WNJvifxqH2T6jSr0RMT62v1ROjXU/xbjng2zParisiEGzD3CspKdSTBd5P7BPeSXo841WFhH/UnXYxoa275f0NooxWQcCc4CxOs/jsTtw6rApcda1fauk5wC/kTTP9nWdB2WJ0IilJ+kLtj8GzBqhLSJqYPsSYCNJq5bb93XsPqWZqiJiuKorDC4naTngjcBM249QbbaN8axUtDvDhmzYvrX8ej3FNHkvGn5QlgiN6IpXj9C2Y+1VRAw4Sa+jmHN5f0kHSTqo6ZoiYlFVO89HUUyivhJwfjnE4v4Kx10CTJe0nqTlKTrIM4e/SNIGwOrAHzvaVpe0Qvl8TYops64cfmxELDlJ7y+nx1pf0mUdjxuAy5quL2KQSDoSeAvFTfoC/gNYt9GiIuJJKg3bsH0EcERH002Stl7c6zuOe1TSBylm55gEHFuuXnQoMNv2UEd6d+Bk251ns/8NOErS4xSd/MM6Z+mIiK74IcVQrM9TDMcassD23c2UFDGwXmZ7Y0mX2T5E0pcp8hkRE0jVMc9Dl5JeAEzuaD50rONsn0WxxGhn20HDtg8e4bgLgI2q1hcR41eOqbyPYqabiGjW0CxWD0h6FnAXsFaD9UTECKrOtnEkxUTtW1NMX7UbcHEP64qIiBg0P5W0GsXN+HMp7i3q6lLdEbH0qp55zqWkiIiIHpG0DHCO7XuBn0j6GTB52IwbETEBVL1h8MHy69ClpEfIpaSIVpG0rqTtyucrZnnuiPrYfpxiRd6h7YXpOEdMTFU7zz8bdinpRoobjSKiBcpVBU+lmFkHimklz2isoIjBdI6kXSWp6UIiYvGqzrbxmfJpLiVFtNN+wObARQC2r5X09GZLihg47wUOAB6T9CDFdHW2vUqzZUVEp6o3DE4GPgBsRXEDw+8lfdv2Q6MfGRF9YqHth4dOeElalmoLIUVEl9jOUKmIPlB12MYJFNPUfR34BrAh8P1eFRURtTtP0ieAFSW9Gvgx8NOGa4oYKCrsKem/y+11JG3edF0Rsaiqs2280PaGHdvnSsqCJRHtcSDwbmAexaXjsyimpYyI+nwLeBzYBvgM8A+Kmwhf0mRREbGoqp3nuZJeavtCAElbALN7V1ZE1Km80/87ZE7ZiCZtYXszSX8CsH2PpOWX9k0l3QgsAB4DHrU9Q9IawI+AaRSTALy5/H4Cvga8FngAeKftuUtbQ0SbjNp5ljSPYtzjcsAFkv5Sbq8LXN378iKiDh1Z73QfxYfkz9q+q/6qIgbOI5ImUWZR0hSKM9HdsLXtv3dsH0gxr/Rhkg4stz8G7AhMLx9bAN8uv0ZEaawzz6+vpYqIaNovKM5KDU1BuTvFqqK3A98D3tBMWRED5QjgdODpkj5HsZrvp3r0vXYGXlU+Px74LUXneWfgBNsGLpS0mqS1bN/Wozoi+s6onWfbN9VVSEQ0ajvbm3Vsz5M0t7yEvGdjVUUMENsnSpoDbEsxTd0bbV/VjbcGfiXJwFG2jwae0dEhvh14Rvn82cDNHcfeUrYt0nmWtC+wL8DUqVO7UGJE/6g65jki2m2SpM1tXwwg6SXApHLfo82VFTE4JB0BnGz7m2O+eHy2sn1rOXf7LEmLDLu07bJjXVnZAT8aYMaMGZnWMgZKOs8RAbAPcKykp1Kc8bof2EfSSsDnG60sYnDMAT4laX2K4Rsn217qm/Nt31p+vUPS6RQLIv1taDiGpLWAO8qX3wqs03H42mVbRJSqzvOMpHUlbVc+X1FSJnOPaAnbl9jeCNgU2MT2xrYvtv1P26c0XF7EQLB9vO3XUkxNdw3wBUnXLs17Slpp6O91+WF4e+ByYCawV/myvYAzy+czgXeUc06/FLgv450jFlWp8yzpPcCpwFFl09rAGRWP3UHSNZLml3f0Dt//Tkl3Srq0fOzTsW8vSdeWj72GHxsR3SPpdRRzPO8v6SBJBzVdU8SAeh6wAd2Z2eoZFKsC/xm4GPi57V8ChwGvLjvn25XbUMzxfj0wn2Lqyg8s5fePaJ2qwzb2o7jMcxGA7WvLsVOjKqfc+SbwaoqbDi6RNNP28AVWfmT7g8OOXQP4NDCD4maHOeWx91SsOSIqknQkxewaW1MsjrIbxR/aiKiJpMOBXYDrKOZg/ozte5fmPW1fD2wyQvtdFDcmDm83xd/8iFiMqsM2Ftp+eGhD0rI8eU7YkWwOzLd9fXn8yRTT4FTxGmCW7bvLDvMsYIeKx0bE+LzM9juAe2wfAmwJPL/hmiIGzXXAlrZ3sH3c0nacI6I3qnaez5P0CWBFSa8Gfgz8tMJxi5vyZrhdJV0m6VRJQzcqVDpW0r6SZkuafeedd1b5t0TEkz1Ufn1A0rOAR4C1GqwnYuDYPgp4TNLmkl4x9Gi6rohYVNXO84HAncA8ijGRZ9G9idt/CkyzvTHF2eXjx3Ow7aNtz7A9Y8qUKV0qKWLg/FTSasAXgbkUy/X+cLQDIqK7ynt+zgfOBg4pvx7cZE0R8WSVxjzbfpzixoHvjPP9x5zyZtiyv8cAh3cc+6phx/52nN8/IsYgaRmKZXrvBX4i6WfAZNv3NVtZxMDZn2KmjQttby1pA+B/Gq4pIoapOtvGvHJYRefjd5K+Kulpoxx6CTBd0nqSlqdY8nfmsPfuvDS8EzC0mtLZwPaSVpe0OsX0OmdX/YdFRDXlh+NvdmwvrNpxlrSOpHMlXSnpCkn7l+1rSJpVzpQzq8xwRIzuIdsPAUhawfbVwPoN1xQRw1SdbeMXwGM8cRl3d4o7828Hvge8YaSDbD8q6YMUnd5JwLG2r5B0KDDb9kzgw5J2oljF7G7gneWxd0v6DEUHHOBQ23eP758XERWdI2lX4LTybvuqHgX+0/bcci7ZOZJmUeT4HNuHlVNUHgh8rOtVR7TLLeXwqTMoVgK8B7ip0Yoi4kmqdp63s71Zx/Y8SXNtbyZpz9EOtH0WxRjpzraDOp5/HPj4Yo49Fji2Yo0RseTeCxxAcbPSgxSrDNr2KqMdVC6ecFv5fIGkqyhu7N2ZJ4ZdHU8x5Cqd54hR2N6lfHqwpHOBVYFfNlhSRIygaud5kqTNbV8MIOklFGeSoTjzFBF9zPZSrxgqaRrwIor54J/RsSrZ7RQLNYx0zL7AvgBTp05d2hIiWsP2eU3XEBEjqzrbxj7AdyXdIOlG4LvAe8qlPj/fq+Iioh7lUrx7SvrvcnsdSZuP4/inAj8BPmL7/s595TCQEYeCZLaciIjoN1Vn27gE2EjSquV2581Ep/SisIio1beAx4FtgM8A/6C4ifAlYx0oaTmKjvOJtk8rm/8maS3bt5U3Bd/Rm7IjIiLqVXXYBpJeB7wAmCwJANuH9qiuiKjXFuU9DH8CsH1POUPOqFT8z+C7wFW2v9KxayawF3BY+fXMHtQcERFRu0qdZ0lHUsyusTXFXMy7ARf3sK6IqNcjkiZRDq+QNIXiTPRYXg68neIm4kvLtk9QdJpPkfRuitkC3tz1iiMiIhpQ9czzy2xvLOky24dI+jLF9HUR0Q5HAKcDT5f0OYoPyGOuImr79xQzc4xk2+6VFxERMTFU7Tw/VH59QNKzgLuAtUZ5fUT0EdsnSppD0eEV8EbbV41xWERExMCp2nn+aTlx+xeBuRSXdse7VHdETFCSjgBOtv3NMV8cERExwMbsPEtahmKlsHuBn0j6GTC56vK9EdEX5gCfkrQ+xfCNk23PbrimiIiICWfMeZ5tP04xZdXQ9sJ0nCPaxfbxtl9LMTXdNcAXJF3bcFkRERETTtVFUs6RtKuG5qiLiLZ6HrABsC5wdcO1RERETDhVO8/vBX4MPCzpfkkLJN0/1kER0R8kHV6eaT4UuByYYfsNDZcVEUupXC30XElXSrpC0v5l+8GSbpV0afl4bccxH5c0X9I1kl7TXPURE1PVFQZX7nUhEdGo64Atbf+96UIioqseBf7T9lxJKwNzJM0q933V9pc6XyxpQ2B3ikXRngX8WtLzbT9Wa9URE1jVRVIEvA1Yz/ZnJK0DrGU7C6VEtIDtoyStLmlzYHJH+/kNlhURS8n2bcBt5fMFkq4Cnj3KITtT3DC8ELhB0nxgc+CPPS82ok9UHbbxLWBL4K3l9j/ouIlwNJJ2KC/9zJd04Aj7DygvJ10m6RxJ63bse6zjktLMirVGxDhJ2gc4HzgbOKT8enCTNUVEd0maBrwIuKhs+mD5t/dYSauXbc8Gbu447BZG6GxL2lfSbEmz77zzzl6WHTHhVO08b2F7P8rFUmzfAyw/1kHlcr/fBHYENgT2KC8JdfoTxfjKjYFTgcM79j1oe9PysVPFWiNi/PanmGnjJttbU/yBvbfRiiKiayQ9FfgJ8BHb9wPfBp4LbEpxZvrL43k/20fbnmF7xpQpU7pdbsSEVrXz/EjZETaApCnA4xWO2xyYb/t62w8DJ1NcEvoX2+fafqDcvBBYu2JNEdE9D9l+CEDSCravBtZvuKaI6AJJy1F0nE+0fRqA7b/ZfqycjvY7FH+vAW4F1uk4fO2yLSJKVTvPR1AsnPB0SZ8Dfg/8T4XjKl3+6fBu4Bcd25PLy0IXSnpjxVojYvxuKVcRPQOYJelM4KZGK4qIpVbes/Rd4CrbX+loX6vjZbtQzLIDMBPYXdIKktYDpgO5vymiQ9XZNk6UNAfYFhDwRttXdbMQSXsCM4BXdjSva/tWSc8BfiNpnu3rhh23L7AvwNSpU7tZUsTAsL1L+fRgSecCqwK/bLCkiOiOlwNvB+ZJurRs+wTFMMpNKa4o30gxJS22r5B0CnAlxUwd+2WmjYhFVZ1t4wiKu28r3STYodLlH0nbAZ8EXlne4QuA7VvLr9dL+i3FOMxFOs+2jwaOBpgxY4bHWV9EDGP7vKZriIjusP17ipNew501yjGfAz7Xs6Ii+lzVYRtzgE9Juk7SlyTNqHjcJcB0SetJWp5i7shFZs2Q9CLgKGAn23d0tK8uaYXy+ZoUn56vrPh9IyIiIiK6rlLn2fbxtl9LcTf+NcAXytXIxjruUeCDFNNeXQWcUl4SOlTS0OwZXwSeCvx42JR0/wbMlvRn4FzgMNvpPEdEREREYyoN2+jwPGADYF2KzvCYbJ/FsMtDtg/qeL7dYo67ANhonPVFRERERPRMpTPPkg4vzzQfSnFH7gzbb+hpZRERERERE0zVM8/XAVva/nsvi4mIiIiImMiqTlV3VHkD3+bA5I7283tWWURERETEBFN1qrp9KJbvXRu4FHgp8Edgm55VFhERERExwVSdqm5/ipk2brK9NcV8y/f2qqiIiIiIiImoauf5IdsPAUhawfbVwPq9KysiIiIiYuKpesPgLZJWA84AZkm6B7ipV0VFRERERExEVW8Y3KV8erCkc4FVgV/2rKqIiIiIiAlovIukYPu8XhQSERERETHRVR3zHBEREREx8NJ5joiIiIioKJ3niIiIiIiK0nmOiIiIiKgoneeIiIiIiIrSeY6IiIiIqKjnnWdJO0i6RtJ8SQeOsH8FST8q918kaVrHvo+X7ddIek2va42I7hkr+xExMSW7EaPraedZ0iTgm8COwIbAHpI2HPaydwP32H4e8FXgC+WxGwK7Ay8AdgC+Vb5fRExwFbMfERNMshsxtl6fed4cmG/7etsPAycDOw97zc7A8eXzU4FtJalsP9n2Qts3APPL94uIia9K9iNi4kl2I8Yw7hUGx+nZwM0d27cAWyzuNbYflXQf8LSy/cJhxz57+DeQtC+wb7n5D0nXdKf0Wq0J/L0Xb6wv9OJd+1o//qzX7dk7906V7Lchv/34+9Sv+vVn3W/5HZTsQo9+p5LdEfXjz3qx2e1157nnbB8NHN10HUtD0mzbM5quYxDkZz2x9Ht+8/tUn/ysJ5Z+zy7kd6pObftZ93rYxq3AOh3ba5dtI75G0rLAqsBdFY+NiIkp+Y3oT8luxBh63Xm+BJguaT1Jy1PcADhz2GtmAnuVz3cDfmPbZfvu5Wwc6wHTgYt7XG9EdEeV7EfExJPsRoyhp8M2yjHMHwTOBiYBx9q+QtKhwGzbM4HvAt+XNB+4myKolK87BbgSeBTYz/Zjvay3QX196avP5Gddg8Vlv+GyeiG/T/XJz7oGA5RdyO9UnVr1s1ZxkjciIiIiIsaSFQYjIiIiIipK5zkiIiIioqJ0niMiIiIiKkrnOSIiIiKior5fJKXfSNoS2BP4d2At4EHgcuDnwA9s39dgea0iaW2K2Vv+HXgWi/6sf2H78QbLiz6T7NYn2Y1uS37rMwj5zWwbNZL0C+CvwJnAbOAOYDLwfGBr4A3AV8op/GIpSDqOYpnZnzHyz/rFwIG2z2+syOgbyW59kt3otuS3PoOS33SeayRpTdujru1e5TUxNkkvtH35KPuXB6banl9jWdGnkt36JLvRbclvfQYlv+k8R0RERERUlDHPDZC0ABj+qeU+iksc/2n7+vqraidJLwcOBtal+H0XYNvPabKu6E/Jbn2S3ei25Lc+bc9vzjw3QNJngFuAH1L8Qu0OPBeYC7zf9quaq65dJF0NfBSYA/xreXfbdzVWVPStZLc+yW50W/Jbn7bnN53nBkj6s+1NhrVdanvTkfbFkpN0ke0tmq4j2iHZrU+yG92W/Nan7fnNsI1mPCDpzcCp5fZuwEPl83ya6a5zJX0ROA1YONRoe25zJUUfS3brk+xGtyW/9Wl1fnPmuQGSngN8DdiSIrAXUlzeuBV4se3fN1heq0g6d4Rm296m9mKi7yW79Ul2o9uS3/q0Pb/pPEdEREREVJRhGw2QNAV4DzCNjv8Gtt/VVE1tJWlV4NPAK8qm84BDs5pULIlktz7JbnRb8luftuc3nedmnAn8Dvg1HXehRk8cS7Es6JvL7bcDxwFvaqyi6GfJbn2S3ei25Lc+rc5vhm00YOju3qbrGAQj/azz848lld+d+iS70W35/alP2/O7TNMFDKifSXpt00UMiAclbTW0UU7c/mCD9UR/S3brk+xGtyW/9Wl1fnPmuQHlKkcrUUzf8ghPrLyzSqOFtZCkTYHjgVUpfs53A++0/ecm64r+lOzWJ9mNbkt+69P2/KbzHANB0ioAtu9vupaIqC7Zjehfbc1vOs81krSB7aslbTbS/rZMHj4RSNrT9g8kHTDSfttfqbum6F/Jbn2S3ei25Lc+g5LfzLZRrwOAfYEvj7DPQCsmD58gViq/rjzCvnxijPFKduuT7Ea3Jb/1GYj85sxztJqkl9v+w1htETGxJLsR/avt+U3nuSGSXsaTJ2o/obGCWkrSXNubjdUWUVWyW49kN3oh+a1H2/ObYRsNkPR94LnApTwxUbuBBLhLJG0JvAyYMmzs1SrApGaqin6X7PZeshu9kvz23qDkN53nZswANnRO+/fS8sBTKX7HO8de3Q/s1khF0QbJbu8lu9EryW/vDUR+M2yjAZJ+DHzY9m1N19J2kta1fVPTdUQ7JLv1SXaj25Lf+rQ9vznz3Iw1gSslXUwxWTsAtndqrqTWekDSF4EXAJOHGm3n7upYEslufZLd6Lbktz6tzm86z804uOkCBsiJwI+A1wPvA/YC7my0ouhnBzddwABJdqPbDm66gAHS6vxm2Ea0mqQ5tl8s6TLbG5dtl9h+SdO1RcTiJbsR/avt+c2Z5xpJ+r3trSQtYNHJwgXY9ioNldZmj5Rfb5P0OuCvwBoN1hN9KNltRLIbXZH8NqLV+c2Z52g1Sa8HfgesA3ydYrqcQ2zPbLSwiBhVshvRv9qe33SeGyTp6Sw6kP4vDZbTSpLWsX3zsLZn2r69qZqi/yW7vZfsRq8kv73X9vwu03QBg0jSTpKuBW4AzgNuBH7RaFHtdYOkkyQ9paPtrMaqib6W7NYq2Y2uSn5r1er8pvPcjM8ALwX+1/Z6wLbAhc2W1FrzKC4d/V7Sc8s2NVhP9Ldktz7JbnRb8lufVuc3nedmPGL7LmAZScvYPpdi5aPoPtv+FvAh4KeS3sCiN4xEjEeyW59kN7ot+a1Pq/Ob2Taaca+kpwLnAydKugP4Z8M1tZUAbP9B0rbAKcAGzZYUfSzZrU+yG92W/Nan1fnNDYMNkLQS8CDFmf+3AasCJ5afiKOLJK3VuRSrpGWBl9k+v8Gyok8lu/VJdqPbkt/6tD2/6TzXTNIk4Ne2t266ljaTtKftH0g6YKT9tr9Sd03R35LdeiS70QvJbz0GJb8ZtlEz249JelzSqrbva7qeFlup/Lpyo1VEayS7tUl2o+uS39oMRH5z5rkBks4EXgTMomO8le0PN1ZURIwp2Y3oX8lvdEvOPDfjtPLRKZ9iekDSehR3+06j4/fd9k5N1RR9LdmtSbIbPZD81qTt+U3nuRmr2f5aZ4Ok/ZsqpuXOAL4L/BR4vNlSogWS3fqcQbIb3ZX81ucMWpzfDNtogKS5tjcb1vYn2y9qqqa2knSR7S2ariPaIdmtT7Ib3Zb81qft+U3nuUaS9gDeCmxFsfLOkJWBx21v20hhLSbprcB04FfAwqF223MbKyr6TrJbv2Q3uiX5rV/b85thG/W6ALgNWBP4ckf7AuCyRipqv42AtwPb8MSlI5fbEVUlu/VLdqNbkt/6tTq/OfPcEEnrAtNt/1rSisCythc0XVfbSJoPbGj74aZriXZIduuR7EYvJL/1aHt+l2m6gEEk6T3AqcBRZdPaFIPro/suB1Zruohoh2S3VsludFXyW6tW5zfDNpqxH7A5cBGA7WslPb3ZklprNeBqSZew6LirVkyXE7VLduuzGsludFfyW5/VaHF+03luxkLbD0sC/rXme8bP9Manmy4gWiXZrU+yG92W/Nan1flN57kZ50n6BLCipFcDH6CYCzG6zPZ5TdcQrZLs1iTZjR5IfmvS9vzmhsEGqPjYuw+wPSDgbOAY5z9G10j6ve2tJC1g0TMLAmx7lYZKiz6W7PZeshu9kvz23qDkN53nmkmaBFxhe4Oma4mI6pLdiP6V/EY3ZbaNmtl+DLhG0tSmaxkEkr5fpS1iLMluvZLd6Kbkt15tz2/GPDdjdeAKSRcD/xxqbMtdqBPMCzo3yhtEXtxQLdH/kt36JLvRbclvfVqd33Sem/HfTRfQdpI+DgzdGHI/xXgrgIeBoxsrLPpdsttjyW70UPLbY4OS34x5boikZ1LMN2ngEtu3N1xSK0n6vO2PN11HtEeyW49kN3oh+a1H2/ObznMDJO0DHAT8huJT2SuBQ20f22hhLVTeXb0LsBXF/yx/Z/uMRouKvpXs1ifZjW5LfuvT9vym89wASdcAL7N9V7n9NOAC2+s3W1n7SPoW8DzgpLLpLcB1tvdrrqroV8lufZLd6Lbktz5tz2/GPDfjLmBBx/aCsi26bxvg34bm8ZR0PHBFsyVFH0t265PsRrclv/VpdX7TeW7GfOAiSWdSXM7YGbhM0gEAtr/SZHEtMx+YCtxUbq9TtkUsiWS3PsludFvyW59W5zed52ZcVz6GnFl+XbmBWtpuZeCqcmoigJcAsyXNhExRFOOW7NYn2Y1uS37r0+r8ZsxztJqkV4623/Z5ddUSEdUluxH9q+35Tee5RpK+Axxhe94I+1aiGFC/0PaJtRfXYpKeQfGpF+Bi23c0WU/0n2S3GcludEPy24w25zed5xpJ2pRi8vCNgMuBO4HJwHRgFeBY4EjbC5uqsW0kvRn4IvBbiqmJ/h34L9unNllX9Jdkt37JbnRL8lu/tuc3necGSHoqMANYC3gQuMr2Nc1W1U6S/gy8eugTr6QpwK9tb9JsZdGPkt36JLvRbclvfdqe39ww2ADb/6D4NBa9t8ywS0V3Acs0VUz0t2S3VsludFXyW6tW5zed52i7X0o6m0Unaj+rwXoioppkN6J/tTq/GbYRrSfpTRRLhEKxROjpTdYTEdUkuxH9q835Tee5QZKeYvuBputoI0nyGL/cVV4TMZJkt3eS3ei15Ld3BiW/rRl/0k8kvUzSlcDV5fYm5Trw0T3nSvqQpKmdjZKWl7RNuVToXg3VFn0q2a1Fshs9kfzWYiDymzPPDZB0EbAbMNP2i8q2y22/sNnK2kPSZOBdwNuA9YB7gRUpPjD+CviW7T81VmD0pWS395Ld6JXkt/cGJb+5YbAhtm+W1Nn0WFO1tJHth4BvAd+StBywJvCg7XsbLSz6XrLbW8lu9FLy21uDkt90nptxs6SXAS5/ufYHrmq4ptay/QhwW9N1RCskuzVKdqPLkt8atTm/GbbRAElrAl8DtqNYeedXwP6272q0sIgYVbIb0b+S3+iWdJ4jIiIiIirKsI0GlMtUvgeYRsd/A9vvaqqmNpO0LjDd9q8lrQgsa3tB03VF/0l265XsRjclv/Vqc37TeW7GmcDvgF+TmxV6StJ7gH2BNYDnAmsDRwLbNllX9K1ktybJbvRA8luTtuc3wzYaIOlS25s2XccgkHQpsDlwUcfURPNsb9RoYdGXkt36JLvRbclvfdqe3yyS0oyfSXpt00UMiIW2Hx7akLQskE+MsaSS3foku9FtyW99Wp3fnHlugKQFwErAQuARirt+bXuVRgtrIUmHU0zS/g7gQ8AHgCttf7LJuqI/Jbv1SXaj25Lf+rQ9v+k8R6tJWgZ4N7A9xf8ozwaOcX7xIya0ZDeif7U9v+k810jSBravlrTZSPttz627pogYW7Ib0b+S3+i2dJ5rJOk7tt8j6dwRdtv2NrUX1XKSXg4cDKxLMbvM0GW65zRZV/SXZLd+yW50S/Jbv7bnN53naDVJVwMfBebQMTVRVpSKmNiS3Yj+1fb8Zp7nGkl602j7bZ9WVy0D5D7bv2i6iOhvyW4jkt3oiuS3Ea3Ob84810jScaPsdlY56j5JhwGTgNMo7rAGMsYtxifZrV+yG92S/Nav7flN5zlaLWPcIvpTshvRv9qe33SeGyBpVeDTwCvKpvOAQ23f11xVETGWZDeifyW/0S3pPDdA0k+Ay4Hjy6a3A5vYHnVcVlQnaU/bP5B0wEj7bX+l7pqi/yW7vZfsRq8kv703KPnNDYPNeK7tXTu2DynXgY/uWan8unKjVUTbJLu9l+xGryS/vTcQ+U3nuRkPStrK9u/hX/MhPthwTa1i+6jy6yFN1xKtkuz2WLIbPZT89tig5DfDNhogaRPgBGBVionD7wbeafvPjRbWQpLWAz4ETKPjw6LtnZqqKfpXslufZDe6LfmtT9vzm85zgyStAmD7/qZraStJfwa+C8wDHh9qt31eY0VF30t2ey/ZjV5Jfnuv7flN57kBklYAduXJn8gObaqmtpJ0ke0tmq4j2iHZrU+yG92W/Nan7flN57kBkn4J3MeTl638cmNFtZSktwLTgV/Rwonao17Jbn2S3ei25Lc+bc9vbhhsxtq2d2i6iAGxEcV0RNvwxKUjl9sR45Xs1ifZjW5LfuvT6vym89yMCyRtZHte04UMgP8AnmP74aYLiVZIduuT7Ea3Jb/1aXV+03mukaR5FJ+8lgX2lnQ9xeUMUSxbuXGT9bXU5cBqwB0N1xF9LNltRLIbXZH8NqLV+U3nuV6vb7qAAbQacLWkS1h03FUrpsuJ2iS79VuNZDe6I/mt32q0OL+5YbAhkjYDtqL4NPyHtgyin2gkvXKk9rZMlxP1S3brkexGLyS/9Wh7ftN5boCkgyjGA51WNr0R+LHtzzZWVESMKdmN6F/Jb3RLOs8NkHQNsInth8rtFYFLba/fbGXtI+mlwNeBfwOWByYB/7S9SqOFRV9KduuT7Ea3Jb/1aXt+l2m6gAH1V2Byx/YKwK0N1dJ23wD2AK4FVgT2Ab7ZaEXRz5Ld+iS70W3Jb31and90nptxH3CFpO9JOo7irtR7JR0h6YiGa2sd2/OBSbYfs30ckHk+Y0kluzVKdqPLkt8atTm/mW2jGaeXjyG/baiOQfCApOWBSyUdDtxGPjTGkkt265PsRrclv/VpdX4z5rlmkiYBJ9h+W9O1DAJJ61LMM7kc8FFgVeBb5SfiiMqS3Xolu9FNyW+92p7fdJ4bIOn3wDZtXXknoq2S3Yj+lfxGt2TYRjOuB/4gaSbwz6FG219prqR26VhRakRZUSqWULLbY8lu9FDy22ODkt90nptxXflYBli54VraKitKRS8ku72X7EavJL+9NxD5zbCNBkl6KoDtfzRdS1tJ+hDwfdv3Nl1LtEey23vJbvRK8tt7bc9va+587CeSXijpT8AVFNPmzJH0gqbraqlnALMlnSJpB0lquqDoX8lurZLd6Krkt1atzm/OPDdA0gXAJ22fW26/Cvgf2y9rsq62KkO7PbA3MAM4Bfiu7esaLSz6TrJbr2Q3uin5rVeb85szz81YaSi8ALZ/C6zUXDnt5uIT4u3l41FgdeDUcu7JiPFIdmuU7EaXJb81anN+c+a5AZJOB+YC3y+b9gRebHuX5qpqJ0n7A+8A/g4cA5xh+xFJywDX2n5uowVGX0l265PsRrclv/Vpe34z20Yz3gUcApxWbv+ubIvuWwN4k+2bOhttPy5pIO4Kjq5KduuT7Ea3Jb/1aXV+c+Y5Wq9cWeoZdHxYtP2X5iqKiCqS3Yj+1eb85sxzjcqJ2RfL9k511TIoJH0QOBj4G/B42WygFRO1Rz2S3folu9EtyW/92p7fnHmukaQ7gZuBk4CLgEWmbrF9XhN1tZmk+cAWtu9qupboX8lu/ZLd6Jbkt35tz2/OPNfrmcCrgT2AtwI/B06yfUWjVbXbzcB9TRcRfS/ZrV+yG92S/Nav1fnNmeeGSFqBIshfBA6x/Y2GS2oVSQeUT18ArE/xP8uFQ/ttf6WJuqL/Jbu9lexGLyW/vTUo+c2Z55qVwX0dRXinAUcApzdZU0utXH79S/lYvnxAMe4qYlyS3doku9F1yW9tBiK/OfNcI0knAC8EzgJOtn15wyW1nqT/sP3jsdoiRpPs1i/ZjW5JfuvX9vym81wjSY8D/yw3O3/woliMZ5X6q2o3SXNtbzZWW8Rokt36JbvRLclv/dqe3wzbqJHtLIdeE0k7Aq8Fni3piI5dq1AsExpRWbJbn2Q3ui35rc+g5Ded52irvwKzgZ2AOR3tC4CPNlJRRFSR7Eb0r4HIb4ZtRKtJWo7iQ+JU29c0XU9EVJPsRvSvtuc3lzKi7XYALgV+CSBp07FWm4qICSHZjehfrc5vOs/RdgcDmwP3Ati+FFivuXIioqKDSXYj+tXBtDi/6TxH2z1ie/gqRxmrFDHxJbsR/avV+c0Ng9F2V0h6KzBJ0nTgw8AFDdcUEWNLdiP6V6vzmzPP0XYfolgmdCFwEnA/8JEmC4qISpLdiP7V6vxmto2IiIiIiIoybCNaSdJPGWV8le2daiwnIipKdiP616DkN53naKsvNV1ARCyRZDeifw1EfjNsI1pN0huAn9t+vOlaIqK6ZDeif7U9v7lhMNruLcC1kg6XtEHTxUREZcluRP9qdX5z5jlaT9IqwB7A3hRjsY4DTrK9oNHCImJUyW5E/2pzfnPmOVrP9v3AqcDJwFrALsBcSR9qtLCIGFWyG9G/2pzfnHmOVpO0E8Wn3ucBJwDH275D0lOAK21Pa7K+iBhZshvRv9qe38y2EW23K/BV2+d3Ntp+QNK7G6opIsaW7Eb0r1bnN2eeIyIiIiIqypjnaDVJb5J0raT7JN0vaYGk+5uuKyJGl+xG9K+25zdnnqPVJM0H3mD7qqZriYjqkt2I/tX2/ObMc7Td39oa3oiWS3Yj+ler85szz9Fqkr4GPBM4A1g41G77tKZqioixJbsR/avt+c1sG9F2qwAPANt3tBloRYAjWizZjehfrc5vzjxHRERERFSUMc/RapKeL+kcSZeX2xtL+lTTdUXE6JLdiP7V9vym8xxt9x3g48AjALYvA3ZvtKKIqCLZjehfrc5vOs/Rdk+xffGwtkcbqSQixiPZjehfrc5vOs/Rdn+X9FyKGxWQtBtwW7MlRUQFyW5E/2p1fnPDYLSapOcARwMvA+4BbgD2tH1jk3VFxOiS3Yj+1fb8pvMcA0HSSsAythc0XUtEVJfsRvSvtuY3nedoNUkrALsC0+iY19z2oU3VFBFjS3Yj+lfb85tFUqLtzgTuA+bQscpRREx4yW5E/2p1fnPmOVpN0uW2X9h0HRExPsluRP9qe34z20a03QWSNmq6iIgYt2Q3on+1Or858xytJGkexRQ5ywLTgespLh0JsO2NGywvIhYj2Y3oX4OS33Seo5UkrTvafts31VVLRFSX7Eb0r0HJbzrP0UqSJgPvA54HzAO+a7s1qxtFtFWyG9G/BiW/6TxHK0n6EfAI8DtgR+Am2/s3W1VEjCXZjehfg5LfdJ6jlSTNs71R+XxZ4GLbmzVcVkSMIdmN6F+Dkt/MthFt9cjQkzZeMoposWQ3on8NRH5z5jlaSdJjwD+HNoEVgQd44o7fVZqqLSIWL9mN6F+Dkt90niMiIiIiKsqwjYiIiIiIitJ5joiIiIioKJ3niIiIiIiK0nmORUj6raQZXX7P70nabYT2Z0k6tXz+Kkk/6+b3jRg0yW9Ef0p2+8uyTRcQg8v2X4EnBTsiJr7kN6I/JbtLL2eeW0LSNElXSfqOpCsk/UrSip2fZiWtKenG8vkkSV+SdLmkyyR9aIT33F7SHyXNlfRjSU8t27eV9CdJ8yQdK2mFsv1GSYeX7RdLel7H271C0gWSrh/6JFzWfPkI33el8n0vLr/Pzt3/iUVMHMlvRH9KdgdTOs/tMh34pu0XAPcCu47y2n2BacCmtjcGTuzcKWlN4FPAduXqQLOBA1SsW/894C3lKkLLAu/vOPS+sv0bwP/raF8L2Ap4PXDYGP+OTwK/sb05sDXwRUkrjXFMRL9LfiP6U7I7YNJ5bpcbbF9aPp9DEdDF2Q44amgFINt3D9v/UmBD4A+SLgX2AtYF1i+/z/+WrzseeEXHcSd1fN2yo/0M24/bvhJ4xhj/ju2BA8vv+1tgMjB1jGMi+l3yG9Gfkt0BkzHP7bKw4/ljFCv7PMoTH5Imj+O9BMyyvccijdImYxznxTzvrE0Vvveutq8Zs8qI9kh+I/pTsjtgcua5/W4EXlw+77xBYBbwXknLAkhaY9hxFwIvHxo7VY6Fej5wDTCtY0zV24HzOo57S8fXPy5hzWcDH5Kk8nu/aAnfJ6Lf3UjyG9GPbiTZba10ntvvS8D7Jf0JWLOj/RjgL8Blkv4MvLXzINt3Au8ETpJ0GUUYN7D9ELA38GNJ84DHgSM7Dl29fP3+wEeXsObPAMuVtV1RbkcMouQ3oj8luy0m22O/KqKC8m7iGbb/3nQtETE+yW9Ef0p265czzxERERERFeXMc0RERERERTnzHBERERFRUTrPEREREREVpfMcEREREVFROs8RERERERWl8xwRERERUdH/B7lVqKSoyBVmAAAAAElFTkSuQmCC\n" + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "execution_count": 83, + "metadata": { + "collapsed": false, + "outputHidden": false, + "inputHidden": false + } + }, + { + "cell_type": "code", + "source": [ + "big_data.data_columsn" + ], + "outputs": [ + { + "output_type": "error", + "ename": "AttributeError", + "evalue": "'DataSet' object has no attribute 'data_columsn'", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mbig_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_columsn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/Library/Caches/pypoetry/virtualenvs/summit-TfmmV07p-py3.7/lib/python3.7/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 5460\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5461\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5462\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5463\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5464\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__setattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAttributeError\u001b[0m: 'DataSet' object has no attribute 'data_columsn'" + ] + } + ], + "execution_count": 78, + "metadata": { + "collapsed": false, + "outputHidden": false, + "inputHidden": false + } + }, + { + "cell_type": "code", + "source": [], + "outputs": [], + "execution_count": null, + "metadata": { + "collapsed": false, + "outputHidden": false, + "inputHidden": false + } } - ], - "source": [ - "stbo_results = [summit.Runner.load(f\"data/cross_coupling_similar/stbo_cn_noise_repeat_{i}.json\") \n", - " for i in range(N_REPEATS)]\n", - "mtbo_results_list = [summit.Runner.load(f\"data/cross_coupling_similar/mtbo_pre-train_repeat_{i}.json\") \n", - " for i in range(N_REPEATS)]\n", - "fig, ax = make_comparison_plot(\n", - " dict(results=stbo_results, label=\"STBO\"),\n", - " dict(results=mtbo_results_list,label=f\"\"\"MTBO, n={datasets[\"Morpholine\"].shape[0]}\"\"\")\n", - ")\n", - "fig.savefig(\"figures/stbo_mtbo_cn_similar.png\", bbox_inches='tight', dpi=300)" - ] - } - ], - "metadata": { - "kernel_info": { - "name": "python37364bitsummittfmmv07ppy37venv6fc212842bc44e839a51e6623a646abd" - }, - "kernelspec": { - "display_name": "Python 3.7.3 64-bit ('summit-TfmmV07p-py3.7': venv)", - "language": "python", - "name": "python37364bitsummittfmmv07ppy37venv6fc212842bc44e839a51e6623a646abd" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - }, - "nteract": { - "version": "0.12.3" + ], + "metadata": { + "kernel_info": { + "name": "python37364bitsummittfmmv07ppy37venv6fc212842bc44e839a51e6623a646abd" + }, + "kernelspec": { + "name": "python37364bitsummittfmmv07ppy37venv6fc212842bc44e839a51e6623a646abd", + "language": "python", + "display_name": "Python 3.7.3 64-bit ('summit-TfmmV07p-py3.7': venv)" + }, + "language_info": { + "name": "python", + "version": "3.7.3", + "mimetype": "text/x-python", + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "pygments_lexer": "ipython3", + "nbconvert_exporter": "python", + "file_extension": ".py" + }, + "nteract": { + "version": "0.12.3" + }, + "toc-autonumbering": true }, - "toc-autonumbering": true - }, - "nbformat": 4, - "nbformat_minor": 4 -} + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file