-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp_gpt_zh.py
48 lines (41 loc) · 1.28 KB
/
app_gpt_zh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from predict import *
from reconstructor import *
from transformers import BertTokenizer, GPT2LMHeadModel
import os
import gradio as gr
model_path = "svjack/gpt-daliy-dialogue"
tokenizer = BertTokenizer.from_pretrained(model_path)
model = GPT2LMHeadModel.from_pretrained(model_path)
obj = Obj(model, tokenizer)
example_sample = [
["这只狗很凶,", 128],
["你饿吗?", 128],
]
def demo_func(prefix, max_length, use_pred_sp = True):
max_length = max(int(max_length), 32)
x = obj.predict(prefix, max_length=max_length)[0]
y = list(map(lambda x: "".join(x).replace(" ", ""),batch_as_list(re.split(r"([。.??])" ,x), 2)))
if use_pred_sp:
l = predict_split(y)
else:
l = y
l_ = []
for ele in l:
if ele and ele not in l_:
l_.append(ele)
l = l_
assert type(l) == type([])
return {
"Dialogue Context": l
}
demo = gr.Interface(
fn=demo_func,
inputs=[gr.Text(label = "Prefix"),
gr.Number(label = "Max Length", value = 128)
],
outputs="json",
title=f"GPT Chinese Daliy Dialogue Generator 🐰 demonstration",
examples=example_sample if example_sample else None,
cache_examples = False
)
demo.launch(server_name=None, server_port=None)