-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrun.sh
executable file
·123 lines (85 loc) · 3.81 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/bin/bash
# Written by Suwon Shon, 2018
# swshon@mit.edu
stage=0
. cmd.sh
. path.sh
set -e
mfccdir=`pwd`/mfcc
vaddir=`pwd`/mfcc
trials=data/voxceleb1_trials/voxceleb1_trials_sv
num_components=2048 # Larger than this doesn't make much of a difference.
if [ $stage -le 0 ]; then
# Preparing dataset folder voxceleb1. The voxceleb1 folder should have subdir voxceleb1_wav which contain wav files.
./local/make_voxceleb1_sv.pl /data/sls/scratch/swshon/dataset/voxceleb1/ data
# Extract speaker recogntion features.
steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 100 --cmd "$train_cmd" \
data/voxceleb1_train exp/make_mfcc $mfccdir
steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 100 --cmd "$train_cmd" \
data/voxceleb1_test exp/make_mfcc $mfccdir
steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 100 --cmd "$train_cmd" \
data/voxceleb1_test_1utt exp/make_mfcc $mfccdir
for name in voxceleb1_train voxceleb1_test voxceleb1_test_1utt; do
utils/fix_data_dir.sh data/${name}
done
fi
if [ $stage -le 1 ]; then
# VAD decision
sid/compute_vad_decision.sh --nj 40 --cmd "$train_cmd" \
data/voxceleb1_train exp/make_vad $vaddir
sid/compute_vad_decision.sh --nj 40 --cmd "$train_cmd" \
data/voxceleb1_test exp/make_vad $vaddir
sid/compute_vad_decision.sh --nj 40 --cmd "$train_cmd" \
data/voxceleb1_test_1utt exp/make_vad $vaddir
for name in voxceleb1_train voxceleb1_test voxceleb1_test_1utt; do
utils/fix_data_dir.sh data/${name}
done
fi
if [ $stage -le 2 ]; then
# Train UBM and i-vector extractor.
sid/train_diag_ubm.sh --nj 40 --num-threads 8 --cmd "$train_cmd --mem 20G"\
data/voxceleb1_train $num_components \
exp/diag_ubm_$num_components
sid/train_full_ubm.sh --nj 40 --remove-low-count-gaussians false \
--cmd "$train_cmd --mem 25G" data/voxceleb1_train \
exp/diag_ubm_$num_components exp/full_ubm_$num_components
sid/train_ivector_extractor.sh --num-threads 7 --nj 20 --num_processes 2 --cmd "$train_cmd --mem 16G" \
--ivector-dim 600 \
--num-iters 5 exp/full_ubm_$num_components/final.ubm data/voxceleb1_train \
exp/extractor
fi
if [ $stage -le 3 ]; then
# Extract i-vectors.
sid/extract_ivectors.sh --cmd "$train_cmd --mem 6G " --nj 300 \
exp/extractor data/voxceleb1_train \
exp/ivectors_voxceleb1_train
sid/extract_ivectors.sh --cmd "$train_cmd --mem 6G " --nj 40 \
exp/extractor data/voxceleb1_test \
exp/ivectors_voxceleb1_test
sid/extract_ivectors.sh --cmd "$train_cmd --mem 6G " --nj 100 \
exp/extractor data/voxceleb1_test_1utt \
exp/ivectors_voxceleb1_test_1utt
fi
if [ $stage -le 4 ]; then
# cosine distance scoring
local/cosine_scoring.sh data/voxceleb1_test_1utt data/voxceleb1_test_1utt \
exp/ivectors_voxceleb1_test_1utt exp/ivectors_voxceleb1_test_1utt $trials local/scores_voxceleb1
eer=`compute-eer <(python local/prepare_for_eer.py $trials local/scores_voxceleb1/cosine_scores) 2> /dev/null`
echo "CDS eer : $eer"
# LDA+cosine distance scoring
local/lda_scoring.sh data/voxceleb1_train data/voxceleb1_test_1utt data/voxceleb1_test_1utt \
exp/ivectors_voxceleb1_train exp/ivectors_voxceleb1_test_1utt exp/ivectors_voxceleb1_test_1utt $trials \
local/scores_voxceleb1
eer=`compute-eer <(python local/prepare_for_eer.py $trials local/scores_voxceleb1/lda_scores) 2> /dev/null`
echo "LDA+CDS eer : $eer"
# PLDA scoring
ivector-mean scp:exp/ivectors_voxceleb1_train/ivector.scp exp/ivectors_voxceleb1_train/mean.vec
local/plda_scoring.sh data/voxceleb1_train data/voxceleb1_test_1utt data/voxceleb1_test_1utt \
exp/ivectors_voxceleb1_train exp/ivectors_voxceleb1_test_1utt exp/ivectors_voxceleb1_test_1utt \
$trials local/scores_voxceleb1
eer=`compute-eer <(python local/prepare_for_eer.py $trials local/scores_voxceleb1/plda_scores) 2> /dev/null`
echo "PLDA eer : $eer"
fi
#GMM-2048 CDS eer : 15.39
#GMM-2048 LDA+CDS eer : 8.103
#GMM-2048 PLDA eer : 5.446