-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSPH.py
135 lines (114 loc) · 4.45 KB
/
SPH.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import vpython as vp
import numpy as np
from scipy.special import gamma
import matplotlib
import matplotlib.cm as cm
def kernel(pos_arr, h):
"""
:param pos_arr: shape=[..., 3] / in particular [n, m, 3]
:param h:
:return: gaussian smoothing kernel value / shape=[...] / in particular [n, m]
"""
distance = np.sum(pos_arr ** 2, axis=-1)
return 1 / (h ** 3 * np.pi ** (3 / 2)) * np.exp(-distance / (h ** 2))
def kernel_derivatice(pos_arr, h):
"""
:param pos_arr: shape=[...,3] / in particular [n, m, 3]
:param h:
:return: derivative of gaussign smoothing kernel at each position / shape=[..., 3] / in particular [n, m, 3]
"""
distance = np.sum(pos_arr ** 2, axis=-1, keepdims=True)
return -2 / (h ** 5 * np.pi ** (3 / 2)) * np.exp(-distance / (h ** 2)) * pos_arr
def get_pairwise_seperation(ri, rj):
"""
Get pairwise seperation between 2 set of coordinate vector (ri - rj)
:param ri: shape=[n, 3]
:param rj: shape=[m, 3]
:return: shape=[n, m, 3]
"""
return ri[:, None, :] - rj[None, ...]
def cal_density(samping_loc, SPH_particle_loc, m, h):
"""
Get Density at sampling loctions from SPH particle distribution
:param samping_loc: samping location where we ant to estimate density using SPH formula / shape=[n,3]
:param SPH_particle_loc: particle location / shape=[m,3]
:param m: mass
:param h: smoothing length
:return: density at each sampled location / shape=[n,1]
"""
pairwise_sep = get_pairwise_seperation(samping_loc, SPH_particle_loc)
density = np.sum(m * kernel(pairwise_sep, h), axis=-1, keepdims=True) # [n, 1]
return density
def cal_pressure(density, k, n):
"""
Equation of state P=k * rho^(1+1/n) -> polytropic equation of state
:param density: density rho / shape=[n, 1]
:param k: eqation of state constant
:param n: polytropic index
:return: [n,1]
"""
return k * (density ** (1.0 + 1.0 / n))
def cal_acc(pos, vel, h, Lambda, nu, m, k, n):
"""
calculate acceleration of each particle using SPH approximation
:param pos: [N, 3]
:param vel: [N, 3]
:param h: smoothing length
:param Lambda: external force constant (gravitational force)
:param nu: viscosity for damping motion
:param m: mass
:param k: equation of state constant
:param n: polytropic constant
:return: [N, 3]
"""
density = cal_density(pos, pos, m, h) # [N,1]
pressure = cal_pressure(density, k, n) # [N,1]
grad_kernel = kernel_derivatice(get_pairwise_seperation(pos, pos), h) # [N,N,3]
acc = -np.sum(m * ((pressure / (density ** 2)) + (pressure / (density ** 2)).T)[..., None] * grad_kernel,
axis=1) # [N,3]
acc += - Lambda * pos - nu * vel
return acc
def main():
vp.scene = vp.canvas(title='SPH Star Simulation', width=750, height=750)
dt = 1 / 60
N = 400
M = 2
m = M / N
R = 0.75
r = 0.02
h = 0.1
k = 0.1
n = 1
nu = 1
Lambda = 2 * k * (1 + n) * np.pi ** (-3 / (2 * n)) * (M * gamma(5 / 2 + n) / R ** 3 / gamma(1 + n)) ** (
1 / n) / R ** 2 # ~ 2.01
# For lambda calculation, https://pmocz.github.io/manuscripts/pmocz_sph.pdf
pos = 2 * np.random.randn(N, 3) # initial random position for each particle
vel = np.zeros_like(pos)
acc = cal_acc(pos, vel, h, Lambda, nu, m, k, n)
points = [vp.sphere(pos=vp.vec(*point_pos), radius=r) for point_pos in pos]
color_change = 20
i = 0
while True:
vp.rate(120)
# Leapfrog integration
vel += acc * dt / 2
pos += vel * dt
acc = cal_acc(pos, vel, h, Lambda, nu, m, k, n)
vel += acc * dt / 2
# update particle position for rendering
for particle_pos, particle in zip(pos, points):
particle.pos = vp.vec(*particle_pos)
# update particle's color representing density. High density region-> yellow, low density region -> red
if i % color_change == 0:
# Set color according to density
density = cal_density(pos, pos, m, h)[:, 0] # [N]
norm = matplotlib.colors.Normalize(vmin=min(density), vmax=max(density), clip=True)
mapper = cm.ScalarMappable(norm=norm, cmap=cm.autumn)
new_colors = [mapper.to_rgba(rho)[:3] for rho in density]
for particle_color, particle in zip(new_colors, points):
particle.color = vp.vec(*particle_color)
i = 0
i += 1
if __name__ == '__main__':
main()