-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
27 lines (22 loc) · 1.09 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from model import VideoMAEModel
from clip_sampler import get_frames_from_video_path
from importlib import reload
import av
import json
from tqdm import trange, tqdm
import numpy as np
from experiments import run_experiment
from experiments_runall import run_experiment_all, run_theoretical_best
from utils import get_missclassified
import pickle
import json
np.random.seed(0)
with open('kinetics-dataset/video_paths.pickle', 'rb') as f:
video_paths = pickle.load(f)
with open('data/kinetics400/validate/validate.json') as f:
annotations_dict = json.load(f)
model = VideoMAEModel()
# indices = np.array(get_missclassified("outputs/random-num-10-250-1.csv"))
# run_theoretical_best(model, "theoretical-best", video_paths, indices, seed = 10, num_frames=16, num_examples = 250, outer_batch_size = 20, batch_size = 25)
run_experiment_all(model, "position-all", video_paths, seed = 10, num_frames=8, num_examples = 250, outer_batch_size = 250, batch_size = 25)
run_experiment_all(model, "position-all", video_paths, seed = 20, num_frames=8, num_examples = 250, outer_batch_size = 250, batch_size = 25)