forked from Hangz-nju-cuhk/Talking-Face-Generation-DAVS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOptions_all.py
82 lines (69 loc) · 6.19 KB
/
Options_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import argparse
class BaseOptions():
def __init__(self):
self.parser = argparse.ArgumentParser()
self.initialized = False
def initialize(self):
################******************** test settings ***************###########################
self.parser.add_argument('--test_root', default='./0572_0019_0003/video',
help='path to videos or audios')
self.parser.add_argument('--test_A_path', default='./demo_images',
help='path input images')
self.parser.add_argument('--test_resume_path', default='./checkpoints/101_DAVS_checkpoint.pth.tar',
help='path to test resume models')
self.parser.add_argument('--test_audio_video_length', type=int, default=99, help='# of files in the audio folder')
self.parser.add_argument('--test_type', type=str, default='video', help='type of data in the test root')
self.parser.add_argument('--test_num', type=int, default=1, help='name of the result folder')
self.parser.add_argument('--results_dir', type=str, default='./results/', help='saves results here.')
################******************** project settings ***************###########################
self.parser.add_argument('--name', type=str, default='Speech_reco', help='The name of the model')
self.parser.add_argument('--num_workers', default=8, type=int, help='# threads for loading data')
self.parser.add_argument('--which_direction', type=str, default='AtoB', help='AtoB or BtoA')
self.parser.add_argument('--feature_length', type=int, default=256, help='feature length')
self.parser.add_argument('--batchSize', type=int, default=16, help='input batch size')
self.parser.add_argument('--label_size', type=int, default=500, help='number of labels for classification')
self.parser.add_argument('--video_length', type=int, default=1, help='number of frames generate at each time step')
self.parser.add_argument('--image_size', type=int, default=256, help='scale images to this size')
self.parser.add_argument('--image_channel_size', type=int, default=3, help='# of input image channels')
self.parser.add_argument('--mfcc_width', type=int, default=12, help='width of loaded mfcc feature')
self.parser.add_argument('--mfcc_length', type=int, default=20, help='length of loaded mfcc feature')
self.parser.add_argument('--image_block_name', type=str, default='align_face256', help='training folder name containing images')
self.parser.add_argument('--disfc_length', type=int, default=20, help='# of frames sending into the discriminate fc')
self.parser.add_argument('--mul_gpu', type=bool, default=True, help='whether to use mul gpus')
self.parser.add_argument('--cuda_on', type=bool, default=True, help='whether to use gpu')
################******************** training settings ***************###########################
self.parser.add_argument('--dataroot', type=str,
help='path to training data (should have subfolders test, train, val)')
self.parser.add_argument('--resume', type=bool, default=True, help='load pretrained model or not')
self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='where to save the checkpoints')
self.parser.add_argument('--save_latest_freq', type=int, default=1000, help='how many steps to save the latest model')
self.parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam')
self.parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay for adam')
self.parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam')
self.parser.add_argument('--niter', type=int, default=100, help='# of iter at starting learning rate')
self.parser.add_argument('--niter_decay', type=int, default=100,
help='# of iter to linearly decay learning rate to zero')
self.parser.add_argument('--num_epochs', type=bool, default=True, help='# of epochs to run')
self.parser.add_argument('--start_epoch', type=int, default=1, help='start epoch')
################********************** Loss settings **************############################
self.parser.add_argument('--require_single_GAN', type=bool, default=True, help='whether to use GAN for single frame')
self.parser.add_argument('--require_sequence_GAN', type=bool, default=False, help='whether to GAN for multiple frames')
self.parser.add_argument('--output_68', type=bool, default=True, help='the layer')
self.parser.add_argument('--lambda_A', type=float, default=4, help='parameter for L1 loss')
self.parser.add_argument('--lambda_B', type=float, default=8, help='parameter for L1 loss around the mouth')
self.parser.add_argument('--lambda_CE', type=float, default=1, help='parameter for pid to wid cross entropy loss')
self.parser.add_argument('--lambda_CE_inv', type=float, default=1000000, help='parameter for pid to wid inverse cross entropy loss')
self.parser.add_argument('--L2margin', type=float, default=1, help='margin for the l2 contrastive loss')
################******************** visdom settings ***************###########################
self.parser.add_argument('--isTrain', type=bool, default=False, help='whether is training status')
self.parser.add_argument('--display_id', type=int, default=0, help='window id of the web display')
self.parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display')
self.parser.add_argument('--display_winsize', type=int, default=256, help='display window size')
self.parser.add_argument('--display_single_pane_ncols', type=int, default=0,
help='if positive, display all images in a single visdom web panel with certain number of images per row.')
self.initialized = True
def parse(self):
if not self.initialized:
self.initialize()
self.opt = self.parser.parse_args()
return self.opt