Skip to content

Latest commit

 

History

History
190 lines (143 loc) · 7.02 KB

README.md

File metadata and controls

190 lines (143 loc) · 7.02 KB

Geodog: Image Processing and Analysis Tools

This repository contains a collection of Python scripts for processing, analyzing, and manipulating images. These tools were put together by team-watchdog and are particularly useful for various image processing tasks, color analysis, and geographic information systems (GIS) data processing work.

geodog is available as a python library: use pip install geodog

Scripts

  1. image_to_points.py: Converts an image to geo-referenced points.
  2. image_to_polygon.py: Converts an image to a GeoJSON file with a grid of polygons.
  3. image_to_shapefile.py: Similar to image_to_polygon.py, but with enhanced progress tracking.
  4. blueconverter.py: Converts an image to a blue-white gradient using tiling.
  5. boxcutter.py: Splits large images into smaller tiles.
  6. color_remapper.py: Remaps colors in an image to a set of visually distinct colors.
  7. colorchecker.py: Analyzes an image to identify its dominant colors.

1. image_to_points.py

This script converts an input image to a CSV file containing geo-referenced points. Each point represents a pixel in the image, with its color and assigned color ID.

Features:

  • Adjustable geographic bounding box
  • Customizable sampling rate for pixel processing
  • Color similarity threshold for grouping similar colors
  • Outputs a CSV file with latitude, longitude, color (in hex), and color ID

Usage:

python image_to_points.py [-h] -i INPUT_IMAGE [-s SAMPLE_RATE] [-c COLOR_THRESHOLD]
                          [-o OUTPUT] [--nw-lat NW_LAT] [--nw-lon NW_LON]
                          [--se-lat SE_LAT] [--se-lon SE_LON]

Arguments:

  • -i, --input: Path to the input image file (required)
  • -s, --sample-rate: Sample rate for pixel processing (default: 10)
  • -c, --color-threshold: Threshold for color similarity (default: 12)
  • -o, --output: Path to the output CSV file (optional)
  • --nw-lat, --nw-lon, --se-lat, --se-lon: Coordinates for the bounding box (default: Sri Lanka)

2. image_to_polygon.py

This script converts an input image to a GeoJSON file containing a grid of polygons. Each polygon represents a section of the image, with its color determined by the dominant color in that section.

Features:

  • Uses a shapefile to define the geographic area of interest
  • Customizable grid size for polygons
  • Color clustering for simplification
  • Outputs a GeoJSON file with polygon geometries and color properties

Usage:

python image_to_polygon.py [-h] -i INPUT_IMAGE -o OUTPUT_GEOJSON -s SHAPEFILE
                           [-g GRID_SIZE] [-x X_OFFSET] [-y Y_OFFSET] [-n NUM_CLUSTERS]

Arguments:

  • -i, --input: Path to the input image file (required)
  • -o, --output: Path for the output GeoJSON file (required)
  • -s, --shapefile: Path to the shapefile defining the area of interest (required)
  • -g, --grid-size: Size of the grid cells in pixels (default: 10)
  • -x, --x-offset: X offset in pixels (default: 0)
  • -y, --y-offset: Y offset in pixels (default: 0)
  • -n, --num-clusters: Number of color clusters (default: 10)

3. image_to_shapefile.py

This script is similar to image_to_polygon.py but includes enhanced progress tracking using tqdm. It converts an input image to a GeoJSON file containing a grid of polygons, with improved user feedback during processing.

Features:

  • Identical functionality to image_to_polygon.py
  • Improved progress tracking for better user experience
  • Detailed output of processing steps and results

Usage:

python image_to_shapefile.py [-h] -i INPUT_IMAGE -o OUTPUT_GEOJSON -s SHAPEFILE
                             [-g GRID_SIZE] [-x X_OFFSET] [-y Y_OFFSET] [-n NUM_CLUSTERS]

Arguments:

Same as image_to_polygon.py

4. blueconverter.py

This script converts an input image to a blue-white gradient using tiling for efficient processing of large images. It also provides options for contrast adjustment and scaling.

Features:

  • Tile-based processing for handling large images
  • Adjustable contrast and scaling
  • Progress tracking with tqdm

Usage:

python blueconverter.py [-h] [--tile-size TILE_SIZE] [--contrast CONTRAST] [--scale SCALE]
                        [input] [output]

Arguments:

  • input: Path to the input image file (default: 'input.png' in the current directory)
  • output: Path to the output image file (default: 'output.png' in the current directory)
  • --tile-size: Size of each tile (width and height) in pixels (default: 1024)
  • --contrast: Contrast adjustment percentage (default: 100, no change)
  • --scale: Scaling percentage (default: 100, no change)

5. boxcutter.py

This script splits large images into smaller tiles, which is useful for processing or displaying very large images in smaller chunks.

Features:

  • Customizable tile size
  • Automatic padding for edge tiles
  • Progress tracking with tqdm

Usage:

python boxcutter.py [-h] [-i INPUT_IMAGE] [-o OUTPUT_FOLDER] [-s TILE_SIZE]

Arguments:

  • -i, --image: Path to the input image file
  • -o, --output: Path to the output folder for tiles
  • -s, --size: Size of each tile (width and height) in pixels (default: 256)

6. color_remapper.py

This script remaps the colors in an input image to a set of visually distinct colors using K-means clustering. It reduces the number of unique colors in the image to a specified maximum, making the image more visually striking and easier to distinguish different areas.

Features:

  • K-means clustering for color reduction
  • Customizable number of output colors
  • Visually distinct color palette generation

Usage:

python color_remapper.py [-h] -i INPUT_IMAGE [-o OUTPUT_IMAGE] [-n NUM_COLORS]

Arguments:

  • -i, --input: Path to the input image file (required)
  • -o, --output: Path to the output image file (optional)
  • -n, --num-colors: Maximum number of colors to use in the remapped image (default: 20)

7. colorchecker.py

This script analyzes an input image and identifies its dominant colors using K-means clustering. It provides the color values in RGB, HEX, and HSV formats.

Features:

  • K-means clustering for dominant color identification
  • Customizable number of colors to identify
  • Output in multiple color formats (RGB, HEX, HSV)

Usage:

python colorchecker.py [-h] -i INPUT_IMAGE [-o OUTPUT_FILE] [-n NUM_COLORS]

Arguments:

  • -i, --input: Path to the input image file (required)
  • -o, --output: Path to the output text file (optional, results printed to console if not provided)
  • -n, --num-colors: Number of dominant colors to identify (default: 5)

Requirements

  • Python 3.x
  • OpenCV (cv2)
  • NumPy
  • Pillow (PIL Fork)
  • GeoPandas
  • Shapely
  • Rasterio
  • scikit-learn
  • tqdm

Installation

  1. Clone this repository:

    git clone https://github.com/team-watchdog/geodog
    
  2. Install the required packages:

    pip install opencv-python numpy pillow geopandas shapely rasterio scikit-learn tqdm
    

License and acknowledgements

This project is licensed under the MIT License.