forked from mpatacchiola/deepgaze
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex_pnp_head_pose_estimation_webcam.py
321 lines (273 loc) · 12.6 KB
/
ex_pnp_head_pose_estimation_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#!/usr/bin/env python
##
# Massimiliano Patacchiola, Plymouth University 2016
#
# This is an example of head pose estimation with solvePnP.
# It uses the dlib library and openCV
#
import numpy
import cv2
import sys
from deepgaze.haar_cascade import haarCascade
from deepgaze.face_landmark_detection import faceLandmarkDetection
#If True enables the verbose mode
DEBUG = True
#Antropometric constant values of the human head.
#Found on wikipedia and on:
# "Head-and-Face Anthropometric Survey of U.S. Respirator Users"
#
#X-Y-Z with X pointing forward and Y on the left.
#The X-Y-Z coordinates used are like the standard
# coordinates of ROS (robotic operative system)
P3D_RIGHT_SIDE = numpy.float32([-100.0, -77.5, -5.0]) #0
P3D_GONION_RIGHT = numpy.float32([-110.0, -77.5, -85.0]) #4
P3D_MENTON = numpy.float32([0.0, 0.0, -122.7]) #8
P3D_GONION_LEFT = numpy.float32([-110.0, 77.5, -85.0]) #12
P3D_LEFT_SIDE = numpy.float32([-100.0, 77.5, -5.0]) #16
P3D_FRONTAL_BREADTH_RIGHT = numpy.float32([-20.0, -56.1, 10.0]) #17
P3D_FRONTAL_BREADTH_LEFT = numpy.float32([-20.0, 56.1, 10.0]) #26
P3D_SELLION = numpy.float32([0.0, 0.0, 0.0]) #27
P3D_NOSE = numpy.float32([21.1, 0.0, -48.0]) #30
P3D_SUB_NOSE = numpy.float32([5.0, 0.0, -52.0]) #33
P3D_RIGHT_EYE = numpy.float32([-20.0, -65.5,-5.0]) #36
P3D_RIGHT_TEAR = numpy.float32([-10.0, -40.5,-5.0]) #39
P3D_LEFT_TEAR = numpy.float32([-10.0, 40.5,-5.0]) #42
P3D_LEFT_EYE = numpy.float32([-20.0, 65.5,-5.0]) #45
#P3D_LIP_RIGHT = numpy.float32([-20.0, 65.5,-5.0]) #48
#P3D_LIP_LEFT = numpy.float32([-20.0, 65.5,-5.0]) #54
P3D_STOMION = numpy.float32([10.0, 0.0, -75.0]) #62
#The points to track
#These points are the ones used by PnP
# to estimate the 3D pose of the face
TRACKED_POINTS = (0, 4, 8, 12, 16, 17, 26, 27, 30, 33, 36, 39, 42, 45, 62)
ALL_POINTS = list(range(0,68)) #Used for debug only
def main():
#Defining the video capture object
video_capture = cv2.VideoCapture(0)
if(video_capture.isOpened() == False):
print("Error: the resource is busy or unvailable")
else:
print("The video source has been opened correctly...")
#Create the main window and move it
cv2.namedWindow('Video')
cv2.moveWindow('Video', 20, 20)
#Obtaining the CAM dimension
cam_w = int(video_capture.get(3))
cam_h = int(video_capture.get(4))
#Defining the camera matrix.
#To have better result it is necessary to find the focal
# lenght of the camera. fx/fy are the focal lengths (in pixels)
# and cx/cy are the optical centres. These values can be obtained
# roughly by approximation, for example in a 640x480 camera:
# cx = 640/2 = 320
# cy = 480/2 = 240
# fx = fy = cx/tan(60/2 * pi / 180) = 554.26
c_x = cam_w / 2
c_y = cam_h / 2
f_x = c_x / numpy.tan(60/2 * numpy.pi / 180)
f_y = f_x
#Estimated camera matrix values.
camera_matrix = numpy.float32([[f_x, 0.0, c_x],
[0.0, f_y, c_y],
[0.0, 0.0, 1.0] ])
print("Estimated camera matrix: \n" + str(camera_matrix) + "\n")
#These are the camera matrix values estimated on my webcam with
# the calibration code (see: src/calibration):
camera_matrix = numpy.float32([[602.10618226, 0.0, 320.27333589],
[ 0.0, 603.55869786, 229.7537026],
[ 0.0, 0.0, 1.0] ])
#Distortion coefficients
#camera_distortion = numpy.float32([0.0, 0.0, 0.0, 0.0, 0.0])
#Distortion coefficients estimated by calibration
camera_distortion = numpy.float32([ 0.06232237, -0.41559805, 0.00125389, -0.00402566, 0.04879263])
#This matrix contains the 3D points of the
# 11 landmarks we want to find. It has been
# obtained from antrophometric measurement
# on the human head.
landmarks_3D = numpy.float32([P3D_RIGHT_SIDE,
P3D_GONION_RIGHT,
P3D_MENTON,
P3D_GONION_LEFT,
P3D_LEFT_SIDE,
P3D_FRONTAL_BREADTH_RIGHT,
P3D_FRONTAL_BREADTH_LEFT,
P3D_SELLION,
P3D_NOSE,
P3D_SUB_NOSE,
P3D_RIGHT_EYE,
P3D_RIGHT_TEAR,
P3D_LEFT_TEAR,
P3D_LEFT_EYE,
P3D_STOMION])
#Declaring the two classifiers
my_cascade = haarCascade("./etc/xml/haarcascade_frontalface_alt.xml", "./etc/xml/haarcascade_profileface.xml")
#TODO If missing, example file can be retrieved from http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
my_detector = faceLandmarkDetection('./etc/shape_predictor_68_face_landmarks.dat')
#Error counter definition
no_face_counter = 0
#Variables that identify the face
#position in the main frame.
face_x1 = 0
face_y1 = 0
face_x2 = 0
face_y2 = 0
face_w = 0
face_h = 0
#Variables that identify the ROI
#position in the main frame.
roi_x1 = 0
roi_y1 = 0
roi_x2 = cam_w
roi_y2 = cam_h
roi_w = cam_w
roi_h = cam_h
roi_resize_w = int(cam_w/10)
roi_resize_h = int(cam_h/10)
while(True):
# Capture frame-by-frame
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame[roi_y1:roi_y2, roi_x1:roi_x2], cv2.COLOR_BGR2GRAY)
#Looking for faces with cascade
#The classifier moves over the ROI
#starting from a minimum dimension and augmentig
#slightly based on the scale factor parameter.
#The scale factor for the frontal face is 1.10 (10%)
#Scale factor: 1.15=15%,1.25=25% ...ecc
#Higher scale factors means faster classification
#but lower accuracy.
#
#Return code: 1=Frontal, 2=FrontRotLeft,
# 3=FrontRotRight, 4=ProfileLeft, 5=ProfileRight.
my_cascade.findFace(gray, True, True, True, True, 1.10, 1.10, 1.15, 1.15, 40, 40, rotationAngleCCW=30, rotationAngleCW=-30, lastFaceType=my_cascade.face_type)
#Accumulate error values in a counter
if(my_cascade.face_type == 0):
no_face_counter += 1
#If any face is found for a certain
#number of cycles, then the ROI is reset
if(no_face_counter == 50):
no_face_counter = 0
roi_x1 = 0
roi_y1 = 0
roi_x2 = cam_w
roi_y2 = cam_h
roi_w = cam_w
roi_h = cam_h
#Checking wich kind of face it is returned
if(my_cascade.face_type > 0):
#Face found, reset the error counter
no_face_counter = 0
#Because the dlib landmark detector wants a precise
#boundary box of the face, it is necessary to resize
#the box returned by the OpenCV haar detector.
#Adjusting the frame for profile left
if(my_cascade.face_type == 4):
face_margin_x1 = 20 - 10 #resize_rate + shift_rate
face_margin_y1 = 20 + 5 #resize_rate + shift_rate
face_margin_x2 = -20 - 10 #resize_rate + shift_rate
face_margin_y2 = -20 + 5 #resize_rate + shift_rate
face_margin_h = -0.7 #resize_factor
face_margin_w = -0.7 #resize_factor
#Adjusting the frame for profile right
elif(my_cascade.face_type == 5):
face_margin_x1 = 20 + 10
face_margin_y1 = 20 + 5
face_margin_x2 = -20 + 10
face_margin_y2 = -20 + 5
face_margin_h = -0.7
face_margin_w = -0.7
#No adjustments
else:
face_margin_x1 = 0
face_margin_y1 = 0
face_margin_x2 = 0
face_margin_y2 = 0
face_margin_h = 0
face_margin_w = 0
#Updating the face position
face_x1 = my_cascade.face_x + roi_x1 + face_margin_x1
face_y1 = my_cascade.face_y + roi_y1 + face_margin_y1
face_x2 = my_cascade.face_x + my_cascade.face_w + roi_x1 + face_margin_x2
face_y2 = my_cascade.face_y + my_cascade.face_h + roi_y1 + face_margin_y2
face_w = my_cascade.face_w + int(my_cascade.face_w * face_margin_w)
face_h = my_cascade.face_h + int(my_cascade.face_h * face_margin_h)
#Updating the ROI position
roi_x1 = face_x1 - roi_resize_w
if (roi_x1 < 0): roi_x1 = 0
roi_y1 = face_y1 - roi_resize_h
if(roi_y1 < 0): roi_y1 = 0
roi_w = face_w + roi_resize_w + roi_resize_w
if(roi_w > cam_w): roi_w = cam_w
roi_h = face_h + roi_resize_h + roi_resize_h
if(roi_h > cam_h): roi_h = cam_h
roi_x2 = face_x2 + roi_resize_w
if (roi_x2 > cam_w): roi_x2 = cam_w
roi_y2 = face_y2 + roi_resize_h
if(roi_y2 > cam_h): roi_y2 = cam_h
#Debugging printing utilities
if(DEBUG == True):
print("FACE: ", face_x1, face_y1, face_x2, face_y2, face_w, face_h)
print("ROI: ", roi_x1, roi_y1, roi_x2, roi_y2, roi_w, roi_h)
#Drawing a green rectangle
# (and text) around the face.
text_x1 = face_x1
text_y1 = face_y1 - 3
if(text_y1 < 0): text_y1 = 0
cv2.putText(frame, "FACE", (text_x1,text_y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 1);
cv2.rectangle(frame,
(face_x1, face_y1),
(face_x2, face_y2),
(0, 255, 0),
2)
#In case of a frontal/rotated face it
# is called the landamark detector
if(my_cascade.face_type > 0):
landmarks_2D = my_detector.returnLandmarks(frame, face_x1, face_y1, face_x2, face_y2, points_to_return=TRACKED_POINTS)
if(DEBUG == True):
#cv2.drawKeypoints(frame, landmarks_2D)
for point in landmarks_2D:
cv2.circle(frame,( point[0], point[1] ), 2, (0,0,255), -1)
#Applying the PnP solver to find the 3D pose
# of the head from the 2D position of the
# landmarks.
#retval - bool
#rvec - Output rotation vector that, together with tvec, brings
# points from the model coordinate system to the camera coordinate system.
#tvec - Output translation vector.
retval, rvec, tvec = cv2.solvePnP(landmarks_3D,
landmarks_2D,
camera_matrix, camera_distortion)
#Now we project the 3D points into the image plane
#Creating a 3-axis to be used as reference in the image.
axis = numpy.float32([[50,0,0],
[0,50,0],
[0,0,50]])
imgpts, jac = cv2.projectPoints(axis, rvec, tvec, camera_matrix, camera_distortion)
#Drawing the three axis on the image frame.
#The opencv colors are defined as BGR colors such as:
# (a, b, c) >> Blue = a, Green = b and Red = c
#Our axis/color convention is X=R, Y=G, Z=B
sellion_xy = (landmarks_2D[7][0], landmarks_2D[7][1])
cv2.line(frame, sellion_xy, tuple(imgpts[1].ravel()), (0,255,0), 3) #GREEN
cv2.line(frame, sellion_xy, tuple(imgpts[2].ravel()), (255,0,0), 3) #BLUE
cv2.line(frame, sellion_xy, tuple(imgpts[0].ravel()), (0,0,255), 3) #RED
#Drawing a yellow rectangle
# (and text) around the ROI.
if(DEBUG == True):
text_x1 = roi_x1
text_y1 = roi_y1 - 3
if(text_y1 < 0): text_y1 = 0
cv2.putText(frame, "ROI", (text_x1,text_y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,255), 1);
cv2.rectangle(frame,
(roi_x1, roi_y1),
(roi_x2, roi_y2),
(0, 255, 255),
2)
#Showing the frame and waiting
# for the exit command
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'): break
#Release the camera
video_capture.release()
print("Bye...")
if __name__ == "__main__":
main()