diff --git a/g3doc/tutorials/Fairness_Indicators_Example_Colab.ipynb b/g3doc/tutorials/Fairness_Indicators_Example_Colab.ipynb index 58d397b..00a40a7 100644 --- a/g3doc/tutorials/Fairness_Indicators_Example_Colab.ipynb +++ b/g3doc/tutorials/Fairness_Indicators_Example_Colab.ipynb @@ -352,7 +352,7 @@ " hidden_units=[500, 100],\n", " weight_column='weight',\n", " feature_columns=[embedded_text_feature_column],\n", - " optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.003),\n", + " optimizer=tf.keras.optimizers.legacy.Adagrad(learning_rate=0.003),\n", " loss_reduction=tf.losses.Reduction.SUM,\n", " n_classes=2,\n", " model_dir=model_dir)\n", diff --git a/g3doc/tutorials/Fairness_Indicators_TFCO_CelebA_Case_Study.ipynb b/g3doc/tutorials/Fairness_Indicators_TFCO_CelebA_Case_Study.ipynb index 3d9cfaa..d32ab6a 100644 --- a/g3doc/tutorials/Fairness_Indicators_TFCO_CelebA_Case_Study.ipynb +++ b/g3doc/tutorials/Fairness_Indicators_TFCO_CelebA_Case_Study.ipynb @@ -819,8 +819,8 @@ "# Create constrained optimizer and obtain train_op.\n", "# Separate optimizers are specified for the objective and constraints\n", "optimizer = tfco.ProxyLagrangianOptimizerV2(\n", - " optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),\n", - " constraint_optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),\n", + " optimizer=tf.keras.optimizers.legacy.Adam(learning_rate=0.001),\n", + " constraint_optimizer=tf.keras.optimizers.legacy.Adam(learning_rate=0.001),\n", " num_constraints=problem.num_constraints)\n", "\n", "# A list of all trainable variables is also needed to use TFCO.\n",