Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Hey! Thanks for opening this issue! #1977

Open
Opiyo-Inno opened this issue Dec 8, 2024 · 0 comments
Open

Hey! Thanks for opening this issue! #1977

Opiyo-Inno opened this issue Dec 8, 2024 · 0 comments

Comments

@Opiyo-Inno
Copy link

          Hey! Thanks for opening this issue! 

I am also trying to use the codes for AutoBNN shared here to model this data, but it is giving me very big values of the performance metric, how may i adjust?

-- coding: utf-8 --

"""
Created on Sun Oct 27 15:41:32 2024

@author: iO
"""

import jax
import jax.numpy as jnp
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from autobnn import estimators
from autobnn import training_util

Seed setup

seed = jax.random.PRNGKey(0)

Load data

data = pd.read_csv("path_to_data/Bukomansimbi.txt", delim_whitespace=True)
data.columns = data.columns.str.lower()

Date and rainfall extraction

data['date'] = pd.to_datetime(data[['year', 'month', 'day']])
rainfall_by_day = data['value'].values

Train/test split configuration

num_forecast_steps = 365
train_data = rainfall_by_day[:-num_forecast_steps]
test_data = rainfall_by_day[-num_forecast_steps:]
dates_train = data['date'].values[:-num_forecast_steps]
dates_test = data['date'].values[-num_forecast_steps:]

Normalize and scale data

scaler = StandardScaler()
train_scaled = scaler.fit_transform(train_data.reshape(-1, 1)).flatten()
test_scaled = scaler.transform(test_data.reshape(-1, 1)).flatten()

Add time feature for seasonality

month_sin = np.sin(2 * np.pi * data['month'].values / 12)
month_cos = np.cos(2 * np.pi * data['month'].values / 12)
x_train = np.stack([month_sin[:-num_forecast_steps], month_cos[:-num_forecast_steps]], axis=1)
x_test = np.stack([month_sin[-num_forecast_steps:], month_cos[-num_forecast_steps:]], axis=1)

Initialize AutoBNN

est = estimators.AutoBnnMapEstimator(
'sum_of_products',
likelihood_model='normal_likelihood_logistic_noise',
seed=seed,
periods=(1.0,), # one year period as float since date normalization handles scaling
num_particles=32
)

Fit the model

est.fit(x_train, train_scaled[:, None])

Prediction

preds = est.predict(x_test)[:, 0] # Squeeze predictions
quantiles = est.predict_quantiles(x_test, q=[2.5, 50., 90., 97.5])
lo, mid, p90, hi = quantiles[:, 0], quantiles[:, 1], quantiles[:, 2], quantiles[:, 3]

Plotting the results

plt.figure(figsize=(16, 10))
plt.plot(dates_train, train_scaled, label='Training Data')
plt.plot(dates_test, test_scaled, label='Actual')
plt.plot(dates_test, mid, label='Predictions', color='r')
plt.fill_between(dates_test, lo, hi, color='r', alpha=0.3, label='Confidence Interval')
plt.title('Rainfall Prediction in Bukomansimbi')
plt.xlabel('Date')
plt.ylabel('Standardized Rainfall')
plt.legend()
plt.show()

Performance Metrics

mae = np.mean(np.abs(preds - test_scaled))
rmse = np.sqrt(np.mean((preds - test_scaled) ** 2))
r_squared = 1 - np.sum((preds - test_scaled) ** 2) / np.sum((test_scaled - np.mean(test_scaled)) ** 2)

print(f"Mean Absolute Error (MAE): {mae:.2f}")
print(f"Root Mean Square Error (RMSE): {rmse:.2f}")
print(f"R-squared: {r_squared:.2f}")

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant