You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am also trying to use the codes for AutoBNN shared here to model this data, but it is giving me very big values of the performance metric, how may i adjust?
import jax
import jax.numpy as jnp
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from autobnn import estimators
from autobnn import training_util
Seed setup
seed = jax.random.PRNGKey(0)
Load data
data = pd.read_csv("path_to_data/Bukomansimbi.txt", delim_whitespace=True)
data.columns = data.columns.str.lower()
est = estimators.AutoBnnMapEstimator(
'sum_of_products',
likelihood_model='normal_likelihood_logistic_noise',
seed=seed,
periods=(1.0,), # one year period as float since date normalization handles scaling
num_particles=32
)
I am also trying to use the codes for AutoBNN shared here to model this data, but it is giving me very big values of the performance metric, how may i adjust?
-- coding: utf-8 --
"""
Created on Sun Oct 27 15:41:32 2024
@author: iO
"""
import jax
import jax.numpy as jnp
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from autobnn import estimators
from autobnn import training_util
Seed setup
seed = jax.random.PRNGKey(0)
Load data
data = pd.read_csv("path_to_data/Bukomansimbi.txt", delim_whitespace=True)
data.columns = data.columns.str.lower()
Date and rainfall extraction
data['date'] = pd.to_datetime(data[['year', 'month', 'day']])
rainfall_by_day = data['value'].values
Train/test split configuration
num_forecast_steps = 365
train_data = rainfall_by_day[:-num_forecast_steps]
test_data = rainfall_by_day[-num_forecast_steps:]
dates_train = data['date'].values[:-num_forecast_steps]
dates_test = data['date'].values[-num_forecast_steps:]
Normalize and scale data
scaler = StandardScaler()
train_scaled = scaler.fit_transform(train_data.reshape(-1, 1)).flatten()
test_scaled = scaler.transform(test_data.reshape(-1, 1)).flatten()
Add time feature for seasonality
month_sin = np.sin(2 * np.pi * data['month'].values / 12)
month_cos = np.cos(2 * np.pi * data['month'].values / 12)
x_train = np.stack([month_sin[:-num_forecast_steps], month_cos[:-num_forecast_steps]], axis=1)
x_test = np.stack([month_sin[-num_forecast_steps:], month_cos[-num_forecast_steps:]], axis=1)
Initialize AutoBNN
est = estimators.AutoBnnMapEstimator(
'sum_of_products',
likelihood_model='normal_likelihood_logistic_noise',
seed=seed,
periods=(1.0,), # one year period as float since date normalization handles scaling
num_particles=32
)
Fit the model
est.fit(x_train, train_scaled[:, None])
Prediction
preds = est.predict(x_test)[:, 0] # Squeeze predictions
quantiles = est.predict_quantiles(x_test, q=[2.5, 50., 90., 97.5])
lo, mid, p90, hi = quantiles[:, 0], quantiles[:, 1], quantiles[:, 2], quantiles[:, 3]
Plotting the results
plt.figure(figsize=(16, 10))
plt.plot(dates_train, train_scaled, label='Training Data')
plt.plot(dates_test, test_scaled, label='Actual')
plt.plot(dates_test, mid, label='Predictions', color='r')
plt.fill_between(dates_test, lo, hi, color='r', alpha=0.3, label='Confidence Interval')
plt.title('Rainfall Prediction in Bukomansimbi')
plt.xlabel('Date')
plt.ylabel('Standardized Rainfall')
plt.legend()
plt.show()
Performance Metrics
mae = np.mean(np.abs(preds - test_scaled))
rmse = np.sqrt(np.mean((preds - test_scaled) ** 2))
r_squared = 1 - np.sum((preds - test_scaled) ** 2) / np.sum((test_scaled - np.mean(test_scaled)) ** 2)
print(f"Mean Absolute Error (MAE): {mae:.2f}")
print(f"Root Mean Square Error (RMSE): {rmse:.2f}")
print(f"R-squared: {r_squared:.2f}")
The text was updated successfully, but these errors were encountered: