-
Notifications
You must be signed in to change notification settings - Fork 584
/
configure.sh
executable file
·179 lines (150 loc) · 7.08 KB
/
configure.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#!/bin/bash
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
PLATFORM="$(uname -s | tr 'A-Z' 'a-z')"
function write_to_bazelrc() {
echo "$1" >> .bazelrc
}
function write_action_env_to_bazelrc() {
write_to_bazelrc "build --action_env $1=\"$2\""
}
function write_linkopt_dir_to_bazelrc() {
write_to_bazelrc "build --linkopt -Wl,-rpath,$1" >> .bazelrc
}
function is_linux() {
[[ "${PLATFORM}" == "linux" ]]
}
function is_macos() {
[[ "${PLATFORM}" == "darwin" ]]
}
function is_windows() {
# On windows, the shell script is actually running in msys
[[ "${PLATFORM}" =~ msys_nt*|mingw*|cygwin*|uwin* ]]
}
function is_ppc64le() {
[[ "$(uname -m)" == "ppc64le" ]]
}
# Remove .bazelrc if it already exist
[ -e .bazelrc ] && rm .bazelrc
# Check if we are building GPU or CPU ops, default CPU
while [[ "$TF_NEED_CUDA" == "" ]]; do
read -p "Do you want to build ops again TensorFlow CPU pip package?"\
" Y or enter for CPU (tensorflow-cpu), N for GPU (tensorflow). [Y/n] " INPUT
case $INPUT in
[Yy]* ) echo "Build with CPU pip package."; TF_NEED_CUDA=0;;
[Nn]* ) echo "Build with GPU pip package."; TF_NEED_CUDA=1;;
"" ) echo "Build with CPU pip package."; TF_NEED_CUDA=0;;
* ) echo "Invalid selection: " $INPUT;;
esac
done
while [[ "$TF_CUDA_VERSION" == "" ]]; do
read -p "Are you building against TensorFlow 2.1(including RCs) or newer?[Y/n] " INPUT
case $INPUT in
[Yy]* ) echo "Build against TensorFlow 2.1 or newer."; TF_CUDA_VERSION=11;;
[Nn]* ) echo "Build against TensorFlow <2.1."; TF_CUDA_VERSION=10.0;;
"" ) echo "Build against TensorFlow 2.1 or newer."; TF_CUDA_VERSION=11;;
* ) echo "Invalid selection: " $INPUT;;
esac
done
# Check if it's installed
# if [[ $(pip show tensorflow) == *tensorflow* ]] || [[ $(pip show tf-nightly) == *tf-nightly* ]]; then
# echo 'Using installed tensorflow'
# else
# # Uninstall CPU version if it is installed.
# if [[ $(pip show tensorflow-cpu) == *tensorflow-cpu* ]]; then
# echo 'Already have tensorflow non-gpu installed. Uninstalling......\n'
# pip uninstall tensorflow
# elif [[ $(pip show tf-nightly-cpu) == *tf-nightly-cpu* ]]; then
# echo 'Already have tensorflow non-gpu installed. Uninstalling......\n'
# pip uninstall tf-nightly
# fi
# # Install GPU version
# echo 'Installing tensorflow .....\n'
# pip install tensorflow
# fi
TF_CFLAGS=( $(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_compile_flags()))') )
TF_LFLAGS="$(python -c 'import tensorflow as tf; print(" ".join(tf.sysconfig.get_link_flags()))')"
write_to_bazelrc "build --experimental_repo_remote_exec"
write_to_bazelrc "build --spawn_strategy=standalone"
write_to_bazelrc "build --strategy=Genrule=standalone"
write_to_bazelrc "build -c opt"
write_to_bazelrc "build --cxxopt=\"-D_GLIBCXX_USE_CXX11_ABI=1\""
write_to_bazelrc "build --cxxopt=\"-std=c++17\""
# The transitive inclusion of build rules from TensorFlow ends up including
# and building two copies of zlib (one from bazel_rules, one from the TF code
# baase itself). The version of zlib you get (at least in TF 2.15.0) ends up
# producing many compiler warnings that "a function declaration without a
# prototype is deprecated". It's difficult to patch the particular build rules
# involved, so the approach taken here is to silence those warnings for stuff
# in external/. TODO: figure out how to patch the BUILD files and put it there.
write_to_bazelrc "build --per_file_copt=external/.*@-Wno-deprecated-non-prototype"
write_to_bazelrc "build --host_per_file_copt=external/.*@-Wno-deprecated-non-prototype"
# Similarly, these are other harmless warnings about unused functions coming
# from things pulled in by the TF bazel config rules.
write_to_bazelrc "build --per_file_copt=external/com_google_protobuf/.*@-Wno-unused-function"
write_to_bazelrc "build --host_per_file_copt=external/com_google_protobuf/.*@-Wno-unused-function"
# The following supress warnings coming from qsim.
# TODO: fix the code in qsim & update TFQ to use the updated version.
write_to_bazelrc "build --per_file_copt=tensorflow_quantum/core/ops/noise/tfq_.*@-Wno-unused-but-set-variable"
write_to_bazelrc "build --host_per_file_copt=tensorflow_quantum/core/ops/noise/tfq_.*@-Wno-unused-but-set-variable"
write_to_bazelrc "build --per_file_copt=tensorflow_quantum/core/ops/math_ops/tfq_.*@-Wno-deprecated-declarations"
write_to_bazelrc "build --host_per_file_copt=tensorflow_quantum/core/ops/math_ops/tfq_.*@-Wno-deprecated-declarations"
if is_windows; then
# Use pywrap_tensorflow instead of tensorflow_framework on Windows
SHARED_LIBRARY_DIR=${TF_CFLAGS:2:-7}"python"
else
SHARED_LIBRARY_DIR=${TF_LFLAGS:2}
fi
SHARED_LIBRARY_NAME=$(echo $TF_LFLAGS | rev | cut -d":" -f1 | rev)
if ! [[ $TF_LFLAGS =~ .*:.* ]]; then
if is_macos; then
SHARED_LIBRARY_NAME="libtensorflow_framework.dylib"
elif is_windows; then
# Use pywrap_tensorflow's import library on Windows. It is in the same dir as the dll/pyd.
SHARED_LIBRARY_NAME="_pywrap_tensorflow_internal.lib"
else
SHARED_LIBRARY_NAME="libtensorflow_framework.so"
fi
fi
HEADER_DIR=${TF_CFLAGS:2}
if is_windows; then
SHARED_LIBRARY_DIR=${SHARED_LIBRARY_DIR//\\//}
SHARED_LIBRARY_NAME=${SHARED_LIBRARY_NAME//\\//}
HEADER_DIR=${HEADER_DIR//\\//}
fi
write_action_env_to_bazelrc "TF_HEADER_DIR" ${HEADER_DIR}
write_action_env_to_bazelrc "TF_SHARED_LIBRARY_DIR" ${SHARED_LIBRARY_DIR}
write_action_env_to_bazelrc "TF_SHARED_LIBRARY_NAME" ${SHARED_LIBRARY_NAME}
write_action_env_to_bazelrc "TF_NEED_CUDA" ${TF_NEED_CUDA}
if ! is_windows; then
write_linkopt_dir_to_bazelrc ${SHARED_LIBRARY_DIR}
fi
# TODO(yifeif): do not hardcode path
if [[ "$TF_NEED_CUDA" == "1" ]]; then
write_to_bazelrc "build:cuda --define=using_cuda=true --define=using_cuda_nvcc=true"
write_to_bazelrc "build:cuda --@local_config_cuda//:enable_cuda"
write_to_bazelrc "build:cuda --crosstool_top=@local_config_cuda//crosstool:toolchain"
write_action_env_to_bazelrc "TF_CUDA_VERSION" ${TF_CUDA_VERSION}
write_action_env_to_bazelrc "TF_CUDNN_VERSION" "8"
if is_windows; then
write_action_env_to_bazelrc "CUDNN_INSTALL_PATH" "C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${TF_CUDA_VERSION}"
write_action_env_to_bazelrc "CUDA_TOOLKIT_PATH" "C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${TF_CUDA_VERSION}"
else
write_action_env_to_bazelrc "CUDNN_INSTALL_PATH" "/usr/lib/x86_64-linux-gnu"
write_action_env_to_bazelrc "CUDA_TOOLKIT_PATH" "/usr/local/cuda"
fi
write_to_bazelrc "build --config=cuda"
write_to_bazelrc "test --config=cuda"
fi