-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrobenius.tex
209 lines (190 loc) · 9.79 KB
/
frobenius.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
\section{Frobenius and finite fields} \label{frob}
Throughout this section our fields $k$ will be finite, so let $char(k) = p$ for
a prime $p$. This means that $k = \mathbb{F}_{q}$ for some $q = p^r$.
\begin{mydef}
The \emph{Frobenius} endomorphism is the $p^{th}$-power map
$$ \phi: k \rightarrow k $$
$$ x \mapsto x^p $$
which induces a map on curves as follows
$$ \phi: E(k) \rightarrow E^{\phi}(k) $$
$$ (x_0,\ldots , x_n) \mapsto (x_0^p, \ldots , x_n^p) $$
where $E^{\phi}$ is the curve $E$ with $\phi$ applied to its coefficients.
$$E: y^2 = x^3 + ax + b \quad E^{\phi}: y^2 = x^3 + \phi(a)x + \phi(b). $$
\end{mydef}
We can apply the Frobenius endomorphism $r$ times $$\phi^r(x) = x^{p^r} = x^q$$
And since every finite field of $q$ elements is the splitting field of $x^{q}-x$, it is in other words
the fixed points of the $q^{th}$ Frobenius endomorphism
$$ \phi^r(x) = x \iff x \in \mathbb{F}_q. $$
The same is true for all intermediate fields of size $p^k$ with $0 < k \leq r$, so in general
we have that the $\phi^k$ fixes the elements of the field $\mathbb{F}_{p^k}$.
\begin{prop}
Let $\sigma: E \rightarrow E^\sigma$ be the $p^{th}$ Frobenius on an elliptic curves
$$ E: y^2 = x^3 + ax + b.$$
Then we have that $j(E^\sigma) = \sigma(j(E))$ where $j$ is the $j$-invariant of $E$.
\end{prop}
\begin{proof}
This follows directly from the fact that the Frobenius map is an endomorphism and that
the $j$-invariant is given by an algebraic expression \cite{AEC}
$$j(E) = \frac{6912 a^3}{4a^3 + 27b^2}.$$
Applying $\sigma$ gives us
$$\sigma(j(E)) = \frac{6912 \sigma(a)^3}{4\sigma(a)^3 + 27 \sigma(b)^2} = j(E^\sigma).$$
\end{proof}
\begin{mydef}
Given an abelian group $A$ and let $\mathbb{R}$ be the set of real numbers, then
$$d: A \rightarrow \mathbb{R}$$
is called a positive definite quadratic form if
\begin{enumerate}
\item $d(a) = d(-a)$ for all $a\in A$.
\item The pairing $$A\times A\rightarrow \mathbb{R}$$
$$ (a,b) \mapsto d(a+b)-d(a)-d(b) $$ for all $a,b\in A$.
\item $d(a) \geq 0$ for all $a\in A$.
\item $d(a) = 0 \iff a=0$.
\end{enumerate}
\end{mydef}
The next result is one of the important ingredients of the proof of the Hasse bound.
\begin{prop}
The degree map
$$ \deg: Hom(E_1, E_2) \rightarrow \mathbb{Z} $$
is a positive definite quadratic form.
\end{prop}
\begin{proof}
Clearly $\deg f = \deg(-f)$. The only thing that takes a proof is the
bilinearity of the pairing
$$ Hom(E_1, E_2) \times Hom(E_1, E_2) \rightarrow \mathbb{Z}$$
$$ \langle \phi, \psi \rangle \mapsto \deg(\phi + \psi) - \deg\phi - \deg\psi. $$
For this proof we will make extensive use of the dual isogeny, but first
notice that we have an injection of multiplication by $n$ maps
$$ [\quad]: \mathbb{Z} \rightarrow End(E_1). $$
A calculation then yields
\begin{eqnarray*}
[\langle \phi,\psi \rangle] &=& [\deg(\phi+\psi)]-[\deg\phi]-[\deg\psi] \nonumber \\
&=& (\widehat{\phi+\psi})(\phi+\psi) - \widehat{\phi}\phi - \widehat{\psi}\psi \nonumber \\
&=& \widehat{\phi}\psi + \widehat{\psi}\phi
\end{eqnarray*}
The pairing is then shown to be linear in the first variable, the second variable is
similar.
\begin{eqnarray*}
[\langle \phi_1+\phi_2, \psi \rangle] &=& \widehat{\psi}(\phi_1+\phi_2) + (\widehat{\phi_1+\phi_2})\psi \nonumber \\
&=& (\widehat{\psi}\phi_1+\widehat{\phi_1}\psi) + (\widehat{\psi}\phi_2 + \widehat{\phi_2}\psi) \nonumber \\
&=& [\langle \phi_1,\psi \rangle] + [\langle \phi_2,\psi \rangle]
\end{eqnarray*}
\end{proof}
For a complete proof of the next theorem we refer to \cite{AEC}, it is essentially the fact that enables
us to do point counting.
\begin{thm} \label{frobkernel}
Let $\phi$ be the $q^{th}$ Frobenius map on $E/\mathbb{F}_q$. Then the map $1-\phi$ is separable, and
$\#\ker(1-\phi) = \deg(1-\phi)$.
\end{thm}
\begin{proof}
Recall from Chapter \ref{diffsep} that a map $\psi$ is separable if and only if $\psi^*(\omega) \neq 0$,
where $\omega$ is the invariant differential. Using that the Frobenius $\phi$ is inseparable \cite{AEC}
we compute
\begin{eqnarray}
(1-\phi)^*(\omega) &=& [1]^*\omega - \phi^*(\omega) \nonumber \\
&=& \omega - 0 \nonumber \\
&=& \omega \nonumber
\end{eqnarray}
thus $(1-\phi)^*(\omega) = 0$ if and only if $\omega = 0$, but the invariant differential is non-zero
so $(1-\phi)^*(\omega) \neq 0$ which means $1-\phi$ is separable. The last fact follows
from Theorem \ref{kerdeg}.
\end{proof}
With the theory we developed so far we get the Hasse bound as a special case of the next lemma.
\begin{lemma}
\textbf{(Cauchy-Schwartz inequality)}. Let $A$ be an abelian group and
$$ d: A \rightarrow \mathbb{Z} $$
a positive definite quadratic form. Then for all $\psi, \phi \in A$ the following holds
$$ \lvert d(\psi-\phi)-d(\phi)-d(\psi) \rvert \leq 2 \sqrt{d(\phi)d(\psi)}. $$
\end{lemma}
\begin{proof}
Let $\psi, \phi \in A$. From the definition of a quadratic form there is a bilinear pairing
$$ L(\psi, \phi) = d(\psi-\phi) - d(\psi) - d(\phi). $$
Using this definition, the fact that $d$ is positive definite and letting $m,n \in \mathbb{Z}$ where
$m = -L(\psi, \phi)$ and $n = 2d(\psi)$ we calculate
\begin{eqnarray}
0 \leq d(m\psi - n\phi) &=& d(m\psi) + L(m\psi, n\phi) + d(n\phi) \nonumber \\
&=& m^2 d(\psi) + mnL(\psi,\phi) + n^2 d(\phi) \nonumber \\
&=& d(\psi) \left( 4d(\psi)d(\phi)-L(\psi, \phi)^2 \right) \nonumber
\end{eqnarray}
where on the last line we make the substitution. If $d(\psi)=0$ the inequality is trivial, if
$d(\psi) \neq 0$ we divide it out and obtain our result
$$L(\psi, \phi)^2 \leq 4d(\psi)d(\phi). $$
\end{proof}
\begin{thm}
\textbf{(Hasse's theorem)}. Let $E$ be an elliptic curve over a finite field $k$ with $q$ elements, then
$$ \lvert \#E(k) - q - 1 \rvert \leq 2\sqrt{q}. $$
\end{thm}
\begin{proof}
We let $\phi_q: E \rightarrow E$ be the $q^{th}$ Frobenius endomorphism on $E$ given by
$(x,y) \mapsto (x^q, y^q)$. Recall that $\phi_q$ fixes our field of $q$ elements, thus
$$ P \in E(k) \quad \iff \quad \phi_q(P) = P.$$
Writing out the right hand side of the implication we see that
$$ 0 = P - \phi_q(P) = (1 - \phi_q)(P) $$
which enables us to count the number of points in $E(k)$ by counting the number of points in the kernel
of the separable map $1-\phi_q$. Recall from before that the number of points in the kernel is equal
to the degree of the separable map
$$ \#E(k) = \# \ker(1-\phi_q) = \deg(1-\phi_q). $$
We have shown in that the degree map on $End(E)$ is a positive definite quadratic form, so
by using the inequality from the previous theorem we calculate
$$\lvert \deg(1-\phi_q) - \deg \phi_q - \deg 1\rvert = \lvert \#E(k) - q - 1\rvert \leq 2\sqrt{\deg \phi_q} = 2\sqrt{q}.$$
\end{proof}
The Hasse bound is used in all our coming algorithms. For Schoof-Elkies it tells us how many
small primes we have to calculate the Frobenius trace for. In the case of Satoh it supplies us
with the sufficient precision needed to recover the Frobenius trace.
\begin{prop}
If $\psi \in End(E)$ then $\det \psi_\ell = \deg\psi$, where $\psi_\ell$ is a $2\times2$ matrix acting
on the Tate module $T_\ell(E)$.
\label{detdeg}
\end{prop}
\begin{proof}
We fix a basis $v_1,v_2 \in \mathbb{Z}_\ell \times \mathbb{Z}_\ell$ for $T_\ell(E)$ and denote the matrix
associated to this basis by
$$ \psi_\ell = \begin{pmatrix} a & b \\ c & d \end{pmatrix}. $$
We now calculate by relying heavily on the $\ell$-adic Weil pairing,
$e: T_\ell(E) \times T_\ell(E) \rightarrow T_\ell(\mu)$.
\begin{eqnarray}
e(v_1, v_2)^{\deg\psi} &=& e([\deg \psi]v_1, v_2) \nonumber \\
&=& e(\psi_\ell \widehat{\psi_\ell} v_1, v_2) \nonumber \\
&=& e(\psi_\ell v_1, \psi_\ell v_2) \nonumber \\
&=& e(a v_1 + c v_2, b v_1 + d v_2) \nonumber \\
&=& e(a v_1, d v_2) e(c v_2, b v_1) \nonumber \\
&=& e(a v_1, d v_2) e(b v_1, c v_2)^{-1} \nonumber \\
&=& e(v_1, v_2)^{ad} e(v_1, v_2)^{-bc} \nonumber \\
&=& e(v_1, v_2)^{ad - bc} \nonumber \\
&=& e(v_1, v_2)^{\det \psi_\ell} \nonumber
\end{eqnarray}
Since the pairing is non-degenerate we obtain $\deg\psi = \det\psi_\ell$.
\end{proof}
Writing out the determinant of $1-A$ for any matrix $A$ we get
$$ \begin{vmatrix} 1-a & -b \\ -c & 1-d \end{vmatrix} = 1-(a+d)+ad-bc = 1-tr(A)+\det A $$
and we see that $tr(\psi_\ell) = 1 + \det \psi_\ell - \det(1-\psi_\ell)$. Using the previous theorem we
get $$tr(\psi_\ell) = 1 + \deg \psi_\ell - \deg(1-\psi_\ell).$$ By substituting with the $q^{th}$
Frobenius endomorphism on $T_\ell(E)$ and setting $\tau = tr(\phi_q)$ we get
$$\#E(k) = 1 + q - \tau$$
where we know from Hasse's theorem that $\lvert \tau \rvert \leq 2\sqrt{q}$.
The next proposition will be used in Chapter \ref{satoh}, it is easy to prove and gives a nice
expression of the Frobenius trace in terms of the dual isogeny.
\begin{prop}
Let $\phi: E \rightarrow E$ be the $q^{th}$ Frobenius endomorphism and $\widehat{\phi}$ its dual, then
the following holds
$$ t = tr(\phi) = \phi + \widehat{\phi}.$$
\end{prop}
\begin{proof}
Recall that $1-\phi$ is separable, so $$(1-\phi)(\widehat{1-\phi}) = \deg(1-\phi) = \#\ker(1-\phi) = \#E(k).$$
Expanding the product on the left we get
\begin{eqnarray}
(1-\phi)(\widehat{1-\phi}) &=& (1-\phi)(1-\widehat{\phi}) \nonumber \\
&=& 1 - (\phi + \widehat{\phi}) + \phi\widehat{\phi} \nonumber \\
&=& 1 - (\phi + \widehat{\phi}) + q \nonumber
\end{eqnarray}
From before we had that $\#E(k) = q + 1 - t$ and we just calculated that $\#E(k) = q + 1 - (\phi +\widehat{\phi})$ so
the result follows.
\end{proof}
A very useful property of the $q^{th}$ Frobenius endomorphism $\phi$ is its characteristic polynomial. Letting
$\phi_\ell\in M_2(\mathbb{Z})$ a trivial calculation using $\det \phi_\ell = \deg \phi = q\,$ gives
\begin{eqnarray}
\det(Ix - \phi_\ell) &=& x^2 -(a+d)x + ad - bc \nonumber \\
&=& x^2 - tr(\phi_\ell) + \det \phi_\ell \nonumber \\
&=& x^2 -\tau x + q \nonumber
\end{eqnarray}
In other words we have that the Frobenius $\phi$ satisfies
$$ \phi^2 - \tau \phi + q = 0.$$