forked from ruotianluo/self-critical.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
359 lines (302 loc) · 14.4 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import h5py
import lmdb
import os
import numpy as np
import random
import torch
import torch.utils.data as data
import multiprocessing
import six
class HybridLoader:
"""
If db_path is a director, then use normal file loading
If lmdb, then load from lmdb
The loading method depend on extention.
"""
def __init__(self, db_path, ext):
self.db_path = db_path
self.ext = ext
if self.ext == '.npy':
self.loader = lambda x: np.load(x)
else:
self.loader = lambda x: np.load(x)['feat']
if db_path.endswith('.lmdb'):
self.db_type = 'lmdb'
self.env = lmdb.open(db_path, subdir=os.path.isdir(db_path),
readonly=True, lock=False,
readahead=False, meminit=False)
elif db_path.endswith('.pth'): # Assume a key,value dictionary
self.db_type = 'pth'
self.feat_file = torch.load(db_path)
self.loader = lambda x: x
print('HybridLoader: ext is ignored')
else:
self.db_type = 'dir'
def get(self, key):
if self.db_type == 'lmdb':
env = self.env
with env.begin(write=False) as txn:
byteflow = txn.get(key)
f_input = six.BytesIO(byteflow)
elif self.db_type == 'pth':
f_input = self.feat_file[key]
else:
f_input = os.path.join(self.db_path, key + self.ext)
# load image
feat = self.loader(f_input)
return feat
class DataLoader(data.Dataset):
def reset_iterator(self, split):
del self._prefetch_process[split]
self._prefetch_process[split] = BlobFetcher(split, self, split=='train')
self.iterators[split] = 0
def get_vocab_size(self):
return self.vocab_size
def get_vocab(self):
return self.ix_to_word
def get_seq_length(self):
return self.seq_length
def __init__(self, opt):
self.opt = opt
self.batch_size = self.opt.batch_size
self.seq_per_img = opt.seq_per_img
# feature related options
self.use_fc = getattr(opt, 'use_fc', True)
self.use_att = getattr(opt, 'use_att', True)
self.use_box = getattr(opt, 'use_box', 0)
self.norm_att_feat = getattr(opt, 'norm_att_feat', 0)
self.norm_box_feat = getattr(opt, 'norm_box_feat', 0)
# load the json file which contains additional information about the dataset
print('DataLoader loading json file: ', opt.input_json)
self.info = json.load(open(self.opt.input_json))
if 'ix_to_word' in self.info:
self.ix_to_word = self.info['ix_to_word']
self.vocab_size = len(self.ix_to_word)
print('vocab size is ', self.vocab_size)
# open the hdf5 file
print('DataLoader loading h5 file: ', opt.input_fc_dir, opt.input_att_dir, opt.input_box_dir, opt.input_label_h5)
if self.opt.input_label_h5 != 'none':
self.h5_label_file = h5py.File(self.opt.input_label_h5, 'r', driver='core')
# load in the sequence data
seq_size = self.h5_label_file['labels'].shape
self.label = self.h5_label_file['labels'][:]
self.seq_length = seq_size[1]
print('max sequence length in data is', self.seq_length)
# load the pointers in full to RAM (should be small enough)
self.label_start_ix = self.h5_label_file['label_start_ix'][:]
self.label_end_ix = self.h5_label_file['label_end_ix'][:]
else:
self.seq_length = 1
self.fc_loader = HybridLoader(self.opt.input_fc_dir, '.npy')
self.att_loader = HybridLoader(self.opt.input_att_dir, '.npz')
self.box_loader = HybridLoader(self.opt.input_box_dir, '.npy')
self.num_images = len(self.info['images']) # self.label_start_ix.shape[0]
print('read %d image features' %(self.num_images))
# separate out indexes for each of the provided splits
self.split_ix = {'train': [], 'val': [], 'test': []}
for ix in range(len(self.info['images'])):
img = self.info['images'][ix]
if not 'split' in img:
self.split_ix['train'].append(ix)
self.split_ix['val'].append(ix)
self.split_ix['test'].append(ix)
elif img['split'] == 'train':
self.split_ix['train'].append(ix)
elif img['split'] == 'val':
self.split_ix['val'].append(ix)
elif img['split'] == 'test':
self.split_ix['test'].append(ix)
elif opt.train_only == 0: # restval
self.split_ix['train'].append(ix)
print('assigned %d images to split train' %len(self.split_ix['train']))
print('assigned %d images to split val' %len(self.split_ix['val']))
print('assigned %d images to split test' %len(self.split_ix['test']))
self.iterators = {'train': 0, 'val': 0, 'test': 0}
self._prefetch_process = {} # The three prefetch process
for split in self.iterators.keys():
self._prefetch_process[split] = BlobFetcher(split, self, split=='train')
# Terminate the child process when the parent exists
def cleanup():
print('Terminating BlobFetcher')
for split in self.iterators.keys():
del self._prefetch_process[split]
import atexit
atexit.register(cleanup)
def get_captions(self, ix, seq_per_img):
# fetch the sequence labels
ix1 = self.label_start_ix[ix] - 1 #label_start_ix starts from 1
ix2 = self.label_end_ix[ix] - 1
ncap = ix2 - ix1 + 1 # number of captions available for this image
assert ncap > 0, 'an image does not have any label. this can be handled but right now isn\'t'
if ncap < seq_per_img:
# we need to subsample (with replacement)
seq = np.zeros([seq_per_img, self.seq_length], dtype = 'int')
for q in range(seq_per_img):
ixl = random.randint(ix1,ix2)
seq[q, :] = self.label[ixl, :self.seq_length]
else:
ixl = random.randint(ix1, ix2 - seq_per_img + 1)
seq = self.label[ixl: ixl + seq_per_img, :self.seq_length]
return seq
def get_batch(self, split, batch_size=None):
batch_size = batch_size or self.batch_size
seq_per_img = self.seq_per_img
fc_batch = [] # np.ndarray((batch_size * seq_per_img, self.opt.fc_feat_size), dtype = 'float32')
att_batch = [] # np.ndarray((batch_size * seq_per_img, 14, 14, self.opt.att_feat_size), dtype = 'float32')
label_batch = [] #np.zeros([batch_size * seq_per_img, self.seq_length + 2], dtype = 'int')
wrapped = False
infos = []
gts = []
for i in range(batch_size):
# fetch image
tmp_fc, tmp_att, tmp_seq, \
ix, tmp_wrapped = self._prefetch_process[split].get()
if tmp_wrapped:
wrapped = True
fc_batch.append(tmp_fc)
att_batch.append(tmp_att)
tmp_label = np.zeros([seq_per_img, self.seq_length + 2], dtype = 'int')
if hasattr(self, 'h5_label_file'):
tmp_label[:, 1 : self.seq_length + 1] = tmp_seq
label_batch.append(tmp_label)
# Used for reward evaluation
if hasattr(self, 'h5_label_file'):
gts.append(self.label[self.label_start_ix[ix] - 1: self.label_end_ix[ix]])
else:
gts.append([])
# record associated info as well
info_dict = {}
info_dict['ix'] = ix
info_dict['id'] = self.info['images'][ix]['id']
info_dict['file_path'] = self.info['images'][ix].get('file_path', '')
infos.append(info_dict)
# #sort by att_feat length
# fc_batch, att_batch, label_batch, gts, infos = \
# zip(*sorted(zip(fc_batch, att_batch, np.vsplit(label_batch, batch_size), gts, infos), key=lambda x: len(x[1]), reverse=True))
fc_batch, att_batch, label_batch, gts, infos = \
zip(*sorted(zip(fc_batch, att_batch, label_batch, gts, infos), key=lambda x: 0, reverse=True))
data = {}
data['fc_feats'] = np.stack(sum([[_]*seq_per_img for _ in fc_batch], []))
# merge att_feats
max_att_len = max([_.shape[0] for _ in att_batch])
data['att_feats'] = np.zeros([len(att_batch)*seq_per_img, max_att_len, att_batch[0].shape[1]], dtype = 'float32')
for i in range(len(att_batch)):
data['att_feats'][i*seq_per_img:(i+1)*seq_per_img, :att_batch[i].shape[0]] = att_batch[i]
data['att_masks'] = np.zeros(data['att_feats'].shape[:2], dtype='float32')
for i in range(len(att_batch)):
data['att_masks'][i*seq_per_img:(i+1)*seq_per_img, :att_batch[i].shape[0]] = 1
# set att_masks to None if attention features have same length
if data['att_masks'].sum() == data['att_masks'].size:
data['att_masks'] = None
data['labels'] = np.vstack(label_batch)
# generate mask
nonzeros = np.array(list(map(lambda x: (x != 0).sum()+2, data['labels'])))
mask_batch = np.zeros([data['labels'].shape[0], self.seq_length + 2], dtype = 'float32')
for ix, row in enumerate(mask_batch):
row[:nonzeros[ix]] = 1
data['masks'] = mask_batch
data['gts'] = gts # all ground truth captions of each images
data['bounds'] = {'it_pos_now': self.iterators[split], 'it_max': len(self.split_ix[split]), 'wrapped': wrapped}
data['infos'] = infos
data = {k:torch.from_numpy(v) if type(v) is np.ndarray else v for k,v in data.items()} # Turn all ndarray to torch tensor
return data
# It's not coherent to make DataLoader a subclass of Dataset, but essentially, we only need to implement the following to functions,
# so that the torch.utils.data.DataLoader can load the data according the index.
# However, it's minimum change to switch to pytorch data loading.
def __getitem__(self, index):
"""This function returns a tuple that is further passed to collate_fn
"""
ix = index #self.split_ix[index]
if self.use_att:
att_feat = self.att_loader.get(str(self.info['images'][ix]['id']))
# Reshape to K x C
att_feat = att_feat.reshape(-1, att_feat.shape[-1])
if self.norm_att_feat:
att_feat = att_feat / np.linalg.norm(att_feat, 2, 1, keepdims=True)
if self.use_box:
box_feat = self.box_loader.get(str(self.info['images'][ix]['id']))
# devided by image width and height
x1,y1,x2,y2 = np.hsplit(box_feat, 4)
h,w = self.info['images'][ix]['height'], self.info['images'][ix]['width']
box_feat = np.hstack((x1/w, y1/h, x2/w, y2/h, (x2-x1)*(y2-y1)/(w*h))) # question? x2-x1+1??
if self.norm_box_feat:
box_feat = box_feat / np.linalg.norm(box_feat, 2, 1, keepdims=True)
att_feat = np.hstack([att_feat, box_feat])
# sort the features by the size of boxes
att_feat = np.stack(sorted(att_feat, key=lambda x:x[-1], reverse=True))
else:
att_feat = np.zeros((1,1,1), dtype='float32')
if self.use_fc:
fc_feat = self.fc_loader.get(str(self.info['images'][ix]['id']))
else:
fc_feat = np.zeros((1), dtype='float32')
if hasattr(self, 'h5_label_file'):
seq = self.get_captions(ix, self.seq_per_img)
else:
seq = None
return (fc_feat,
att_feat, seq,
ix)
def __len__(self):
return len(self.info['images'])
class SubsetSampler(torch.utils.data.sampler.Sampler):
r"""Samples elements randomly from a given list of indices, without replacement.
Arguments:
indices (list): a list of indices
"""
def __init__(self, indices):
self.indices = indices
def __iter__(self):
return (self.indices[i] for i in range(len(self.indices)))
def __len__(self):
return len(self.indices)
class BlobFetcher():
"""Experimental class for prefetching blobs in a separate process."""
def __init__(self, split, dataloader, if_shuffle=False):
"""
db is a list of tuples containing: imcrop_name, caption, bbox_feat of gt box, imname
"""
self.split = split
self.dataloader = dataloader
self.if_shuffle = if_shuffle
# Add more in the queue
def reset(self):
"""
Two cases for this function to be triggered:
1. not hasattr(self, 'split_loader'): Resume from previous training. Create the dataset given the saved split_ix and iterator
2. wrapped: a new epoch, the split_ix and iterator have been updated in the get_minibatch_inds already.
"""
# batch_size is 1, the merge is done in DataLoader class
self.split_loader = iter(data.DataLoader(dataset=self.dataloader,
batch_size=1,
sampler=SubsetSampler(self.dataloader.split_ix[self.split][self.dataloader.iterators[self.split]:]),
shuffle=False,
pin_memory=True,
num_workers=4, # 4 is usually enough
collate_fn=lambda x: x[0]))
def _get_next_minibatch_inds(self):
max_index = len(self.dataloader.split_ix[self.split])
wrapped = False
ri = self.dataloader.iterators[self.split]
ix = self.dataloader.split_ix[self.split][ri]
ri_next = ri + 1
if ri_next >= max_index:
ri_next = 0
if self.if_shuffle:
random.shuffle(self.dataloader.split_ix[self.split])
wrapped = True
self.dataloader.iterators[self.split] = ri_next
return ix, wrapped
def get(self):
if not hasattr(self, 'split_loader'):
self.reset()
ix, wrapped = self._get_next_minibatch_inds()
tmp = self.split_loader.next()
if wrapped:
self.reset()
assert tmp[-1] == ix, "ix not equal"
return tmp + [wrapped]