-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmake_and_run_model.py
177 lines (144 loc) · 8.53 KB
/
make_and_run_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import keras
from keras.models import Sequential, load_model
from keras.layers import Input, Add, Multiply, Dense, MaxPooling3D, BatchNormalization, Reshape
from keras.layers.convolutional import Conv1D, Conv2D, Conv3D, Convolution2D
from keras.preprocessing.image import ImageDataGenerator
from keras.layers.convolutional import ZeroPadding3D, ZeroPadding2D, ZeroPadding1D, UpSampling2D
from keras.layers.core import Dropout
from keras.utils import to_categorical
from keras.layers import LeakyReLU, MaxPooling2D, concatenate,Conv2DTranspose, Concatenate, ZeroPadding2D
from keras.activations import relu
from keras.callbacks import History, ModelCheckpoint
import numpy as np
from predict import save_image
#from custom_loss import *
#from models.neurotech_models import *
from math import sqrt
from utils import *
import json
def make_unet( image_dim, nlabels, activation_hidden, activation_output, verbose=0):
img_rows=image_dim[1]
img_cols=image_dim[2]
nMLP=16
nRshp=int(sqrt(nMLP))
nUpSm=int(image_dim[0]/nRshp)
image = Input(shape=(image_dim[1], image_dim[2],1))
n_downsample=4
#if x != 0 or y != 0 :
# print("Error: image must have dimensions that can be divided by "+"2^"+str(n_downsample)+" but has dimensions "+str(image_dim[1])+","+str(image_dim[1]) )
# exit(1)
BN1 = BatchNormalization()(image)
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(BN1)
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)
up5 = UpSampling2D(size=(2, 2))(conv5)
#up5 = Conv2DTranspose( filters=512, kernel_size=(3,3), strides=(2, 2), padding='same')(conv5)
conc5 = Concatenate(axis=3)([up5, conv4])
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conc5)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)
up6 = UpSampling2D(size=(2, 2))(conv6)
#up6 = Conv2DTranspose( filters=512, kernel_size=(3,3), strides=(2, 2), padding='same')(conv6)
conc6 = Concatenate(axis=3)([up6, conv3])
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up6)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)
up7 = UpSampling2D(size=(2, 2))(conv7)
#up7 = Conv2DTranspose( filters=512, kernel_size=(3,3), strides=(2, 2), padding='same')(conv7)
conc7 = Concatenate(axis=3)([up7, conv2])
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conc7) #(up8)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)
up8 = Conv2DTranspose( filters=512, kernel_size=(3,3), strides=(2, 2), padding='same')(conv8)
conc8 = Concatenate(axis=3)([up8, conv1])
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conc8) #(up9)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)
conv10 = Convolution2D(nlabels, 1, 1, activation=activation_output)(conv9)
model = keras.models.Model(input=[image], output=conv10)
if verbose > 0 :
print(model.summary())
return model
def make_dil( image_dim):
image = Input(shape=(image_dim[1], image_dim[2],1))
OUT = BatchNormalization()(image)
#kDim=[3,3,3,3,3,3,3]
#nK=[21,21,21,21,21,22,21,1]
n_dil=[1,2,4,8,16,1]
#n_dil=[1,1,1,2,2,4,4,8,16,1,1]
n_layers=int(len(n_dil))
kDim=[6] * n_layers
nK=[26] * n_layers
for i in range(n_layers):
OUT = Conv2D( nK[i] , kernel_size=[kDim[i],kDim[i]], dilation_rate=(n_dil[i],n_dil[i]),activation='relu',padding='same')(OUT)
OUT = BatchNormalization()(OUT)
OUT = Dropout(0.25)(OUT)
OUT = Conv2D(1, kernel_size=1, padding='same', activation='sigmoid')(OUT)
model = keras.models.Model(inputs=[image], outputs=OUT)
return(model)
def base_model( image_dim, nlabels, nK, n_dil, kernel_size, drop_out, activation_hidden, activation_output, verbose=1):
print("N Labels:", nlabels)
print("Drop out:",drop_out)
print("Number of Dilations:", n_dil)
print("Activation hidden:", activation_hidden)
print("Activation output:", activation_output)
nK=[int(i) for i in nK.split(",") ]
if n_dil == None :
n_dil=[1] * len(nK)
else:
n_dil=[int(i) for i in n_dil.split(",") ]
IN = CONV = Input(shape=(image_dim[1], image_dim[2],1))
n_layers=int(len(nK))
kDim=[kernel_size] * n_layers
for i in range(n_layers):
print("Layer:", i, nK[i], kDim[i], n_dil[i])
CONV = Conv2D(nK[i], kernel_size=[kDim[i],kDim[i]],dilation_rate=(n_dil[i],n_dil[i]), activation=activation_hidden,padding='same')(CONV)
CONV = Dropout(drop_out)(CONV)
OUT = Conv2D(nlabels, kernel_size=[1,1], activation=activation_output, padding='same')(CONV)
model = keras.models.Model(inputs=[IN], outputs=OUT)
if verbose > 0 :
print(model.summary())
return(model)
def make_model( image_dim, nlabels,nK, n_dil, kernel_size, drop_out, model_type='model_0_0', activation_hidden="relu", activation_output="sigmoid", verbose=0):
if model_type=='unet' :
model=make_unet( image_dim, nlabels, activation_hidden, activation_output)
#elif model_type=='dil': model=make_dil( image_dim, nlabels, activation_hidden, activation_output)
#elif model_type=='model_0_0': model=model_0_0( image_dim, nlabels, nK, kernel_size, drop_out, activation_hidden, activation_output)
#elif model_type=='model_1_0': model=model_1_0( image_dim, nlabels, nK, kernel_size, drop_out, activation_hidden, activation_output)
#elif model_type=='model_1_1': model=model_1_1( image_dim, nlabels, nK, kernel_size, drop_out, activation_hidden, activation_output)
#elif model_type=='model_2_0': model=model_2_0( image_dim, nlabels, nK, kernel_size, drop_out, activation_hidden, activation_output)
#elif model_type=='model_2_1': model=model_2_1( image_dim, nlabels, nK, kernel_size, drop_out, activation_hidden, activation_output)
#elif model_type=='model_3_0': model=model_3_0( image_dim, nlabels, nK, kernel_size, drop_out, activation_hidden, activation_output)
#elif model_type=='model_3_1': model=model_3_1( image_dim, nlabels, nK, kernel_size, drop_out, activation_hidden, activation_output)
#elif model_type=='model_4_0': model=model_4_0( image_dim, nlabels, nK, kernel_size, drop_out, activation_hidden, activation_output)
#elif model_type=='model_4_1': model=model_4_1( image_dim, nlabels, nK, kernel_size, drop_out, activation_hidden, activation_output)
else :
model=base_model( image_dim, nlabels, nK, n_dil, kernel_size, drop_out, activation_hidden, activation_output)
return(model)
def compile_and_run(model, model_name, history_fn, X_train, Y_train, X_validate, Y_validate, nb_epoch, nlabels, metric="categorical_accuracy", loss='categorical_crossentropy', lr=0.005, verbose=0):
#set compiler
ada = keras.optimizers.Adam(0.0001)
#set checkpoint filename
checkpoint_fn = splitext(model_name)[0]+"_checkpoint-{epoch:02d}-{val_loss:.2f}.hdf5"
#create checkpoint callback for model
checkpoint = ModelCheckpoint(checkpoint_fn, monitor='val_loss', verbose=0, save_best_only=True, mode='max')
#compile the model
model.compile(loss = loss, optimizer=ada,metrics=[metric] )
#fit model
X_train = X_train
X_validate = X_validate
if loss in categorical_functions :
Y_train = to_categorical(Y_train, num_classes=nlabels)
Y_validate = to_categorical(Y_validate, num_classes=nlabels)
history = model.fit([X_train],Y_train, validation_data=([X_validate], Y_validate), epochs = nb_epoch,callbacks=[ checkpoint])
#save model
model.save(model_name)
with open(history_fn, 'w+') as fp: json.dump(history.history, fp)
return([model, history])