-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmain.py
533 lines (491 loc) · 23.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
'''
Ho Chi Minh University of Technology (HCMUT)
Khoa Điện - Điện tử
Luận văn tốt nghiệp: Nhận dạng ngôn ngữ ký hiệu bằng phương pháp học sâu
(Sign Language Recognition by deep learning)
Nguyen Thanh Sang - 1612933
###
Contact:
github: https://github.com/thanhsang298
gmail: thanhsang98.nguyen@gmail.com
###
'''
# -*- coding: utf-8 -*-
from tkinter import Tk, RIGHT, LEFT, BOTH, X, filedialog, StringVar, FLAT, SUNKEN, GROOVE, RIDGE, RAISED
from tkinter.ttk import Frame, Button, Style, Entry, Label
import tkinter.font as TkFont
from tkinter.font import *
import tkinter as tk, threading
import imageio
from PIL import Image, ImageTk
import cv2
import os
import numpy as np
import tensorflow as tf
class Window(tk.Frame):
def __init__(self, master):
tk.Frame.__init__(self, master, bg='#b3b3b3')
self.master = master
self.init_window()
def init_window(self):
self.master.title("Viet Nam Sign Language Translator")
self.font0 = TkFont.Font(self, size=12)
self.font = TkFont.Font(self, size=14)
self.style = Style()
self.style.theme_use("clam")
self.pack(fill = BOTH, expand = 1)
self.inputfilepath = StringVar()
self.inputvideofile = StringVar()
self.outputfilepath = StringVar()
self.outputvideofile = StringVar()
self.display_sign = StringVar()
self.display_sequence = StringVar()
#input file path
frame1 = tk.Frame(self, relief=GROOVE, borderwidth=1)
frame1.pack(fill=X)
input_button = tk.Button(frame1, text = 'Input directory', bg='#b3b3b3', font=self.font,
command = self.input_browser)
input_button.pack(side=LEFT, padx=5, pady=5)
self.inputfilepathText = Entry(frame1, textvariable = self.inputfilepath, font=self.font)
self.inputfilepathText.pack(fill=X,padx=5, expand=True)
#input video file
frame2 = tk.Frame(self, relief=GROOVE, borderwidth=1)
frame2.pack(fill=X)
inputvideo_button = tk.Button(frame2, text = 'Input video file', bg="#b3b3b3", font=self.font,
command = self.inputvideo_browser)
inputvideo_button.pack(side=LEFT, padx=5, pady=5)
self.inputvideofileText = Entry(frame2, textvariable = self.inputvideofile, font=self.font)
self.inputvideofileText.pack(fill=X,padx=5, expand=True)
#output file path
frame3 = tk.Frame(self, relief=GROOVE, borderwidth=1)
frame3.pack(fill=X)
output_button = tk.Button(frame3, text = 'Output directory', bg="#b3b3b3", font=self.font,
command = self.output_browser)
output_button.pack(side=LEFT, padx=5, pady=5)
self.outputfilepathText = Entry(frame3, textvariable = self.outputfilepath, font=self.font)
self.outputfilepathText.pack(fill=X,padx=5, expand=True)
#output video file
frame9 = tk.Frame(self, relief=GROOVE, borderwidth=1)
frame9.pack(fill=X)
outputvideo_button = tk.Button(frame9, text = 'Output video file', bg="#b3b3b3", font=self.font,
command = self.outputvideo_browser)
outputvideo_button.pack(side=LEFT, padx=5, pady=5)
self.outputvideofileText = Entry(frame9, textvariable = self.outputvideofile, font=self.font)
self.outputvideofileText.pack(fill=X,padx=5, expand=True)
#Mediapipe & open video & reset button
frame4= tk.Frame(self)
frame4.pack(fill=X)
inputvideo_button = tk.Button(frame4, text = "Open input video", bg="#b3b3b3", font=self.font,
command=self.open_invideo)
inputvideo_button.grid(row=0, column=0)
mediapipe_button = tk.Button(frame4, text = "Hand Mediapipe Process", bg="#b3b3b3", font=self.font,
command=self.hand_mediapipe)
mediapipe_button.grid(row=0, column=1)
outputvideo_button = tk.Button(frame4, text = "Open output video", bg="#b3b3b3", font=self.font,
command=self.open_outvideo)
outputvideo_button.grid(row=0, column=2)
reset_button=tk.Button(frame4, text = "Reset", bg="#b3b3b3", font=self.font,
command=self.reset)
reset_button.grid(row=0, column=3)
#Predict sign
frame5 = tk.Frame(self, relief=GROOVE, borderwidth=1)
frame5.pack(fill=X)
predict_button = tk.Button(frame5, text = "Predict sign", bg="#b3b3b3", font=self.font, command=self.sign_predict)
predict_button.pack(side=LEFT, padx=5, pady=5)
self.signText = Entry(frame5, textvariable = self.display_sign, font=self.font)
self.signText.pack(fill=X,padx=5, expand=True)
#Predict sequence
frame6 = tk.Frame(self, relief=GROOVE, borderwidth=1)
frame6.pack(fill=X)
sequence_button = tk.Button(frame6, text = "Predict sequence", bg="#b3b3b3", font=self.font,
command=self.sequence_predict)
sequence_button.pack(side=LEFT, padx=5, pady=5)
self.sequenceText = Entry(frame6, textvariable = self.display_sequence, font=self.font)
self.sequenceText.pack(fill=X,padx=5, expand=True)
frame7 = Frame(self, relief=GROOVE, borderwidth=1)
frame7.pack(fill=BOTH)
self.my_label = tk.Label(frame7)
self.my_label.pack()
frame8 = tk.Frame(self)
frame8.pack(fill=X)
quit_button = tk.Button(frame8, text = 'Close', font=self.font0, command = self.close_window, bg="#b3b3b3")
quit_button.pack(side=RIGHT, padx=5, pady=5)
def show_directory_browser(self):
self.directory = filedialog.askdirectory()
return self.directory
def show_videofile_browser(self):
#run code nhớ thay đổi đường dẫn của bạn nhé ^^
init_dir = "/home/shayneysang98/HCMUT/Thesis/Sign-language-recognition-with-RNN-and-Mediapipe/"
ftypes = [("mp4 files","*.mp4"),("all files","*.*")]
self.filename = filedialog.askopenfilename(initialdir = init_dir,filetypes = ftypes)
return self.filename
def input_browser(self):
directory = self.show_directory_browser()
self.inputfilepath.set(directory)
def output_browser(self):
directory = self.show_directory_browser()
self.outputfilepath.set(directory)
def inputvideo_browser(self):
file = self.show_videofile_browser()
self.inputvideofile.set(file)
def outputvideo_browser(self):
file = self.show_videofile_browser()
self.outputvideofile.set(file)
def open_invideo(self):
video_name = self.inputvideofile.get()
video = imageio.get_reader(video_name)
def stream(label):
for image in video.iter_data():
image = cv2.resize(image, (1200, 650))
frame_image = ImageTk.PhotoImage(Image.fromarray(image))
label.config(image=frame_image)
label.image = frame_image
thread = threading.Thread(target=stream, args=(self.my_label,))
thread.daemon = 1
thread.start()
def open_outvideo(self):
video_name = self.outputvideofile.get()
video = imageio.get_reader(video_name)
def stream(label):
for image in video.iter_data():
image = cv2.resize(image, (1200, 650))
frame_image = ImageTk.PhotoImage(Image.fromarray(image))
label.config(image=frame_image)
label.image = frame_image
thread = threading.Thread(target=stream, args=(self.my_label,))
thread.daemon = 1
thread.start()
def reset(self):
self.inputfilepathText.delete(first=0,last=180)
self.inputvideofileText.delete(first=0,last=180)
self.outputfilepathText.delete(first=0,last=180)
self.outputvideofileText.delete(first=0, last=180)
self.signText.delete(first=0, last=100)
self.sequenceText.delete(first=0, last=100)
def hand_mediapipe(self):
cmd = 'GLOG_logtostderr=1 bazel-bin/mediapipe/examples/desktop/multi_hand_tracking/multi_hand_tracking_cpu \
--calculator_graph_config_file=mediapipe/graphs/hand_tracking/multi_hand_tracking_desktop_live.pbtxt'
input_data_path = self.inputfilepathText.get()
output_data_path = self.outputfilepathText.get()
if input_data_path[-1] != '/':
input_data_path = input_data_path+'/'
if output_data_path[-1] != '/':
output_data_path = output_data_path+'/'
listfile = os.listdir(input_data_path)
if not (os.path.isdir(output_data_path + "Relative/")):
os.mkdir(output_data_path + "Relative/")
if not (os.path.isdir(output_data_path + "Absolute/")):
os.mkdir(output_data_path + "Absolute/")
for file in listfile:
if not (os.path.isdir(input_data_path + file)): # ignore .DS_Store
continue
word = file + "/"
fullfilename = os.listdir(input_data_path + word)
if not (os.path.isdir(output_data_path + "_" + word)):
os.mkdir(output_data_path + "_" + word)
if not (os.path.isdir(output_data_path + "Relative/" + word)):
os.mkdir(output_data_path + "Relative/" + word)
if not (os.path.isdir(output_data_path + "Absolute/" + word)):
os.mkdir(output_data_path + "Absolute/" + word)
for mp4list in fullfilename:
if ".DS_Store" in mp4list:
continue
inputfilen = ' --input_video_path=' + input_data_path + word + mp4list
outputfilen = ' --output_video_path=' + output_data_path + '_' + word + mp4list
cmdret = cmd + inputfilen + outputfilen
os.system(cmdret)
def load_label(self):
listfile = ['Cách ly', 'Cảm ơn', 'CoronaCovid19', 'Ho', 'Khẩu trang', 'Lây lan', 'Mọi người', 'Rửa tay', 'Sốt', 'Xà phòng']
label = {} # khởi tạo 1 dict
count = 1
for l in listfile:
if "_" in l:
continue
label[l] = count
count += 1
return label
########################### Dự đoán 1 từ ##############################
def load_data(self, dirname):
listfile = os.listdir(dirname)
X = []
Y = []
for file in listfile:
if "_" in file:
continue
wordname = file
textlist = os.listdir(dirname + wordname)
for text in textlist:
if "DS_" in text:
continue
textname = dirname + wordname + "/" + text
numbers = []
with open(textname, mode='r') as t:
numbers = [float(num) for num in t.read().split()]
while numbers[0] == 0:
numbers = numbers[1:]
for i in range(len(numbers), 4200):
numbers.extend([0.000])
landmark_frame = []
row = 0
for i in range(0, 35):
landmark_frame.extend(numbers[row:row + 84])
row += 84
landmark_frame = np.array(landmark_frame)
landmark_frame = landmark_frame.reshape(-1, 84)
X.append(np.array(landmark_frame))
Y.append(wordname)
X = np.array(X)
Y = np.array(Y)
x_train = X
x_train = np.array(x_train)
return x_train, Y
def sign_predict(self):
output_dir = self.outputfilepathText.get()
if output_dir[-1] != '/':
output_dir = output_dir+'/'
x_test, Y = self.load_data(output_dir)
new_model = tf.keras.models.load_model('model.h5')
labels = self.load_label()
xhat = x_test
yhat = new_model.predict(xhat)
predictions = np.array([np.argmax(pred) for pred in yhat])
print(predictions)
rev_labels = dict(zip(list(labels.values()), list(labels.keys())))
print(rev_labels)
result = rev_labels[predictions[0]]
self.display_sign.set(result)
def get_idx(self, numbers, split_idx):
while (numbers[split_idx] != 0 or numbers[split_idx + 1] != 0 or numbers[split_idx + 2] != 0 or
numbers[split_idx + 3] != 0
or numbers[split_idx + 4] != 0 or numbers[split_idx + 5] != 0 or numbers[split_idx + 6] != 0 or
numbers[split_idx + 7] != 0
or numbers[split_idx + 8] != 0 or numbers[split_idx + 9] != 0 or numbers[split_idx + 10] != 0 or
numbers[split_idx + 11] != 0
or numbers[split_idx + 12] != 0 or numbers[split_idx + 13] != 0 or numbers[split_idx + 14] != 0 or
numbers[split_idx + 15] != 0
or numbers[split_idx + 16] != 0 or numbers[split_idx + 17] != 0 or numbers[split_idx + 18] != 0 or
numbers[split_idx + 19] != 0
or numbers[split_idx + 20] != 0 or numbers[split_idx + 21] != 0 or numbers[split_idx + 22] != 0 or
numbers[split_idx + 23] != 0
or numbers[split_idx + 24] != 0 or numbers[split_idx + 25] != 0 or numbers[split_idx + 26] != 0 or
numbers[split_idx + 27] != 0
or numbers[split_idx + 28] != 0 or numbers[split_idx + 29] != 0 or numbers[split_idx + 30] != 0 or
numbers[split_idx + 31] != 0
or numbers[split_idx + 32] != 0 or numbers[split_idx + 33] != 0 or numbers[split_idx + 34] != 0 or
numbers[split_idx + 35] != 0
or numbers[split_idx + 36] != 0 or numbers[split_idx + 37] != 0 or numbers[split_idx + 38] != 0 or
numbers[split_idx + 39] != 0
or numbers[split_idx + 40] != 0 or numbers[split_idx + 41] != 0 or numbers[split_idx + 42] != 0 or
numbers[split_idx + 43] != 0
or numbers[split_idx + 44] != 0 or numbers[split_idx + 45] != 0 or numbers[split_idx + 46] != 0 or
numbers[split_idx + 47] != 0
or numbers[split_idx + 48] != 0 or numbers[split_idx + 49] != 0 or numbers[split_idx + 50] != 0 or
numbers[split_idx + 51] != 0
or numbers[split_idx + 52] != 0 or numbers[split_idx + 53] != 0 or numbers[split_idx + 54] != 0 or
numbers[split_idx + 55] != 0
or numbers[split_idx + 56] != 0 or numbers[split_idx + 57] != 0 or numbers[split_idx + 58] != 0 or
numbers[split_idx + 59] != 0
or numbers[split_idx + 60] != 0 or numbers[split_idx + 61] != 0 or numbers[split_idx + 62] != 0 or
numbers[split_idx + 63] != 0
or numbers[split_idx + 64] != 0 or numbers[split_idx + 65] != 0 or numbers[split_idx + 66] != 0 or
numbers[split_idx + 67] != 0
or numbers[split_idx + 68] != 0 or numbers[split_idx + 69] != 0 or numbers[split_idx + 70] != 0 or
numbers[split_idx + 71] != 0
or numbers[split_idx + 72] != 0 or numbers[split_idx + 73] != 0 or numbers[split_idx + 74] != 0 or
numbers[split_idx + 75] != 0
or numbers[split_idx + 76] != 0 or numbers[split_idx + 77] != 0 or numbers[split_idx + 78] != 0 or
numbers[split_idx + 79] != 0
or numbers[split_idx + 80] != 0 or numbers[split_idx + 81] != 0 or numbers[split_idx + 82] != 0 or
numbers[split_idx + 83] != 0):
split_idx += 1
return split_idx
########################### Chuỗi 2 hành động ##############################
def split_list2(self, numbers):
while numbers[0] == 0:
numbers = numbers[1:]
split_idx = self.get_idx(numbers, 0)
number2 = numbers[split_idx:]
number1 = numbers[:split_idx]
while number2[0] == 0:
number2 = number2[1:]
return number1, number2
def load_data2(self, dirname):
listfile = os.listdir(dirname)
X1 = []
X2 = []
Y = []
for file in listfile:
wordname = file
textlist = os.listdir(dirname + wordname)
###################### Xu ly txt file #######################
for text in textlist:
if "DS_" in text:
continue
textname = dirname + wordname + "/" + text
numbers = []
with open(textname, mode='r') as t:
numbers = [float(num) for num in t.read().split()]
number1, number2 = self.split_list2(numbers)
print("Do dai file txt tu thu nhat: " + str(len(number1)))
print("Do dai file txt tu thu hai: " + str(len(number2)))
print("===================================")
for i in range(len(number1), 4200):
number1.extend([0.0])
for i in range(len(number2), 4200):
number2.extend([0.0])
landmark_frame1 = []
row1 = 0
for i in range(0, 35):
landmark_frame1.extend(number1[row1:row1 + 84])
row1 += 84
landmark_frame1 = np.array(landmark_frame1)
landmark_frame1 = landmark_frame1.reshape(-1, 84)
landmark_frame2 = []
row2 = 0
for i in range(0, 35):
landmark_frame2.extend(number2[row2:row2 + 84])
row2 += 84
landmark_frame2 = np.array(landmark_frame2)
landmark_frame2 = landmark_frame2.reshape(-1, 84)
X1.append(np.array(landmark_frame1))
X2.append(np.array(landmark_frame2))
Y.append(wordname)
x1_train = np.array(X1)
x2_train = np.array(X2)
Y = np.array(Y)
print(Y)
return x1_train, x2_train, Y
######################### Chuỗi 3 hành động ##############################
def split_list3(self, numbers):
while numbers[0] == 0:
numbers = numbers[1:]
split_idx = self.get_idx(numbers, 0)
number2 = numbers[split_idx:]
number1 = numbers[:split_idx]
while number2[0] == 0:
number2 = number2[1:]
split_idx1 = self.get_idx(number2, 0)
number3 = number2[split_idx1:]
number2 = number2[:split_idx1]
while number3[0] == 0:
number3 = number3[1:]
return number1, number2, number3
def load_data3(self, dirname):
listfile = os.listdir(dirname)
X1 = []
X2 = []
X3 = []
Y = []
for file in listfile:
wordname = file
textlist = os.listdir(dirname + wordname)
###################### Xu ly txt file #######################
for text in textlist:
if "DS_" in text:
continue
textname = dirname + wordname + "/" + text
numbers = []
with open(textname, mode='r') as t:
numbers = [float(num) for num in t.read().split()]
number1, number2, number3 = self.split_list3(numbers)
print("Do dai file txt tu thu nhat: " + str(len(number1)))
print("Do dai file txt tu thu hai: " + str(len(number2)))
print("Do dai file txt tu thu ba: " + str(len(number3)))
print("===================================")
for i in range(len(number1), 4200):
number1.extend([0.000])
for i in range(len(number2), 4200):
number2.extend([0.000])
for i in range(len(number3), 4200):
number3.extend([0.000])
landmark_frame1 = []
row1 = 0
for i in range(0, 35):
landmark_frame1.extend(number1[row1:row1 + 84])
row1 += 84
landmark_frame1 = np.array(landmark_frame1)
landmark_frame1 = landmark_frame1.reshape(-1, 84)
landmark_frame2 = []
row2 = 0
for i in range(0, 35):
landmark_frame2.extend(number2[row2:row2 + 84])
row2 += 84
landmark_frame2 = np.array(landmark_frame2)
landmark_frame2 = landmark_frame2.reshape(-1, 84)
landmark_frame3 = []
row3 = 0
for i in range(0, 35):
landmark_frame3.extend(number3[row3:row3 + 84])
row3 += 84
landmark_frame3 = np.array(landmark_frame3)
landmark_frame3 = landmark_frame3.reshape(-1, 84)
X1.append(np.array(landmark_frame1))
X2.append(np.array(landmark_frame2))
X3.append(np.array(landmark_frame3))
Y.append(wordname)
x1_train = np.array(X1)
x2_train = np.array(X2)
x3_train = np.array(X3)
Y = np.array(Y)
print(Y)
return x1_train, x2_train, x3_train, Y
def sequence_predict(self):
dirname = self.outputfilepathText.get()
if dirname[-1] != "/":
dirname = dirname +"/"
listfile = os.listdir(dirname)
for file in listfile:
if "_" in file:
continue
wordname = file
textlist = os.listdir(dirname + wordname)
for text in textlist:
if "DS_" in text:
continue
textname = dirname + wordname + "/" + text
numbers = []
with open(textname, mode='r') as t:
numbers = [float(num) for num in t.read().split()]
print("Do dai file txt ban dau: " + str(len(numbers)))
while numbers[0] == 0:
numbers = numbers[1:]
print("Do dai file txt luc sau: " + str(len(numbers)))
y = len(numbers)
if y <= 8400:
x1_test, x2_test, Y = self.load_data2(dirname)
elif y>8400:
x1_test, x2_test, x3_test, Y = self.load_data3(dirname)
new_model = tf.keras.models.load_model('model.h5')
labels = self.load_label()
print(labels)
y1hat = new_model.predict(x1_test)
y2hat = new_model.predict(x2_test)
if y > 8400:
y3hat = new_model.predict(x3_test)
predictions1 = np.array([np.argmax(pred) for pred in y1hat])
predictions2 = np.array([np.argmax(pred) for pred in y2hat])
if y > 8400:
predictions3 = np.array([np.argmax(pred) for pred in y3hat])
print("pre1 va pre2")
print(predictions1)
print(predictions2)
if y > 8400:
print(predictions3)
rev_labels = dict(zip(list(labels.values()), list(labels.keys())))
print("rev_labels:")
print(rev_labels)
s1 = rev_labels[predictions1[0]]
s2 = rev_labels[predictions2[0]]
if y<=8400:
result = s1 + " " + s2
elif y>8400:
s3 = rev_labels[predictions3[0]]
result = s1 + " " + s2 + " " + s3
self.display_sequence.set(result)
def close_window(self):
form.destroy()
if __name__ == '__main__':
form = Tk()
form.geometry("1200x1000")
app = Window(form)
form.mainloop()