forked from opentargets/genetics-finemapping
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2_make_manifest.py
107 lines (88 loc) · 3.61 KB
/
2_make_manifest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Ed Mountjoy
#
import json
from glob import glob
import gzip
def main():
# Args
out_json = 'configs/manifest.json.gz'
valid_chrom = set([str(chrom) for chrom in range(1, 23)])
method = 'conditional'
# Path patterns (server)
root = '/home/js29/genetics-finemapping'
input_pattern = root + '/tmp/filtered_input/*.json.gz'
out_path = root + '/output/study_id={0}/phenotype_id={1}/bio_feature={2}/chrom={3}'
log_path = root + '/logs/study_id={0}/phenotype_id={1}/bio_feature={2}/chrom={3}'
tmp_path = root + '/tmp/study_id={0}/phenotype_id={1}/bio_feature={2}/chrom={3}'
# In base folder rather than genenetics-finemapping for sharing with coloc pipeline
ld_ref = '/home/js29/data/ukb_v3_downsampled10k/ukb_v3_chr{chrom}.downsampled10k'
# Create manifest
manifest = []
for in_record in read_json_records(input_pattern):
# initiate output
out_record = {}
# Skip if chromosome is not valid
if not in_record['chrom'] in valid_chrom:
continue
# Add study identifier arguments
out_record['type'] = in_record.get('type')
out_record['study_id'] = in_record.get('study_id')
out_record['phenotype_id'] = in_record.get('phenotype_id', None)
out_record['bio_feature'] = in_record.get('bio_feature', None)
out_record['chrom'] = in_record.get('chrom')
# Add input files
out_record['in_pq'] = parse_input_name(in_record.get('input_name'))
out_record['in_ld'] = ld_ref
# Add output files
out_record['out_top_loci'] = out_path.format(
out_record['study_id'], out_record['phenotype_id'],
out_record['bio_feature'], out_record['chrom']
) + '/top_loci.json.gz'
out_record['out_credset'] = out_path.format(
out_record['study_id'], out_record['phenotype_id'],
out_record['bio_feature'], out_record['chrom']
) + '/credible_set.json.gz'
out_record['out_finemap'] = out_path.format(
out_record['study_id'], out_record['phenotype_id'],
out_record['bio_feature'], out_record['chrom']
) + '/finemap_snp.tsv.gz'
out_record['out_log'] = log_path.format(
out_record['study_id'], out_record['phenotype_id'],
out_record['bio_feature'], out_record['chrom']
) + '/logfile.txt'
out_record['tmpdir'] = tmp_path.format(
out_record['study_id'], out_record['phenotype_id'],
out_record['bio_feature'], out_record['chrom']
)
# Add method
out_record['method'] = method
out_record['pval_threshold'] = in_record.get('pval_threshold')
manifest.append(out_record)
# Write manifest as a json
with gzip.open(out_json, 'w') as out_h:
for record in manifest:
out_h.write((json.dumps(record) + '\n').encode())
return 0
def read_json_records(in_pattern):
''' Globs json inputs then yields all records as dicts.
Expects inputs to be gzipped.
'''
for inf in glob(in_pattern):
with gzip.open(inf, 'r') as in_h:
for in_record in in_h:
in_record = json.loads(in_record.decode().rstrip())
yield in_record
def parse_input_name(s):
''' Parses the required input name. Spark's input_file_name() returns the
nested parquet file, I need the top level parquet.
'''
# Strip nested parquet
out_s = s.split('.parquet')[0] + '.parquet'
# Stip file://
out_s = out_s.replace('file://', '')
return out_s
if __name__ == '__main__':
main()