diff --git a/docs/source/api.rst b/docs/source/api.rst index b8ce5a37..dd5774df 100644 --- a/docs/source/api.rst +++ b/docs/source/api.rst @@ -37,6 +37,8 @@ Preprocessing (pp) pp.normalize_per_cell pp.log1p pp.filter_and_normalize + pp.min_max_scale + pp.filter_on_r2 **Moments** (across nearest neighbors in PCA space) diff --git a/scvelo/preprocessing/__init__.py b/scvelo/preprocessing/__init__.py index cf061ce8..39f2fc5f 100644 --- a/scvelo/preprocessing/__init__.py +++ b/scvelo/preprocessing/__init__.py @@ -4,9 +4,12 @@ filter_and_normalize, filter_genes, filter_genes_dispersion, + filter_genes_r2, log1p, + min_max_scale, normalize_per_cell, recipe_velocity, + velovi_preprocess_recipe, ) __all__ = [ @@ -20,4 +23,7 @@ "pca", "recipe_velocity", "remove_duplicate_cells", + "min_max_scale", + "filter_genes_r2", + "velovi_preprocess_recipe", ] diff --git a/scvelo/preprocessing/utils.py b/scvelo/preprocessing/utils.py index c84497df..c52cf4ae 100644 --- a/scvelo/preprocessing/utils.py +++ b/scvelo/preprocessing/utils.py @@ -5,6 +5,8 @@ from scipy.sparse import issparse from sklearn.utils import sparsefuncs +from anndata import AnnData + from scvelo import logging as logg from scvelo.core import get_initial_size, get_size, multiply, set_initial_size, sum @@ -731,3 +733,73 @@ def recipe_velocity( ) moments(adata, n_neighbors=n_neighbors, n_pcs=n_pcs) return adata if copy else None + + +def min_max_scale( + adata: AnnData, + spliced_layer: str, + unspliced_layer: str, + copy: bool = False, +) -> AnnData: + """Scale the spliced and unspliced layers to the range ``[0, 1]``.""" + from sklearn.preprocessing import MinMaxScaler + + adata = adata.copy() if copy else adata + adata.layers[spliced_layer] = MinMaxScaler().fit_transform( + adata.layers[spliced_layer] + ) + adata.layers[unspliced_layer] = MinMaxScaler().fit_transform( + adata.layers[unspliced_layer] + ) + + return adata + + +def filter_genes_r2(adata: AnnData, copy: bool = False) -> AnnData: + """Filter out genes according to a linear regression fit.""" + from scvelo.tools import velocity + + adata = velocity(adata, mode="deterministic", copy=copy) + adata = adata[ + :, np.logical_and(adata.var.velocity_r2 > 0, adata.var.velocity_gamma > 0) + ] + adata = adata[:, adata.var.velocity_genes] + + return adata + + +def velovi_preprocess_recipe( + adata: AnnData, + spliced_layer: str = "Ms", + unspliced_layer: str = "Mu", + min_max_scale: bool = True, + filter_on_r2: bool = True, + copy: bool = False, +) -> AnnData: + """Preprocess data for use with VELOVI. + + Removes poorly detected genes and min-max scales the data. + + Parameters + ---------- + adata + Annotated data matrix. + spliced_layer + Name of the spliced layer. + unspliced_layer + Name of the unspliced layer. + min_max_scale + Min-max scale spliced and unspliced. + filter_on_r2 + Filter out genes according to linear regression fit. + + Returns + ------- + Preprocessed adata. + """ + if min_max_scale: + adata = min_max_scale(adata, spliced_layer, unspliced_layer, copy=copy) + if filter_on_r2: + adata = filter_genes_r2(adata, copy=copy) + + return adata