-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchapter-1.tex
216 lines (175 loc) · 9.3 KB
/
chapter-1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
\section{First session: Complex-differentiability}
\subsection*{Contents}
\begin{enumerate}
\item Reminders
\begin{enumerate}
\item topology: open sets (definition and examples)
\item $\mathbb{C}$, $\mathbb{C}$-vector spaces, $\mathbb{C}$-linearity
\item (Analysis in $\mathbb{R}$: characterisation of differentiability)
\end{enumerate}
\item Complex differentiability:
\begin{enumerate}
\item How do we define complex-differentiabiity?
\item the complex-derivative?
\item the complex-differential?
\item What is the difference between real-differentiability and complex-differentiability?
\end{enumerate}
\item Complex differentiability in practice
\begin{enumerate}
\item Usual theorems
\item Cauchy-Reimann equations: two formulations
\end{enumerate}
\end{enumerate}
\subsection{Quick reminders}
\subsubsection{Open sets}
\begin{defi}[Open set]
A set $\Omega \subset A$ is open in $A$ when:$ \forall a\in\Omega, \exists r > 0, \forall y \in \mathcal{B}_r(a), y \in \Omega $
\end{defi}
Alternatively:
\begin{itemize}
\item $ \forall a\in\Omega, \exists r > 0, \forall y \in A, ||y - a|| < r \implies y \in \Omega $
\item $\mathring \Omega = \Omega$
\end{itemize}
In practice:
\begin{enumerate}
\item It can be "clear": the goal of this course is not to show that sets are open.
\item Write $\Omega$ as the inverse image of an open set by a continuous map. For example, the open unit ball is the inverse image of $]0,1[$ by $x\in E \mapsto ||x||$.
\end{enumerate}
\begin{schema} Visually, this means you can get as close as you want to the complement of the open set $\Omega$ and your neighbors are still in $\Omega$.
\end{schema}
\begin{example}
A few examples of open sets are: $\mathbb{R}$, $\mathbb{C}$, $]0,1[$. $[0,1]$ and $[0,1[$ are not open.
\end{example}
\subsubsection{The complex plane \& complex functions}
Definitions and properties:
\begin{enumerate}
\item Definition: $\lbrace x+iy, x\in\mathbb{R}, y\in\mathbb{R} \rbrace$, $i$ such that $i^2=1$.
\item Exponential, trigonometric forms: $$\exists R>0, \theta, x+iy = R(\cos\theta + i\sin\theta)=R\exp(i\theta) $$
\item Conjugate: $z=x+iy \mapsto \bar z = x - iy$, $z = Re^{i\theta} \mapsto \bar z = Re^{-i\theta}$
\item \dots
\end{enumerate}
\begin{exo}
On the structure of $\mathbb{C}$ as a vector space.
\begin{enumerate}
\item Show that the complex plane $\mathbb{C}$ is a complex vector space.
\item Give a basis.
\item What changes if we consider it to be a real vector space?
\end{enumerate}
\end{exo}
\begin{exo}
Give an example of a $\mathbb{C}$-linear function. Give a counter-example (an $\mathbb{R}$-linear function from $\mathbb{C}$ to $\mathbb{C}$ that is not $\mathbb{C}$-linear.)
\end{exo}
\subsection{Complex-differentiable, derivative and differential}
In this section, $\Omega$ is an open subset of $\mathbb{C}$.
\begin{defi}[Complex-differentiability \& Derivative]
Let $z$ an interior point in $\Omega$. Then, $f$ is \emph{complex-differentiable} at $z$ iff the \emph{complex derivative} of $f$ exists in $\mathbb{C}$, as defined by
$$ f'(z) = \lim_{h\rightarrow 0, h\in\mathbb{C}}\frac{f(z+h) - f(z)}{h} $$
\end{defi}
\begin{note}
Let's insist on the $h\in\mathbb{C}$ in the definition. This means that the limit exists no matter the direction from which we are "arriving" in $\mathbb{C}$. Also, no matter the direction, the value is the same.
\end{note}
\begin{note}
The previous definition is a \emph{local} property. Let's generalize it to $\Omega$ below.
\end{note}
\begin{defi}[Holomorphic]
$f: \mathbb{C} \rightarrow \mathbb{C}$ is \emph{holomorphic} if $\forall z\in\Omega$, it is \emph{complex-differentiable}, i.e. \emph{complex-differentiable everywhere.}
\end{defi}
\begin{example} Some examples of holomorphic functions. Also, a counter-example.
\begin{itemize}
\item Some "obvious" examples: constant functions, identity, affine, \dots
\item ($\star$) Show the inverse function is holomorphic where it is defined.
\item ($\star$) A counter example: the complex conjuguate function is nowhere complex-differentiable.
\end{itemize}
\end{example}
\begin{defi}
Let $f: A\subset \mathbb{C} \rightarrow\mathbb{C} $.
Let $z\in A$ as interior point.
We define the \emph{complex-differential} (or $\mathbb{C}$-differential) of $f$ in $z$ a complex-linear, continous operator $df_x: \mathbb{C} \rightarrow \mathbb{C} $ that verifies:
$$ \lim_{h\rightarrow 0, h\in\mathbb{C}}\frac{||f(z+h) - f(z) - df_z(h)||}{||h||} = 0 $$
Equivalently:
$$ f(z+h) = f(z) + df_z(h) + o(h) $$
\end{defi}
\begin{note}
Recall that $$g(h) = o(h) \iff \lim_{h\rightarrow 0}\frac{g(h)}{h} =0 $$
\end{note}
\begin{note}
This result extends to $f : E \rightarrow F$ where $E$ and $F$ are complex, normed vector spaces. For example, $\mathbb{C}^n$.
\end{note}
Now, an important theorem that reflects the structure of $\mathbb{C}$:
\begin{thm*}
Let $f: A \subset\mathbb{C} \rightarrow \mathbb{C}$. Let $z \in \mathring A$.
The complex-differential of $f$ $df_z$ exists iff the derivative $f'(z)$ exists.
In this case, we have:
$$\forall h \in \mathbb{C}, df_z(h) = f'(z)h$$
\end{thm*}
\begin{note}
This is linked to our view of $\mathbb{C}$ as a complex vector space, of dimension $1$.
\end{note}
\subsection{Complex-differentiability in practice}
\subsubsection{Calculus}
\begin{itemize}
\item $\mathbb{C}$-linear combination
\item Product
\item Chain rule
\item Quotient
\item Polynomials
\item Rational fractions
\end{itemize}
In practice: \emph{calculate like in $\mathbb{R}$}.
These "usual" properties allow us to verify that functions are $\mathbb{C}$-differentiable or holomorphic easily, when they are products and compositions (for example).
\subsubsection{Cauchy-Reimann Equations}
We can rephrase the definitions as:
\begin{thm*}
$f$ is complex differentiable on $\Omega$ if and only if both:
\begin{enumerate}
\item $f$ is real-differentiable on $\Omega$ (i.e. its differential exists, but maybe isn't $\mathbb{C}-linear$)
\item its real-differential is $\mathbb{C}$-linear.
\end{enumerate}
\end{thm*}
But the second condition is not easy to prove without expliciting the differential. The Cauchy-Riemann equations offer an alternative formulation of this condition.
The intuition behind the theorem is to look at what happens to the real and imaginary parts of $f$ when we move the real and imaginary parts of $z$
If we write:
\begin{enumerate}
\item if $f: \mathbb{C} \rightarrow \mathbb{C}$, we have $u: \mathbb{C} \rightarrow \mathbb{R}$ and $v: \mathbb{C} \rightarrow \mathbb{R}$ such that:
$$ \forall z \in \mathbb{C}, f(z) = u(z) + iv(z)$$
Of course, $u$ and $v$ are the real and imaginary parts of $f(z)$.
\item and, notice a similar property about $z$: $$\forall z \in \mathbb{C}, z = x + iy$$ where $x$ and $y$ are the imaginary parts of $z$.
\end{enumerate}
we can then study the following quantities:
\begin{itemize}
\item $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$
\item $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial x}$, $\frac{\partial u}{\partial y}$ and $\frac{\partial v}{\partial y}$
\end{itemize}
\begin{thm*}[Cauchy-Riemann Equations]
$f$ is complex differentiable on $\Omega$ if and only if both:
\begin{enumerate}
\item $f$ is real-differentiable (i.e. its differential exists, but maybe isn't $\mathbb{C}-linear$)
\item its real-differential is $\mathbb{C}$-linear.
\end{enumerate}
The second condition (2) can be replaced by one of the following properties:
\begin{enumerate}
\item[(a)] $ \forall z, df_z(i) = idf_z(1)$
\item[(b)] $f$ verifies the \textbf{complex Cauchy-Riemann equation}:
$$ \frac{\partial f}{\partial x} = \frac{1}{i}\frac{\partial f}{\partial y}$$
\item[(b)] $f$ verifies the \textbf{scalar Cauchy-Riemann equations}:
$$ \frac{\partial u}{\partial x} = +\frac{\partial v}{\partial y}$$
$$ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
\end{enumerate}
\end{thm*}
\begin{thm*}[Cauchy-Riemann Equations (alternate)]
$f$ is complex differentiable on $\Omega$ if and only if one of the following conditions hold:
\begin{enumerate}
\item[(a)]
$ \frac{\partial f}{\partial x}$ and $ \frac{\partial f}{\partial y}$ exist, are \textbf{continuous} and verify the \textbf{complex Cauchy-Riemann equation}
$$ \frac{\partial f}{\partial x} = \frac{1}{i}\frac{\partial f}{\partial y}$$
\item[(b)] $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial x}$, $\frac{\partial u}{\partial y}$ and $\frac{\partial v}{\partial y}$ exist, are \textbf{continous} and verify the \textbf{scalar Cauchy-Riemann equations}
$$ \frac{\partial u}{\partial x} = +\frac{\partial v}{\partial y}$$
$$ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
\end{enumerate}
\end{thm*}
\begin{note}
The continuity hypothesis ensures that the real-differential exists (a result of real-anaylsis: if the partial derivatives exist and are continuous then the function is real-differentiable).
\end{note}
\begin{exo}[$\star$]
Show that the complex exponential and logarithm maps are holomorphic where they are defined.
\end{exo}