diff --git a/tests/test_ElmClassifier.py b/tests/test_ElmClassifier.py index 50d6e1d..5f2f98f 100644 --- a/tests/test_ElmClassifier.py +++ b/tests/test_ElmClassifier.py @@ -12,7 +12,7 @@ def test_ElmClassifier_class(): X = np.random.rand(100, 6) y = np.random.randint(0, 2, size=100) - model = ElmClassifier(hidden_size=10, act_name="elu", seed=42) + model = ElmClassifier(layer_sizes=(10, ), act_name="elu", seed=42) model.fit(X, y) pred = model.predict(X) assert ElmClassifier.SUPPORTED_CLS_METRICS == model.SUPPORTED_CLS_METRICS diff --git a/tests/test_ElmRegressor.py b/tests/test_ElmRegressor.py index 952cf0d..7ad9cce 100644 --- a/tests/test_ElmRegressor.py +++ b/tests/test_ElmRegressor.py @@ -13,7 +13,7 @@ def test_ElmRegressor_class(): noise = np.random.normal(loc=0.0, scale=0.1, size=(100, 5)) y = 2 * X + 1 + noise - model = ElmRegressor(hidden_size=10, act_name="elu", seed=42) + model = ElmRegressor(layer_sizes=(10, ), act_name="elu", seed=42) model.fit(X, y) pred = model.predict(X) diff --git a/tests/test_MhaElmClassifier.py b/tests/test_MhaElmClassifier.py index eaa42c1..e79bc0a 100644 --- a/tests/test_MhaElmClassifier.py +++ b/tests/test_MhaElmClassifier.py @@ -13,8 +13,8 @@ def test_MhaElmClassifier_class(): y = np.random.randint(0, 2, size=100) opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30} - model = MhaElmClassifier(hidden_size=10, act_name="elu", obj_name="AS", optimizer="BaseGA", - optimizer_paras=opt_paras, verbose=False, seed=42) + model = MhaElmClassifier(layer_sizes=(10, ), act_name="elu", obj_name="AS", optim="BaseGA", + optim_paras=opt_paras, verbose=False, seed=42) model.fit(X, y) pred = model.predict(X) assert MhaElmClassifier.SUPPORTED_CLS_OBJECTIVES == model.SUPPORTED_CLS_OBJECTIVES diff --git a/tests/test_MhaElmRegressor.py b/tests/test_MhaElmRegressor.py index e536286..14d3d0d 100644 --- a/tests/test_MhaElmRegressor.py +++ b/tests/test_MhaElmRegressor.py @@ -14,8 +14,8 @@ def test_MhaElmRegressor_class(): y = 2 * X + 1 + noise opt_paras = {"name": "GA", "epoch": 10, "pop_size": 30} - model = MhaElmRegressor(hidden_size=10, act_name="elu", obj_name="RMSE", optimizer="BaseGA", - optimizer_paras=opt_paras, verbose=False, seed=42) + model = MhaElmRegressor(layer_sizes=(10, ), act_name="elu", obj_name="RMSE", optim="BaseGA", + optim_paras=opt_paras, verbose=False, seed=42) model.fit(X, y) pred = model.predict(X)