-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathmain.py
executable file
·76 lines (60 loc) · 2.82 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from torch.utils.data import DataLoader
import torch.optim as optim
import torch
from utils import save_best_record
from model import Model
from dataset import Dataset
from train import train
from test_10crop import test
import option
from tqdm import tqdm
from utils import Visualizer
from config import *
viz = Visualizer(env='shanghai tech 10 crop', use_incoming_socket=False)
if __name__ == '__main__':
args = option.parser.parse_args()
config = Config(args)
train_nloader = DataLoader(Dataset(args, test_mode=False, is_normal=True),
batch_size=args.batch_size, shuffle=True,
num_workers=0, pin_memory=False, drop_last=True)
train_aloader = DataLoader(Dataset(args, test_mode=False, is_normal=False),
batch_size=args.batch_size, shuffle=True,
num_workers=0, pin_memory=False, drop_last=True)
test_loader = DataLoader(Dataset(args, test_mode=True),
batch_size=1, shuffle=False,
num_workers=0, pin_memory=False)
model = Model(args.feature_size, args.batch_size)
for name, value in model.named_parameters():
print(name)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
if not os.path.exists('./ckpt'):
os.makedirs('./ckpt')
optimizer = optim.Adam(model.parameters(),
lr=config.lr[0], weight_decay=0.005)
test_info = {"epoch": [], "test_AUC": []}
best_AUC = -1
output_path = '' # put your own path here
auc = test(test_loader, model, args, viz, device)
for step in tqdm(
range(1, args.max_epoch + 1),
total=args.max_epoch,
dynamic_ncols=True
):
if step > 1 and config.lr[step - 1] != config.lr[step - 2]:
for param_group in optimizer.param_groups:
param_group["lr"] = config.lr[step - 1]
if (step - 1) % len(train_nloader) == 0:
loadern_iter = iter(train_nloader)
if (step - 1) % len(train_aloader) == 0:
loadera_iter = iter(train_aloader)
train(loadern_iter, loadera_iter, model, args.batch_size, optimizer, viz, device)
if step % 5 == 0 and step > 200:
auc = test(test_loader, model, args, viz, device)
test_info["epoch"].append(step)
test_info["test_AUC"].append(auc)
if test_info["test_AUC"][-1] > best_AUC:
best_AUC = test_info["test_AUC"][-1]
torch.save(model.state_dict(), './ckpt/' + args.model_name + '{}-i3d.pkl'.format(step))
save_best_record(test_info, os.path.join(output_path, '{}-step-AUC.txt'.format(step)))
torch.save(model.state_dict(), './ckpt/' + args.model_name + 'final.pkl')