Skip to content

Latest commit

 

History

History
194 lines (172 loc) · 12.1 KB

metrics-summary.md

File metadata and controls

194 lines (172 loc) · 12.1 KB

3.4 监控汇总表

由于 TiDB 集群的监控指标数量较大,需要提供便捷的方式从众多监控中找出异常的监控项,TiDB 4.0 提供了监控汇总表,监控汇总表 information_schema.metrics_summaryinformation_schema.metrics_summary_by_label 用于汇总所有监控数据,来提升用户对各个监控指标进行排查的效率。两者不同在于 information_schema.metrics_summary_by_label 会对不同的 label 使用区分统计。

1. 查询示例

以查询 ['2020-03-08 13:23:00', '2020-03-08 13:33:00') 时间范围内 TiDB 集群中平均耗时最高的 3 组监控项为例。通过直接查询 information_schema.metrics_summary 表,并通过 /*+ time_range() */ 这个 hint 来指定时间范围来构造以下 SQL:

mysql> select /*+ time_range('2020-03-08 13:23:00','2020-03-08 13:33:00') */ *
       from information_schema.`METRICS_SUMMARY`
       where metrics_name like 'tidb%duration'
         and avg_value > 0
         and quantile = 0.99
       order by avg_value desc
       limit 3\G
***************************[ 1. row ]***************************
METRICS_NAME | tidb_get_token_duration
QUANTILE     | 0.99
SUM_VALUE    | 8.972509
AVG_VALUE    | 0.996945
MIN_VALUE    | 0.996515
MAX_VALUE    | 0.997458
COMMENT      |  The quantile of Duration (us) for getting token, it should be small until concurrency limit is reached(second)
***************************[ 2. row ]***************************
METRICS_NAME | tidb_query_duration
QUANTILE     | 0.99
SUM_VALUE    | 0.269079
AVG_VALUE    | 0.007272
MIN_VALUE    | 0.000667
MAX_VALUE    | 0.01554
COMMENT      | The quantile of TiDB query durations(second)
***************************[ 3. row ]***************************
METRICS_NAME | tidb_kv_request_duration
QUANTILE     | 0.99
SUM_VALUE    | 0.170232
AVG_VALUE    | 0.004601
MIN_VALUE    | 0.000975
MAX_VALUE    | 0.013
COMMENT      | The quantile of kv requests durations by store

注意:其中 tidb_get_token_durationCOMMENT 列中注释了值的单位是微秒(us)

类似的,查询 metrics_summary_by_label 监控汇总表结果如下:

mysql> select /*+ time_range('2020-03-08 13:23:00','2020-03-08 13:33:00') */ *
       from information_schema.`METRICS_SUMMARY_BY_LABEL`
       where metrics_name like 'tidb%duration'
         and avg_value > 0
         and quantile = 0.99
       order by avg_value desc
       limit 10\G
***************************[ 1. row ]***************************
INSTANCE     | 172.16.5.40:10089
METRICS_NAME | tidb_get_token_duration
LABEL        |
QUANTILE     | 0.99
SUM_VALUE    | 8.972509
AVG_VALUE    | 0.996945
MIN_VALUE    | 0.996515
MAX_VALUE    | 0.997458
COMMENT      |  The quantile of Duration (us) for getting token, it should be small until concurrency limit is reached(second)
***************************[ 2. row ]***************************
INSTANCE     | 172.16.5.40:10089
METRICS_NAME | tidb_query_duration
LABEL        | Select
QUANTILE     | 0.99
SUM_VALUE    | 0.072083
AVG_VALUE    | 0.008009
MIN_VALUE    | 0.007905
MAX_VALUE    | 0.008241
COMMENT      | The quantile of TiDB query durations(second)
***************************[ 3. row ]***************************
INSTANCE     | 172.16.5.40:10089
METRICS_NAME | tidb_query_duration
LABEL        | Rollback
QUANTILE     | 0.99
SUM_VALUE    | 0.072083
AVG_VALUE    | 0.008009
MIN_VALUE    | 0.007905
MAX_VALUE    | 0.008241
COMMENT      | The quantile of TiDB query durations(second)

前文提到 metrics_summary_by_label 表结构相对于 metrics_summary 多了一列 LABEL, 以上面查询结果的第 2, 3 行为例:分别表示 tidb_query_durationSelect/Rollback 类型的语句平均耗时非常高。

2. 推荐用法

除以上示例之外,监控汇总表可以通过两个时间段的全链路监控对比,迅速找出监控数据变化最大的模块,快速定位瓶颈,以下对比两个时间段的所有监控(其中 t1 为 baseline),并按照差别最大的监控排序:

  • 时间段 t1 : ("2020-03-03 17:08:00", "2020-03-03 17:11:00")
  • 时间段 t2 : ("2020-03-03 17:18:00", "2020-03-03 17:21:00")

对两个时间段的监控按照 METRICS_NAME 进行 join,并按照差值排序。其中 /*+ time_range() */ 是用于指定查询时间的 hint。

  1. 查询 t1.avg_value / t2.avg_value 差异最大的 10 个监控项
mysql> SELECT 
         t1.avg_value / t2.avg_value AS ratio,
         t1.metrics_name,
         t1.avg_value,
         t2.avg_value,
         t2.comment
       FROM 
         (
           SELECT /*+ time_range("2020-03-03 17:08:00", "2020-03-03 17:11:00")*/
             * 
           FROM information_schema.metrics_summary
         ) t1 
         JOIN
         (
           SELECT /*+ time_range("2020-03-03 17:18:00", "2020-03-03 17:21:00")*/
             * 
           FROM information_schema.metrics_summary
         ) t2
         ON t1.metrics_name = t2.metrics_name 
       ORDER BY 
         ratio DESC limit 10;
+----------------+-----------------------------------+-------------------+-------------------+--------------------------------------------------------------------------+
| ratio          | metrics_name                      | avg_value         | avg_value         | comment                                                                  |
+----------------+-----------------------------------+-------------------+-------------------+--------------------------------------------------------------------------+
| 17.6439787379  | tikv_region_average_written_bytes |   30816827.0953   |    1746591.71568  | The average rate of writing bytes to Regions per TiKV instance           |
|  8.88407551364 | tikv_region_average_written_keys  |     108557.034612 |      12219.283193 | The average rate of written keys to Regions per TiKV instance            |
|  6.4105335594  | tidb_kv_write_num                 |       4493.293654 |        700.923505 | The quantile of kv write times per transaction execution                 |
|  2.99993333333 | tidb_gc_total_count               |          1.0      |          0.333341 | The total count of kv storage garbage collection time durations          |
|  2.66412165823 | tikv_engine_avg_seek_duration     |       6569.879007 |       2466.05818  | The time consumed when executing seek operation, the unit is microsecond |
|  2.66412165823 | tikv_engine_max_seek_duration     |       6569.879007 |       2466.05818  | The time consumed when executing seek operation, the unit is microsecond |
|  2.49994444321 | tikv_region_change                |         -0.277778 |         -0.111114 | The count of region change per TiKV instance                             |
|  2.16063829787 | etcd_wal_fsync_duration           |          0.002539 |          0.001175 | The quantile time consumed of writing WAL into the persistent storage    |
|  2.06089264604 | node_memory_free                  | 4541448192.0      | 2203631616.0      |                                                                          |
|  1.96749064186 | tidb_kv_write_size                |     514489.28     |     261495.159902 | The quantile of kv write size per transaction execution                  |
+----------------+-----------------------------------+-------------------+-------------------+--------------------------------------------------------------------------+

查询结果表示:

  • t1 时间段内的 tikv_region_average_written_bytes (region 的平均写入字节数) 比 t2 时间段高了 17.6 倍
  • t1 时间段内的 tikv_region_average_written_keys (region 的平均写入 keys 数) 比 t2 时间段高了 8.8 倍
  • t1 时间段内的 tidb_kv_write_size (tidb 每个事务写入的 kv 大小) 比 t2 时间段高了 1.96 倍

通过以上结果可以轻易看出 t1 时间段的写入要比 t2 时间段高。

  1. 反过来,查询 t2.avg_value / t1.avg_value 差异最大的 10 个监控项
mysql> SELECT 
         t2.avg_value / t1.avg_value AS ratio,
         t1.metrics_name,
         t1.avg_value,
         t2.avg_value,
         t2.comment
       FROM 
         (
           SELECT /*+ time_range("2020-03-03 17:08:00", "2020-03-03 17:11:00")*/
             * 
           FROM information_schema.metrics_summary
         ) t1 
         JOIN
         (
           SELECT /*+ time_range("2020-03-03 17:18:00", "2020-03-03 17:21:00")*/
             * 
           FROM information_schema.metrics_summary
         ) t2
         ON t1.metrics_name = t2.metrics_name 
       ORDER BY 
         ratio DESC limit 10;
+----------------+-----------------------------------------+----------------+------------------+---------------------------------------------------------------------------------------------+
| ratio          | metrics_name                            | avg_value      | avg_value        | comment                                                                                     |
+----------------+-----------------------------------------+----------------+------------------+---------------------------------------------------------------------------------------------+
| 5865.59537065  | tidb_slow_query_cop_process_total_time  |       0.016333 |        95.804724 | The total time of TiDB slow query statistics with slow query total cop process time(second) |
| 3648.74109023  | tidb_distsql_partial_scan_key_total_num |   10865.666667 |  39646004.4394   | The total num of distsql partial scan key numbers                                          |
|  267.002351165 | tidb_slow_query_cop_wait_total_time     |       0.003333 |         0.890008 | The total time of TiDB slow query statistics with slow query total cop wait time(second)    |
|  192.43267836  | tikv_cop_total_response_total_size      | 2515333.66667  | 484032394.445    |                                                                                             |
|  192.43267836  | tikv_cop_total_response_size            |   41922.227778 |   8067206.57408  |                                                                                             |
|  152.780296296 | tidb_distsql_scan_key_total_num         |    5304.333333 |    810397.618317 | The total num of distsql scan numbers                                                      |
|  126.042290167 | tidb_distsql_execution_total_time       |       0.421622 |        53.142143 | The total time of distsql execution(second)                                                 |
|  105.164020657 | tikv_cop_scan_details                   |     134.450733 |     14139.379665 |                                                                                             |
|  105.164020657 | tikv_cop_scan_details_total             |    8067.043981 |    848362.77991  |                                                                                             |
|  101.635495394 | tikv_cop_total_kv_cursor_operations     |    1070.875    |    108838.91113  |                                                                                             |
+----------------+-----------------------------------------+----------------+------------------+---------------------------------------------------------------------------------------------+

上面查询结果表示:

  • t2 时间段内的 tidb_slow_query_cop_process_total_time (tidb 慢查询中的 cop process 耗时 ) 比 t1 时间段高了 5865 倍
  • t2 时间段内的 tidb_distsql_partial_scan_key_total_num(tidb 的 distsql 请求扫描key 的数量) 比 t1 时间段高了 3648 倍
  • t2 时间段内的 tikv_cop_total_response_size(tikv 的 cop 请求结果的大小 ) 比 t1 时间段高了 192 倍
  • t2 时间段内的 tikv_cop_scan_details(tikv 的 cop 请求的 scan ) 比 t1 时间段高了 105 倍

通过上面两个时间段对比查询可以大致了解集群在这 2 个时间段的负载情况。t2 时间段的 Cop 请求要比 t2 时间段高很多,导致 TiKV 的 Copprocessor 过载,出现了 cop task 等待,可以猜测可能是 t2 时间段出现了一些大查询,或者是查询较多的负载。

实际上,在 t1 ~ t2 整个时间段内都在跑 go-ycsb 的压测,然后在 t2 时间段跑了 20 个 tpch 的查询,所以是因为 tpch 大查询导致了很多的 cop 请求。