forked from phuongdo/catboost-go
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathc_api.h
473 lines (406 loc) · 17.5 KB
/
c_api.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
#pragma once
#include <stdbool.h>
#include <stddef.h>
#define CATBOOST_APPLIER_MAJOR 1
#define CATBOOST_APPLIER_MINOR 2
#define CATBOOST_APPLIER_FIX 2
#if defined(__cplusplus)
extern "C" {
#endif
#if defined(_WIN32) && !defined(CATBOOST_API_STATIC_LIB)
#ifdef _WINDLL
#define CATBOOST_API __declspec(dllexport)
#else
#define CATBOOST_API __declspec(dllimport)
#endif
#else
#define CATBOOST_API
#endif
typedef void DataWrapperHandle;
typedef void DataProviderHandle;
/**
* Create empty data wrapper
* @return
*/
CATBOOST_API DataWrapperHandle* DataWrapperCreate(size_t docsCount);
CATBOOST_API void DataWrapperDelete(DataWrapperHandle* dataWrapperHandle);
CATBOOST_API void AddFloatFeatures(DataWrapperHandle* dataWrapperHandle, const float** floatFeatures, size_t floatFeaturesSize);
CATBOOST_API void AddCatFeatures(DataWrapperHandle* dataWrapperHandle, const char*** catFeatures, size_t catFeaturesSize);
CATBOOST_API void AddTextFeatures(DataWrapperHandle* dataWrapperHandle, const char*** textFeatures, size_t textFeaturesSize);
CATBOOST_API void AddEmbeddingFeatures(DataWrapperHandle* dataWrapperHandle, const float*** embeddingFeatures, size_t* embeddingDimensions, size_t embeddingFeaturesSize);
CATBOOST_API DataProviderHandle* BuildDataProvider(DataWrapperHandle* dataWrapperHandle);
typedef void ModelCalcerHandle;
enum EApiPredictionType {
APT_RAW_FORMULA_VAL = 0,
APT_EXPONENT = 1,
APT_RMSE_WITH_UNCERTAINTY = 2,
APT_PROBABILITY = 3,
APT_CLASS = 4,
};
enum ECatBoostApiFormulaEvaluatorType {
CBA_FET_CPU = 0,
CBA_FET_GPU = 1,
};
/**
* Create empty model handle
* @return
*/
CATBOOST_API ModelCalcerHandle* ModelCalcerCreate();
/**
* Delete model handle
* @param calcer
*/
CATBOOST_API void ModelCalcerDelete(ModelCalcerHandle* modelHandle);
/**
* If error occured will return stored exception message.
* If no error occured, will return invalid pointer
* @return
*/
CATBOOST_API const char* GetErrorString();
/**
* Load model from file into given model handle
* @param calcer
* @param filename
* @return false if error occured
*/
CATBOOST_API bool LoadFullModelFromFile(
ModelCalcerHandle* modelHandle,
const char* filename);
/**
* Load model from memory buffer into given model handle
* @param calcer
* @param binaryBuffer pointer to a memory buffer where model file is mapped
* @param binaryBufferSize size of the buffer in bytes
* @return false if error occured
*/
CATBOOST_API bool LoadFullModelFromBuffer(
ModelCalcerHandle* modelHandle,
const void* binaryBuffer,
size_t binaryBufferSize);
/**
* Use CUDA gpu device for model evaluation
*/
CATBOOST_API bool EnableGPUEvaluation(ModelCalcerHandle* modelHandle, int deviceId);
/**
* Get supported formula evaluator types
* formulaEvaluatorTypes array must be deallocated using free() after use.
*
* @param modelHandle model handle
* @param formulaEvaluatorTypes address of the pointer to an array that will be initialized with formula evaluator types
* @param formulaEvaluatorTypesCount address of the variable where the size of formulaEvaluatorTypes array will be stored
* @return true on success, false on error
*/
CATBOOST_API bool GetSupportedEvaluatorTypes(
ModelCalcerHandle* modelHandle,
enum ECatBoostApiFormulaEvaluatorType** formulaEvaluatorTypes,
size_t* formulaEvaluatorTypesCount);
/**
* Set prediction type for model evaluation
*/
CATBOOST_API bool SetPredictionType(ModelCalcerHandle* modelHandle, enum EApiPredictionType predictionType);
/**
* Set prediction type for model evaluation with string constant
*/
CATBOOST_API bool SetPredictionTypeString(ModelCalcerHandle* modelHandle, const char* predictionTypeStr);
/**
* **Use this method only if you really understand what you want.**
* Calculate raw model predictions on flat feature vectors
* Flat here means that float features and categorical feature are in the same float array.
* @param calcer model handle
* @param docCount number of objects
* @param floatFeatures array of array of float (first dimension is object index, second is feature index)
* @param floatFeaturesSize float values array size
* @param result pointer to user allocated results vector
* @param resultSize Result size should be equal to modelApproxDimension * docCount
* (e.g. for non multiclass models should be equal to docCount)
* @return false if error occured
*/
CATBOOST_API bool CalcModelPredictionFlat(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
double* result, size_t resultSize);
/**
* **Use this method only if you really understand what you want.**
* Calculate raw model predictions on transposed dataset layout
* @param calcer model handle
* @param docCount number of objects
* @param floatFeatures array of array of float (first dimension is feature index, second is object index)
* @param floatFeaturesSize float values array size
* @param result pointer to user allocated results vector
* @param resultSize Result size should be equal to modelApproxDimension * docCount
* (e.g. for non multiclass models should be equal to docCount)
* @return false if error occured
*/
CATBOOST_API bool CalcModelPredictionFlatTransposed(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
double* result, size_t resultSize);
/**
* Calculate raw model predictions on float features and string categorical feature values
* @param calcer model handle
* @param docCount object count
* @param floatFeatures array of array of float (first dimension is object index, second is feature index)
* @param floatFeaturesSize float feature count
* @param catFeatures array of array of char* categorical value pointers.
* String pointer should point to zero terminated string.
* @param catFeaturesSize categorical feature count
* @param result pointer to user allocated results vector
* @param resultSize result size should be equal to modelApproxDimension * docCount
* (e.g. for non multiclass models should be equal to docCount)
* @return false if error occured
*/
CATBOOST_API bool CalcModelPrediction(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
const char*** catFeatures, size_t catFeaturesSize,
double* result, size_t resultSize);
/**
* Calculate raw model predictions on float features and string categorical feature values
* @param calcer model handle
* @param docCount object count
* @param floatFeatures array of array of float (first dimension is object index, second is feature index)
* @param floatFeaturesSize float feature count
* @param catFeatures array of array of char* categorical value pointers.
* String pointer should point to zero terminated string.
* @param catFeaturesSize categorical feature count
* @param textFeatures array of array of char* text value pointers.
* String pointer should point to zero terminated string.
* @param textFeaturesSize text feature count
* @param result pointer to user allocated results vector
* @param resultSize result size should be equal to modelApproxDimension * docCount
* (e.g. for non multiclass models should be equal to docCount)
* @return false if error occured
*/
CATBOOST_API bool CalcModelPredictionText(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
const char*** catFeatures, size_t catFeaturesSize,
const char*** textFeatures, size_t textFeaturesSize,
double* result, size_t resultSize);
/**
* Calculate raw model predictions on float features and string categorical feature values
* @param calcer model handle
* @param docCount object count
* @param floatFeatures array of array of float (first dimension is object index, second is feature index)
* @param floatFeaturesSize float feature count
* @param catFeatures array of array of char* categorical value pointers.
* String pointer should point to zero terminated string.
* @param catFeaturesSize categorical feature count
* @param textFeatures array of array of char* text value pointers.
* String pointer should point to zero terminated string.
* @param textFeaturesSize text feature count
* @param embeddingFeatures array of array of array of float (first dimension is object index, second is feature index, third is index in embedding array).
* String pointer should point to zero terminated string.
* @param embeddingFeaturesSize embedding feature count
* @param result pointer to user allocated results vector
* @param resultSize result size should be equal to modelApproxDimension * docCount
* (e.g. for non multiclass models should be equal to docCount)
* @return false if error occured
*/
CATBOOST_API bool CalcModelPredictionTextAndEmbeddings(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
const char*** catFeatures, size_t catFeaturesSize,
const char*** textFeatures, size_t textFeaturesSize,
const float*** embeddingFeatures, size_t* embeddingDimensions, size_t embeddingFeaturesSize,
double* result, size_t resultSize);
/**
* Calculate raw model prediction on float features and string categorical feature values for single object
* @param calcer model handle
* @param floatFeatures array of float features
* @param floatFeaturesSize float feature count
* @param catFeatures array of char* categorical feature value pointers.
* Each string pointer should point to zero terminated string.
* @param catFeaturesSize categorical feature count
* @param result pointer to user allocated results vector (or single double)
* @param resultSize result size should be equal to modelApproxDimension
* (e.g. for non multiclass models should be equal to 1)
* @return false if error occured
*/
CATBOOST_API bool CalcModelPredictionSingle(
ModelCalcerHandle* modelHandle,
const float* floatFeatures, size_t floatFeaturesSize,
const char** catFeatures, size_t catFeaturesSize,
double* result, size_t resultSize);
/**
* Calculate raw model predictions on float features and hashed categorical feature values
* @param calcer model handle
* @param docCount object count
* @param floatFeatures array of array of float (first dimension is object index, second if feature index)
* @param floatFeaturesSize float feature count
* @param catFeatures array of array of integers - hashed categorical feature values.
* @param catFeaturesSize categorical feature count
* @param result pointer to user allocated results vector
* @param resultSize result size should be equal to modelApproxDimension * docCount
* (e.g. for non multiclass models should be equal to docCount)
* @return false if error occured
*/
CATBOOST_API bool CalcModelPredictionWithHashedCatFeatures(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
const int** catFeatures, size_t catFeaturesSize,
double* result, size_t resultSize);
CATBOOST_API bool CalcModelPredictionWithHashedCatFeaturesAndTextFeatures(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
const int** catFeatures, size_t catFeaturesSize,
const char*** textFeatures, size_t textFeaturesSize,
double* result, size_t resultSize);
CATBOOST_API bool CalcModelPredictionWithHashedCatFeaturesAndTextAndEmbeddingFeatures(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
const int** catFeatures, size_t catFeaturesSize,
const char*** textFeatures, size_t textFeaturesSize,
const float*** embeddingFeatures, size_t* embeddingDimensions, size_t embeddingFeaturesSize,
double* result, size_t resultSize);
/**
* Methods equivalent to the methods above
* only returning a prediction for the specific class
* @param classId number of the class should be in [0, modelApproxDimension - 1]
* @param resultSize result size should be equal to docCount
*/
CATBOOST_API bool PredictSpecificClassFlat(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
int classId,
double* result, size_t resultSize);
CATBOOST_API bool PredictSpecificClass(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
const char*** catFeatures, size_t catFeaturesSize,
int classId,
double* result, size_t resultSize);
CATBOOST_API bool PredictSpecificClassText(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
const char*** catFeatures, size_t catFeaturesSize,
const char*** textFeatures, size_t textFeaturesSize,
int classId,
double* result, size_t resultSize);
CATBOOST_API bool PredictSpecificClassTextAndEmbeddings(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
const char*** catFeatures, size_t catFeaturesSize,
const char*** textFeatures, size_t textFeaturesSize,
const float*** embeddingFeatures, size_t* embeddingDimensions, size_t embeddingFeaturesSize,
int classId,
double* result, size_t resultSize);
CATBOOST_API bool PredictSpecificClassSingle(
ModelCalcerHandle* modelHandle,
const float* floatFeatures, size_t floatFeaturesSize,
const char** catFeatures, size_t catFeaturesSize,
int classId,
double* result, size_t resultSize);
CATBOOST_API bool PredictSpecificClassWithHashedCatFeatures(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
const int** catFeatures, size_t catFeaturesSize,
int classId,
double* result, size_t resultSize);
CATBOOST_API bool PredictSpecificClassWithHashedCatFeaturesAndTextFeatures(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
const int** catFeatures, size_t catFeaturesSize,
const char*** textFeatures, size_t textFeaturesSize,
int classId,
double* result, size_t resultSize);
CATBOOST_API bool PredictSpecificClassWithHashedCatFeaturesAndTextAndEmbeddingFeatures(
ModelCalcerHandle* modelHandle,
size_t docCount,
const float** floatFeatures, size_t floatFeaturesSize,
const int** catFeatures, size_t catFeaturesSize,
const char*** textFeatures, size_t textFeaturesSize,
const float*** embeddingFeatures, size_t* embeddingDimensions, size_t embeddingFeaturesSize,
int classId,
double* result, size_t resultSize);
/**
* Get hash for given string value
* @param data we don't expect data to be zero terminated, so pass correct size
* @param size string length
* @return hash value
*/
CATBOOST_API int GetStringCatFeatureHash(const char* data, size_t size);
/**
* Special case for hash calculation - integer hash.
* Internally we cast value to string and then calulcate string hash function.
* Used in ClickHouse for catboost model evaluation on integer cat features.
* @param val integer cat feature value
* @return hash value
*/
CATBOOST_API int GetIntegerCatFeatureHash(long long val);
/**
* Get expected float feature count for model
* @param calcer model handle
*/
CATBOOST_API size_t GetFloatFeaturesCount(ModelCalcerHandle* modelHandle);
/**
* Get expected categorical feature count for model
* @param calcer model handle
*/
CATBOOST_API size_t GetCatFeaturesCount(ModelCalcerHandle* modelHandle);
/**
* Get expected text feature count for model
* @param calcer model handle
*/
CATBOOST_API size_t GetTextFeaturesCount(ModelCalcerHandle* modelHandle);
/**
* Get expected embedding feature count for model
* @param calcer model handle
*/
CATBOOST_API size_t GetEmbeddingFeaturesCount(ModelCalcerHandle* modelHandle);
/**
* Get number of trees in model
* @param calcer model handle
*/
CATBOOST_API size_t GetTreeCount(ModelCalcerHandle* modelHandle);
/**
* Get number of dimensions in model
* @param calcer model handle
*/
CATBOOST_API size_t GetDimensionsCount(ModelCalcerHandle* modelHandle);
/**
* Get number of dimensions for current prediction
* For default `APT_RAW_FORMULA_VAL`, `APT_EXPONENT`, `APT_PROBABILITY`, `APT_CLASS` prediction type GetPredictionDimensionsCount == GetDimensionsCount
* For `APT_RMSE_WITH_UNCERTAINTY` - returns 2 (value prediction and predicted uncertainty)
* @param calcer model handle
*/
CATBOOST_API size_t GetPredictionDimensionsCount(ModelCalcerHandle* modelHandle);
/**
* Check if model metadata holds some value for provided key
* @param calcer model handle
*/
CATBOOST_API bool CheckModelMetadataHasKey(ModelCalcerHandle* modelHandle, const char* keyPtr, size_t keySize);
/**
* Get model metainfo value size for some key. Returns 0 both if key is missing in model metadata and if it is really missing
* @param calcer model handle
*/
CATBOOST_API size_t GetModelInfoValueSize(ModelCalcerHandle* modelHandle, const char* keyPtr, size_t keySize);
/**
* Get model metainfo for some key. Returns const char* pointer to inner string. If key is missing in model metainfo storage this method will return nullptr
* @param calcer model handle
*/
CATBOOST_API const char* GetModelInfoValue(ModelCalcerHandle* modelHandle, const char* keyPtr, size_t keySize);
/**
* Get names of features used in the model.
* individual strings in featureNames array and featureNames array itself must be deallocated using free() after use.
*
* @return true on success, false on error
*/
CATBOOST_API bool GetModelUsedFeaturesNames(ModelCalcerHandle* modelHandle, char*** featureNames, size_t* featureCount);
#if defined(__cplusplus)
}
#endif