-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils_masking.py
223 lines (184 loc) · 8.54 KB
/
utils_masking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from collections import Counter
import nltk, spacy, numpy as np
from rake_nltk import Rake
def get_pos_group(idx):
if idx == 1:
return ["AUX", "VERB", "PART"]
elif idx == 2:
return ["NOUN", "NUM", "PRON", "PROPN"]
elif idx == 3:
return ["ADJ", "ADV", "ADP", "INTJ", "SCONJ"]
def mask_tokens(tokens, kw_idxs, mask_idx=0):
masked = [tok if tok not in kw_idxs else 0 for tok in tokens]
is_masked = [0 if tok not in kw_idxs else 1 for tok in tokens]
return masked, is_masked
def args2mask(args):
if args.masking_strategy == "kw":
print("Masking strategy kw: %.3f" % (args.kw_mask_ratio))
masking_model = KeywordMasker(mask_ratio=args.kw_mask_ratio)
elif args.masking_strategy == "pos":
print("Masking strategy pos: %d" % (args.masking_pos_group))
masking_model = POSMasker(get_pos_group(args.masking_pos_group))
elif args.masking_strategy == "ratio":
print("Masking strategy fixed ratio: %d; offset: %d" % (args.fixed_mask_ratio, args.fixed_mask_offset))
masking_model = RatioMasker(k_ratio=args.fixed_mask_ratio, start_offset=args.fixed_mask_offset)
elif args.masking_strategy == "nostop":
print("Masking strategy non-stop words all masked")
masking_model = NonStopMasker()
return masking_model
def string2mask(masker_name):
if masker_name[:2] == "kw":
# kw30
return KeywordMasker(mask_ratio=int(masker_name[2:])/100.0)
elif masker_name[:3] == "pos":
# pos1, pos2, pos3
return POSMasker(get_pos_group(masker_name[3:]))
elif masker_name[:5] == "ratio":
# ratio2, ratio3.2
rat, off = 2, 0
if "." in masker_name:
masker_name, off = masker_name.split(".")
rat = int(masker_name[5:])
return RatioMasker(k_ratio=rat, start_offset=int(off))
elif masker_name == "nostop":
return NonStopMasker()
else:
print("Could not match to a masker model")
return None
class Masker:
def __init__(self):
self.model_tokenizer = None
def register_tokenizer(self, tokenizer):
self.model_tokenizer = tokenizer
def compute_effective_mask_ratio(self, is_masked):
return np.mean([np.mean(is_m) for is_m in is_masked])
class NonStopMasker(Masker):
def __init__(self):
# Masks everything but stop words
self.stop_ws = set(nltk.corpus.stopwords.words("english"))
def mask(self, sentences):
unmasked, masked, is_masked = [], [], []
for sentence in sentences:
ums, ms, ims = [], [], []
words = nltk.tokenize.word_tokenize(sentence)
even = 0
for w in words:
toks = self.model_tokenizer.encode(" "+w, add_special_tokens=False)
ums += toks
even += 1
if w.lower() not in self.stop_ws and even % 2 == 0:
ms += [0] * len(toks)
ims += [1] * len(toks)
else:
ms += toks
ims += [0] * len(toks)
unmasked.append(ums)
masked.append(ms)
is_masked.append(ims)
return unmasked, masked, is_masked, self.compute_effective_mask_ratio(is_masked)
class KeywordMasker(Masker):
def __init__(self, mask_ratio=0.2):
self.stopws = set(nltk.corpus.stopwords.words("english") + [",", "''", "--", "-", ".", "(", ")", ";", "mr", "says", "say", "said", "will", "would"])
self.r = Rake()
self.mask_ratio = mask_ratio
def compute_keywords(self, document):
self.r.extract_keywords_from_text(document)
kws = self.r.get_ranked_phrases_with_scores()
word_scores = Counter()
for c, kw in kws:
for w in set(nltk.tokenize.word_tokenize(kw.lower())) - self.stopws:
word_scores[w] += c
final_keywords = [w for w, c in word_scores.most_common()]
return final_keywords
def mask_sentence(self, sentence, document_keywords):
# new_sent = self.model_tokenizer.encode(sentence, add_special_tokens=False)
words = nltk.tokenize.word_tokenize(sentence)
num_to_mask = int((self.mask_ratio * len(words))+0.5)
all_my_masks = sorted([w.lower() for w in words if w.lower() in document_keywords], key=lambda w: document_keywords.index(w))
my_selected_masks = set(all_my_masks[:num_to_mask])
ums, ms, ims = [], [], []
for w in words:
toks = self.model_tokenizer.encode(" "+w, add_special_tokens=False)
ums += toks
if w.lower() in my_selected_masks:
ms += [0] * len(toks)
ims += [1] * len(toks)
else:
ms += toks
ims += [0] * len(toks)
return ums, ms, ims
def mask(self, sentences):
assert self.model_tokenizer is not None, "Forgot to register the model tokenizer being used. Without it, it will not be possible to generate the outputs encoded for the model."
unmasked, masked, is_masked = [], [], []
if len(sentences) == 0:
return [[0]], [[0]], [[0]], 0.0
document = " ".join(sentences)
document_kws = self.compute_keywords(document)
for sentence in sentences:
ums, ms, is_ms = self.mask_sentence(sentence, document_kws)
unmasked.append(ums)
masked.append(ms)
is_masked.append(is_ms)
return unmasked, masked, is_masked, self.compute_effective_mask_ratio(is_masked)
class POSMasker(Masker):
def __init__(self, poses):
# ADJ: adjective, ADP: adposition, ADV: adverb, AUX: auxiliary verb, CONJ: coordinating conjunction, DET: determiner, INTJ: interjection,
# NOUN: noun, NUM: numeral, PART: particle, PRON: pronoun, PROPN: proper noun, PUNCT: punctuation, SCONJ: subordinating conjunction, SYM: symbol, VERB: verb
self.poses = poses
self.nlp = spacy.load("en_core_web_sm")
self.nlp.remove_pipe("parser")
self.nlp.remove_pipe("ner")
def mask_sentence(self, sent_doc):
# doc = self.nlp(sentence)
unmasked, masked, is_masked = [], [], []
for w in sent_doc:
word_toks = self.model_tokenizer.encode(" "+w.text, add_special_tokens=False)
unmasked += word_toks
if w.pos_ in self.poses:
masked += [0] * len(word_toks)
is_masked += [1] * len(word_toks)
else:
masked += word_toks
is_masked += [0] * len(word_toks)
return unmasked, masked, is_masked
def mask(self, sentences):
assert self.model_tokenizer is not None, "Forgot to register the model tokenizer being used. Without it, it will not be possible to generate the outputs encoded for the model."
unmasked, masked, is_masked = [], [], []
if len(sentences) == 0:
return [[0]], [[0]], [[0]], 0.0
sent_docs = list(self.nlp.pipe(sentences, n_process=16))
for sent_doc in sent_docs:
ums, ms, is_ms = self.mask_sentence(sent_doc)
unmasked.append(ums)
masked.append(ms)
is_masked.append(is_ms)
return unmasked, masked, is_masked, self.compute_effective_mask_ratio(is_masked)
class RatioMasker(Masker):
def __init__(self, k_ratio=3, start_offset=0):
self.k_ratio = k_ratio
self.start_offset = start_offset
def mask_sentence(self, sentence, offset):
words = self.model_tokenizer.encode(sentence, add_special_tokens=False)
unmasked, masked, is_masked = [], [], []
for i, w in enumerate(words):
unmasked.append(w)
if (i+offset) % self.k_ratio == 0:
masked.append(0)
is_masked.append(1)
else:
masked.append(w)
is_masked.append(0)
new_offset = (len(words)+offset) % self.k_ratio
return unmasked, masked, is_masked, new_offset
def mask(self, sentences):
assert self.model_tokenizer is not None, "Forgot to register the model tokenizer being used. Without it, it will not be possible to generate the outputs encoded for the model."
unmasked, masked, is_masked = [], [], []
if len(sentences) == 0:
return [[0]], [[0]], [[0]], 0.0
offset = self.start_offset
for sentence in sentences:
ums, ms, is_ms, offset = self.mask_sentence(sentence, offset)
unmasked.append(ums)
masked.append(ms)
is_masked.append(is_ms)
return unmasked, masked, is_masked, self.compute_effective_mask_ratio(is_masked)