-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathI_train.py
171 lines (138 loc) · 8.06 KB
/
I_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright (c) 2021-2022 Alibaba Group Holding Limited.
import os
import sys
import random
import argparse
import numpy as np
from tqdm import tqdm
import tensorflow as tf
from time import time, sleep
from datetime import datetime
from I_config import IConfig
from networks.I_model import IModel
from utils.utils import load_single_image, generate_weight_list, str2bool
def parse_args():
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument('--loss_metric', type=str, default="PSNR", help='loss_metric: PSNR or SSIM')
parser.add_argument('--model_name', type=str, default="CM", help='loss_metric: PSNR or SSIM')
parser.add_argument('--work_dir', type=str, default=None, help='the dir to save logs and models, load the models')
parser.add_argument('--is_post', type=str2bool, default=True, help='add the Unet post network')
parser.add_argument('--with_context_model', type=str2bool, default=True, help='add the context model network')
parser.add_argument('--is_multi', type=str2bool, default=True, help='enable variable rate control')
parser.add_argument('--seed', type=int, default=1000, help='random seed')
args = parser.parse_args()
return args
def main(unused_argv):
args = parse_args()
IConfig.cckpt(args)
print(args)
print(IConfig)
#model and train config
os.environ['CUDA_VISIBLE_DEVICES']=','.join(["%d"%id for id in IConfig.gpus_list])
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
if not os.path.isdir(IConfig.info_dir):
os.makedirs(IConfig.info_dir)
show_step = IConfig.show_step
total_batch_size = IConfig.total_batch_size
#built the IModel
IMod = IModel(is_train=True)
graph, sess = IMod.build()
steps_per_epoch = IMod.train_len//total_batch_size
valid_len = IMod.valid_len
batch_num = int(IConfig.total_batch_size/len(IConfig.gpus_list))
#open graph context manager
with graph.as_default():
actual_step = 0
tic = time()
# 使用pipeline的时候需要调用该线程启动
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
if IConfig.is_multi:
weight_alpha_list = generate_weight_list(IConfig.alpha[0], IConfig.alpha[1])
print("the weighted alpha list is \n", weight_alpha_list)
for step in range(3000000):
if actual_step>2500002:
break
if actual_step % 5000 == 0 and actual_step > 0:
IMod.ckpt_write(actual_step)
input_image = sess.run(IMod.train_next)
# print("the input shape is ", np.shape(input_image))
# input_image = load_single_image("./kodak/kodim01.png", is_zero_one=False) #True 为0-1; False为-1-1
if IConfig.is_multi:
index_rand = np.random.randint(0, len(IConfig.lambda_list)-1)
alpha_rand = random.choice(weight_alpha_list)
l_onehot = alpha_rand*IConfig.lambda_onehot[index_rand] + (1-alpha_rand)*IConfig.lambda_onehot[index_rand+1]
if IConfig.gpus_list:
feed_dict = {}
for idx, _ in enumerate(IConfig.gpus_list):
if IConfig.is_multi:
feed_dict.update({IMod.tower_input[idx]:input_image[idx*batch_num:(idx+1)*batch_num], IMod.tower_onehot[idx]:l_onehot})
else:
feed_dict.update({IMod.tower_input[idx]:input_image[idx*batch_num:(idx+1)*batch_num]})
else:
# use CPU, not a good method
if IConfig.is_multi:
feed_dict = ({IMod.input_image_in:input_image, IMod.lambda_onehot:l_onehot})
else:
feed_dict = {IMod.input_image_in:input_image}
try:
actual_step, _ = sess.run([IMod.global_step, IMod.train_ops], feed_dict=feed_dict)
# actual_step, recon_image, input_feature, weight_q= sess.run([IMod.global_step, IMod.recon_image, IMod.Net.H[1], IMod.Net.W_q[1]], feed_dict=feed_dict)
except:
print('the inf or NAN happened')
continue
# 训练基本,epoch输出
train_choose = 'train_whole'
sys.stdout.write("actual_step %d: epoch: %d, %.2f%% in a epoch, train_op: %s\r" % (
actual_step, actual_step // steps_per_epoch, 100 * (actual_step % steps_per_epoch) / (steps_per_epoch),
train_choose))
sys.stdout.flush()
if actual_step % show_step == 0:
lambda_train, total_loss, psnr, ms_ssim, bpp, bpp_y, LR = sess.run([IMod.lambda_train, IMod.total_loss, IMod.psnr, IMod.ms_ssim, IMod.bpp, IMod.bpp_y, IMod.LR],feed_dict=feed_dict)
toc = time()
nowtime = datetime.now().strftime('%Y-%m-%d %H:%M:%2S')
print("%s -- %d steps, %d epoch, fps %.2f, lambda:%.2f, total_loss:%.2e, psnr %.4f, ssim %.5f, bpp %.5f, bpp_y %.5f, LR %.5f" % (
nowtime, actual_step, actual_step // steps_per_epoch + 1, (toc - tic) / show_step, lambda_train, total_loss, psnr, ms_ssim, bpp, bpp_y, LR))
with open(os.path.join(IConfig.info_dir, "/info.txt"), "a+") as f:
f.write("%s -- %d steps, %d epoch, fps %.2f, lambda:%.2f, total_loss:%.2e, psnr %.4f, ssim %.5f, bpp %.5f, bpp_y %.5f, LR %.5f" % (
nowtime, actual_step, actual_step // steps_per_epoch + 1, (toc - tic) / show_step, lambda_train, total_loss, psnr, ms_ssim, bpp, bpp_y, LR))
f.write("\n")
tic = time()
if step > 0:
IMod.summary_write(actual_step, feed_dict)
if actual_step % 20000 == 0 and step > 1:
psnr_all = 0.0
msssim_all = 0.0
total_loss_all = 0.0
valid_bpp_all = 0.0
valid_bpp_y_all = 0.0
sess.run(IMod.init_valid) # 每次都重新开始初始化valid iteration迭代器,重头开始
for iter in tqdm(range(int(valid_len / total_batch_size))):
try:
valid_image_batch = sess.run(IMod.valid_next)
if IConfig.is_multi:
feed_dict={IMod.input_image_in:valid_image_batch, IMod.lambda_onehot:IConfig.lambda_onehot[2]}
else:
feed_dict={IMod.input_image_in:valid_image_batch}
initial_learning_rate, total_loss, psnr, ms_ssim, bpp, bpp_y = sess.run([IMod.initial_learning_rate,
IMod.total_loss, IMod.psnr, IMod.ms_ssim, IMod.bpp, IMod.bpp_y], feed_dict=feed_dict)
psnr_all += psnr
msssim_all += ms_ssim
total_loss_all += total_loss
valid_bpp_all += bpp
valid_bpp_y_all += bpp_y
except tf.errors.OutOfRangeError:
print("Consume all valid samples ")
break
with open(os.path.join(IConfig.info_dir, "valid_log.txt"), "a+") as f:
f.write('test: steps %d, total_loss %.8f, psnr %.4f, ssim %.6f, bpp: %.4f, bpp_y: %.4f, learng_rate: %.e, batch: %.d' %
(actual_step, total_loss_all / int(valid_len / total_batch_size),\
psnr_all / int(valid_len / total_batch_size),\
msssim_all / int(valid_len / total_batch_size),\
valid_bpp_all / int(valid_len / total_batch_size),\
valid_bpp_y_all / int(valid_len / total_batch_size),\
initial_learning_rate,\
total_batch_size))
f.write('\n')
if __name__ == '__main__':
tf.app.run()