We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
2024-05-11 09:36:30 transreid INFO: Namespace(config_file='configs/msmt17/swin_small.yml', opts=['TEST.WEIGHT', './log/msmt17/swin_small/transformer_120.pth', 'TEST.RE_RANKING', 'True', 'MODEL.SEMANTIC_WEIGHT', '0.2']) 2024-05-11 09:36:30 transreid INFO: Loaded configuration file configs/msmt17/swin_small.yml 2024-05-11 09:36:30 transreid INFO: MODEL: PRETRAIN_HW_RATIO: 2 METRIC_LOSS_TYPE: 'triplet' IF_LABELSMOOTH: 'off' IF_WITH_CENTER: 'no' NAME: 'transformer' NO_MARGIN: True DEVICE_ID: ('0') TRANSFORMER_TYPE: 'swin_small_patch4_window7_224' STRIDE_SIZE: [16, 16]
INPUT: SIZE_TRAIN: [384, 128] SIZE_TEST: [384, 128] PROB: 0.5 # random horizontal flip RE_PROB: 0.5 # random erasing PADDING: 10 PIXEL_MEAN: [0.5, 0.5, 0.5] PIXEL_STD: [0.5, 0.5, 0.5]
DATASETS: NAMES: ('msmt17') ROOT_DIR: ('/TransReID/data')
DATALOADER: SAMPLER: 'softmax_triplet' NUM_INSTANCE: 4 NUM_WORKERS: 8
SOLVER: OPTIMIZER_NAME: 'SGD' MAX_EPOCHS: 120 BASE_LR: 0.0008 WARMUP_EPOCHS: 20 IMS_PER_BATCH: 64 WARMUP_METHOD: 'cosine' LARGE_FC_LR: False CHECKPOINT_PERIOD: 120 LOG_PERIOD: 20 EVAL_PERIOD: 10 WEIGHT_DECAY: 1e-4 WEIGHT_DECAY_BIAS: 1e-4 BIAS_LR_FACTOR: 2
TEST: EVAL: True IMS_PER_BATCH: 256 RE_RANKING: False WEIGHT: '' NECK_FEAT: 'before' FEAT_NORM: 'yes'
OUTPUT_DIR: './log/msmt17/swin_small'
2024-05-11 09:36:30 transreid INFO: Running with config: DATALOADER: NUM_INSTANCE: 4 NUM_WORKERS: 8 REMOVE_TAIL: 0 SAMPLER: softmax_triplet DATASETS: NAMES: msmt17 ROOT_DIR: /media/lab/Disk1/TransReID/data ROOT_TRAIN_DIR: ../data ROOT_VAL_DIR: ../data INPUT: PADDING: 10 PIXEL_MEAN: [0.5, 0.5, 0.5] PIXEL_STD: [0.5, 0.5, 0.5] PROB: 0.5 RE_PROB: 0.5 SIZE_TEST: [384, 128] SIZE_TRAIN: [384, 128] MODEL: ATT_DROP_RATE: 0.0 COS_LAYER: False DEVICE: cuda DEVICE_ID: 0 DEVIDE_LENGTH: 4 DIST_TRAIN: False DROPOUT_RATE: 0.0 DROP_OUT: 0.0 DROP_PATH: 0.1 FEAT_DIM: 512 GEM_POOLING: False ID_LOSS_TYPE: softmax ID_LOSS_WEIGHT: 1.0 IF_LABELSMOOTH: off IF_WITH_CENTER: no JPM: False LAST_STRIDE: 1 METRIC_LOSS_TYPE: triplet NAME: transformer NECK: bnneck NO_MARGIN: True PRETRAIN_CHOICE: imagenet PRETRAIN_HW_RATIO: 2 PRETRAIN_PATH: REDUCE_FEAT_DIM: False RE_ARRANGE: True SEMANTIC_WEIGHT: 0.2 SHIFT_NUM: 5 SHUFFLE_GROUP: 2 SIE_CAMERA: False SIE_COE: 3.0 SIE_VIEW: False STEM_CONV: False STRIDE_SIZE: [16, 16] TRANSFORMER_TYPE: swin_small_patch4_window7_224 TRIPLET_LOSS_WEIGHT: 1.0 OUTPUT_DIR: ./log/msmt17/swin_small SOLVER: BASE_LR: 0.0008 BIAS_LR_FACTOR: 2 CENTER_LOSS_WEIGHT: 0.0005 CENTER_LR: 0.5 CHECKPOINT_PERIOD: 120 COSINE_MARGIN: 0.5 COSINE_SCALE: 30 EVAL_PERIOD: 10 GAMMA: 0.1 IMS_PER_BATCH: 64 LARGE_FC_LR: False LOG_PERIOD: 20 MARGIN: 0.3 MAX_EPOCHS: 120 MOMENTUM: 0.9 OPTIMIZER_NAME: SGD SEED: 1234 STEPS: (40, 70) TRP_L2: False WARMUP_EPOCHS: 20 WARMUP_FACTOR: 0.01 WARMUP_METHOD: cosine WEIGHT_DECAY: 0.0001 WEIGHT_DECAY_BIAS: 0.0001 TEST: DIST_MAT: dist_mat.npy EVAL: True FEAT_NORM: yes IMS_PER_BATCH: 256 NECK_FEAT: before RE_RANKING: True WEIGHT: ./log/msmt17/swin_small/transformer_120.pth {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} cam_container {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} cam_container {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} cam_container {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} cam_container => MSMT17 loaded 2024-05-11 09:36:31 transreid.check INFO: Dataset statistics: 2024-05-11 09:36:31 transreid.check INFO: ---------------------------------------- 2024-05-11 09:36:31 transreid.check INFO: subset | # ids | # images | # cameras 2024-05-11 09:36:31 transreid.check INFO: ---------------------------------------- 2024-05-11 09:36:31 transreid.check INFO: train | 1041 | 32621 | 15 2024-05-11 09:36:31 transreid.check INFO: query | 3060 | 11659 | 15 2024-05-11 09:36:31 transreid.check INFO: gallery | 3060 | 82161 | 15 2024-05-11 09:36:31 transreid.check INFO: ---------------------------------------- using img_triplet sampler using Transformer_type: swin_small_patch4_window7_224 as a backbone /media/lab/Disk1/SOLIDER-REID/model/backbones/swin_transformer.py:1159: UserWarning: DeprecationWarning: pretrained is deprecated, please use "init_cfg" instead warnings.warn('DeprecationWarning: pretrained is deprecated, ' ===========building transformer=========== Loading pretrained model from ./log/msmt17/swin_small/transformer_120.pth 2024-05-11 09:36:37 transreid.test INFO: Enter inferencing The test feature is normalized => Enter reranking /media/lab/Disk1/SOLIDER-REID/utils/reranking.py:40: UserWarning: This overload of addmm_ is deprecated: addmm_(Number beta, Number alpha, Tensor mat1, Tensor mat2) Consider using one of the following signatures instead: addmm_(Tensor mat1, Tensor mat2, *, Number beta, Number alpha) (Triggered internally at ../torch/csrc/utils/python_arg_parser.cpp:1630.) distmat.addmm_(1, -2, feat, feat.t()) Killed
可能存在内存泄露导致内存溢出被Killed,实验环境为128G内存,请指教是哪里出问题了?感谢!
The text was updated successfully, but these errors were encountered:
No branches or pull requests
2024-05-11 09:36:30 transreid INFO: Namespace(config_file='configs/msmt17/swin_small.yml', opts=['TEST.WEIGHT', './log/msmt17/swin_small/transformer_120.pth', 'TEST.RE_RANKING', 'True', 'MODEL.SEMANTIC_WEIGHT', '0.2'])
2024-05-11 09:36:30 transreid INFO: Loaded configuration file configs/msmt17/swin_small.yml
2024-05-11 09:36:30 transreid INFO:
MODEL:
PRETRAIN_HW_RATIO: 2
METRIC_LOSS_TYPE: 'triplet'
IF_LABELSMOOTH: 'off'
IF_WITH_CENTER: 'no'
NAME: 'transformer'
NO_MARGIN: True
DEVICE_ID: ('0')
TRANSFORMER_TYPE: 'swin_small_patch4_window7_224'
STRIDE_SIZE: [16, 16]
INPUT:
SIZE_TRAIN: [384, 128]
SIZE_TEST: [384, 128]
PROB: 0.5 # random horizontal flip
RE_PROB: 0.5 # random erasing
PADDING: 10
PIXEL_MEAN: [0.5, 0.5, 0.5]
PIXEL_STD: [0.5, 0.5, 0.5]
DATASETS:
NAMES: ('msmt17')
ROOT_DIR: ('/TransReID/data')
DATALOADER:
SAMPLER: 'softmax_triplet'
NUM_INSTANCE: 4
NUM_WORKERS: 8
SOLVER:
OPTIMIZER_NAME: 'SGD'
MAX_EPOCHS: 120
BASE_LR: 0.0008
WARMUP_EPOCHS: 20
IMS_PER_BATCH: 64
WARMUP_METHOD: 'cosine'
LARGE_FC_LR: False
CHECKPOINT_PERIOD: 120
LOG_PERIOD: 20
EVAL_PERIOD: 10
WEIGHT_DECAY: 1e-4
WEIGHT_DECAY_BIAS: 1e-4
BIAS_LR_FACTOR: 2
TEST:
EVAL: True
IMS_PER_BATCH: 256
RE_RANKING: False
WEIGHT: ''
NECK_FEAT: 'before'
FEAT_NORM: 'yes'
OUTPUT_DIR: './log/msmt17/swin_small'
2024-05-11 09:36:30 transreid INFO: Running with config:
DATALOADER:
NUM_INSTANCE: 4
NUM_WORKERS: 8
REMOVE_TAIL: 0
SAMPLER: softmax_triplet
DATASETS:
NAMES: msmt17
ROOT_DIR: /media/lab/Disk1/TransReID/data
ROOT_TRAIN_DIR: ../data
ROOT_VAL_DIR: ../data
INPUT:
PADDING: 10
PIXEL_MEAN: [0.5, 0.5, 0.5]
PIXEL_STD: [0.5, 0.5, 0.5]
PROB: 0.5
RE_PROB: 0.5
SIZE_TEST: [384, 128]
SIZE_TRAIN: [384, 128]
MODEL:
ATT_DROP_RATE: 0.0
COS_LAYER: False
DEVICE: cuda
DEVICE_ID: 0
DEVIDE_LENGTH: 4
DIST_TRAIN: False
DROPOUT_RATE: 0.0
DROP_OUT: 0.0
DROP_PATH: 0.1
FEAT_DIM: 512
GEM_POOLING: False
ID_LOSS_TYPE: softmax
ID_LOSS_WEIGHT: 1.0
IF_LABELSMOOTH: off
IF_WITH_CENTER: no
JPM: False
LAST_STRIDE: 1
METRIC_LOSS_TYPE: triplet
NAME: transformer
NECK: bnneck
NO_MARGIN: True
PRETRAIN_CHOICE: imagenet
PRETRAIN_HW_RATIO: 2
PRETRAIN_PATH:
REDUCE_FEAT_DIM: False
RE_ARRANGE: True
SEMANTIC_WEIGHT: 0.2
SHIFT_NUM: 5
SHUFFLE_GROUP: 2
SIE_CAMERA: False
SIE_COE: 3.0
SIE_VIEW: False
STEM_CONV: False
STRIDE_SIZE: [16, 16]
TRANSFORMER_TYPE: swin_small_patch4_window7_224
TRIPLET_LOSS_WEIGHT: 1.0
OUTPUT_DIR: ./log/msmt17/swin_small
SOLVER:
BASE_LR: 0.0008
BIAS_LR_FACTOR: 2
CENTER_LOSS_WEIGHT: 0.0005
CENTER_LR: 0.5
CHECKPOINT_PERIOD: 120
COSINE_MARGIN: 0.5
COSINE_SCALE: 30
EVAL_PERIOD: 10
GAMMA: 0.1
IMS_PER_BATCH: 64
LARGE_FC_LR: False
LOG_PERIOD: 20
MARGIN: 0.3
MAX_EPOCHS: 120
MOMENTUM: 0.9
OPTIMIZER_NAME: SGD
SEED: 1234
STEPS: (40, 70)
TRP_L2: False
WARMUP_EPOCHS: 20
WARMUP_FACTOR: 0.01
WARMUP_METHOD: cosine
WEIGHT_DECAY: 0.0001
WEIGHT_DECAY_BIAS: 0.0001
TEST:
DIST_MAT: dist_mat.npy
EVAL: True
FEAT_NORM: yes
IMS_PER_BATCH: 256
NECK_FEAT: before
RE_RANKING: True
WEIGHT: ./log/msmt17/swin_small/transformer_120.pth
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} cam_container
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} cam_container
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} cam_container
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} cam_container
=> MSMT17 loaded
2024-05-11 09:36:31 transreid.check INFO: Dataset statistics:
2024-05-11 09:36:31 transreid.check INFO: ----------------------------------------
2024-05-11 09:36:31 transreid.check INFO: subset | # ids | # images | # cameras
2024-05-11 09:36:31 transreid.check INFO: ----------------------------------------
2024-05-11 09:36:31 transreid.check INFO: train | 1041 | 32621 | 15
2024-05-11 09:36:31 transreid.check INFO: query | 3060 | 11659 | 15
2024-05-11 09:36:31 transreid.check INFO: gallery | 3060 | 82161 | 15
2024-05-11 09:36:31 transreid.check INFO: ----------------------------------------
using img_triplet sampler
using Transformer_type: swin_small_patch4_window7_224 as a backbone
/media/lab/Disk1/SOLIDER-REID/model/backbones/swin_transformer.py:1159: UserWarning: DeprecationWarning: pretrained is deprecated, please use "init_cfg" instead
warnings.warn('DeprecationWarning: pretrained is deprecated, '
===========building transformer===========
Loading pretrained model from ./log/msmt17/swin_small/transformer_120.pth
2024-05-11 09:36:37 transreid.test INFO: Enter inferencing
The test feature is normalized
=> Enter reranking
/media/lab/Disk1/SOLIDER-REID/utils/reranking.py:40: UserWarning: This overload of addmm_ is deprecated:
addmm_(Number beta, Number alpha, Tensor mat1, Tensor mat2)
Consider using one of the following signatures instead:
addmm_(Tensor mat1, Tensor mat2, *, Number beta, Number alpha) (Triggered internally at ../torch/csrc/utils/python_arg_parser.cpp:1630.)
distmat.addmm_(1, -2, feat, feat.t())
Killed
可能存在内存泄露导致内存溢出被Killed,实验环境为128G内存,请指教是哪里出问题了?感谢!
The text was updated successfully, but these errors were encountered: