-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathutil_scripts.py
executable file
·239 lines (212 loc) · 11.7 KB
/
util_scripts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import os
import time
import re
import bisect
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import scipy.ndimage
import scipy.misc
import config
import misc
import tfutil
import train
import dataset
#----------------------------------------------------------------------------
# Generate random images or image grids using a previously trained network.
# To run, uncomment the appropriate line in config.py and launch train.py.
def generate_fake_images(run_id, snapshot=None, grid_size=[1,1], num_pngs=1, image_shrink=1, png_prefix=None, random_seed=1000, minibatch_size=8):
network_pkl = misc.locate_network_pkl(run_id, snapshot)
if png_prefix is None:
png_prefix = misc.get_id_string_for_network_pkl(network_pkl) + '-'
random_state = np.random.RandomState(random_seed)
print('Loading network from "%s"...' % network_pkl)
G, D, Gs = misc.load_network_pkl(run_id, snapshot)
result_subdir = misc.create_result_subdir(config.result_dir, config.desc)
for png_idx in range(num_pngs):
print('Generating png %d / %d...' % (png_idx, num_pngs))
latents = misc.random_latents(np.prod(grid_size), Gs, random_state=random_state)
labels = np.zeros([latents.shape[0], 0], np.float32)
images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8)
misc.save_image_grid(images, os.path.join(result_subdir, '%s%06d.png' % (png_prefix, png_idx)), [0,255], grid_size)
open(os.path.join(result_subdir, '_done.txt'), 'wt').close()
#----------------------------------------------------------------------------
# Generate MP4 video of random interpolations using a previously trained network.
# To run, uncomment the appropriate line in config.py and launch train.py.
def generate_interpolation_video(run_id, snapshot=None, grid_size=[1,1], image_shrink=1, image_zoom=1, duration_sec=60.0, smoothing_sec=1.0, mp4=None, mp4_fps=30, mp4_codec='libx265', mp4_bitrate='16M', random_seed=1000, minibatch_size=8):
network_pkl = misc.locate_network_pkl(run_id, snapshot)
if mp4 is None:
mp4 = misc.get_id_string_for_network_pkl(network_pkl) + '-lerp.mp4'
num_frames = int(np.rint(duration_sec * mp4_fps))
random_state = np.random.RandomState(random_seed)
print('Loading network from "%s"...' % network_pkl)
G, D, Gs = misc.load_network_pkl(run_id, snapshot)
print('Generating latent vectors...')
shape = [num_frames, np.prod(grid_size)] + Gs.input_shape[1:] # [frame, image, channel, component]
all_latents = random_state.randn(*shape).astype(np.float32)
all_latents = scipy.ndimage.gaussian_filter(all_latents, [smoothing_sec * mp4_fps] + [0] * len(Gs.input_shape), mode='wrap')
all_latents /= np.sqrt(np.mean(np.square(all_latents)))
# Frame generation func for moviepy.
def make_frame(t):
frame_idx = int(np.clip(np.round(t * mp4_fps), 0, num_frames - 1))
latents = all_latents[frame_idx]
labels = np.zeros([latents.shape[0], 0], np.float32)
images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8)
grid = misc.create_image_grid(images, grid_size).transpose(1, 2, 0) # HWC
if image_zoom > 1:
grid = scipy.ndimage.zoom(grid, [image_zoom, image_zoom, 1], order=0)
if grid.shape[2] == 1:
grid = grid.repeat(3, 2) # grayscale => RGB
return grid
# Generate video.
import moviepy.editor # pip install moviepy
result_subdir = misc.create_result_subdir(config.result_dir, config.desc)
moviepy.editor.VideoClip(make_frame, duration=duration_sec).write_videofile(os.path.join(result_subdir, mp4), fps=mp4_fps, codec='libx264', bitrate=mp4_bitrate)
open(os.path.join(result_subdir, '_done.txt'), 'wt').close()
#----------------------------------------------------------------------------
# Generate MP4 video of training progress for a previous training run.
# To run, uncomment the appropriate line in config.py and launch train.py.
def generate_training_video(run_id, duration_sec=20.0, time_warp=1.5, mp4=None, mp4_fps=30, mp4_codec='libx265', mp4_bitrate='16M'):
src_result_subdir = misc.locate_result_subdir(run_id)
if mp4 is None:
mp4 = os.path.basename(src_result_subdir) + '-train.mp4'
# Parse log.
times = []
snaps = [] # [(png, kimg, lod), ...]
with open(os.path.join(src_result_subdir, 'log.txt'), 'rt') as log:
for line in log:
k = re.search(r'kimg ([\d\.]+) ', line)
l = re.search(r'lod ([\d\.]+) ', line)
t = re.search(r'time (\d+d)? *(\d+h)? *(\d+m)? *(\d+s)? ', line)
if k and l and t:
k = float(k.group(1))
l = float(l.group(1))
t = [int(t.group(i)[:-1]) if t.group(i) else 0 for i in range(1, 5)]
t = t[0] * 24*60*60 + t[1] * 60*60 + t[2] * 60 + t[3]
png = os.path.join(src_result_subdir, 'fakes%06d.png' % int(np.floor(k)))
if os.path.isfile(png):
times.append(t)
snaps.append((png, k, l))
assert len(times)
# Frame generation func for moviepy.
png_cache = [None, None] # [png, img]
def make_frame(t):
wallclock = ((t / duration_sec) ** time_warp) * times[-1]
png, kimg, lod = snaps[max(bisect.bisect(times, wallclock) - 1, 0)]
if png_cache[0] == png:
img = png_cache[1]
else:
img = scipy.misc.imread(png)
while img.shape[1] > 1920 or img.shape[0] > 1080:
img = img.astype(np.float32).reshape(img.shape[0]//2, 2, img.shape[1]//2, 2, -1).mean(axis=(1,3))
png_cache[:] = [png, img]
img = misc.draw_text_label(img, 'lod %.2f' % lod, 16, img.shape[0]-4, alignx=0.0, aligny=1.0)
img = misc.draw_text_label(img, misc.format_time(int(np.rint(wallclock))), img.shape[1]//2, img.shape[0]-4, alignx=0.5, aligny=1.0)
img = misc.draw_text_label(img, '%.0f kimg' % kimg, img.shape[1]-16, img.shape[0]-4, alignx=1.0, aligny=1.0)
return img
# Generate video.
import moviepy.editor # pip install moviepy
result_subdir = misc.create_result_subdir(config.result_dir, config.desc)
moviepy.editor.VideoClip(make_frame, duration=duration_sec).write_videofile(os.path.join(result_subdir, mp4), fps=mp4_fps, codec='libx264', bitrate=mp4_bitrate)
open(os.path.join(result_subdir, '_done.txt'), 'wt').close()
#----------------------------------------------------------------------------
# Evaluate one or more metrics for a previous training run.
# To run, uncomment one of the appropriate lines in config.py and launch train.py.
def evaluate_metrics(run_id, log, metrics, num_images, real_passes, minibatch_size=None):
metric_class_names = {
'swd': 'metrics.sliced_wasserstein.API',
'fid': 'metrics.frechet_inception_distance.API',
'is': 'metrics.inception_score.API',
'msssim': 'metrics.ms_ssim.API',
}
# Locate training run and initialize logging.
result_subdir = misc.locate_result_subdir(run_id)
snapshot_pkls = misc.list_network_pkls(result_subdir, include_final=False)
assert len(snapshot_pkls) >= 1
log_file = os.path.join(result_subdir, log)
print('Logging output to', log_file)
misc.set_output_log_file(log_file)
# Initialize dataset and select minibatch size.
dataset_obj, mirror_augment = misc.load_dataset_for_previous_run(result_subdir, verbose=True, shuffle_mb=0)
if minibatch_size is None:
minibatch_size = np.clip(8192 // dataset_obj.shape[1], 4, 256)
# Initialize metrics.
metric_objs = []
for name in metrics:
class_name = metric_class_names.get(name, name)
print('Initializing %s...' % class_name)
class_def = tfutil.import_obj(class_name)
image_shape = [3] + dataset_obj.shape[1:]
obj = class_def(num_images=num_images, image_shape=image_shape, image_dtype=np.uint8, minibatch_size=minibatch_size)
tfutil.init_uninited_vars()
mode = 'warmup'
obj.begin(mode)
for idx in range(10):
obj.feed(mode, np.random.randint(0, 256, size=[minibatch_size]+image_shape, dtype=np.uint8))
obj.end(mode)
metric_objs.append(obj)
# Print table header.
print()
print('%-10s%-12s' % ('Snapshot', 'Time_eval'), end='')
for obj in metric_objs:
for name, fmt in zip(obj.get_metric_names(), obj.get_metric_formatting()):
print('%-*s' % (len(fmt % 0), name), end='')
print()
print('%-10s%-12s' % ('---', '---'), end='')
for obj in metric_objs:
for fmt in obj.get_metric_formatting():
print('%-*s' % (len(fmt % 0), '---'), end='')
print()
# Feed in reals.
for title, mode in [('Reals', 'reals'), ('Reals2', 'fakes')][:real_passes]:
print('%-10s' % title, end='')
time_begin = time.time()
labels = np.zeros([num_images, dataset_obj.label_size], dtype=np.float32)
[obj.begin(mode) for obj in metric_objs]
for begin in range(0, num_images, minibatch_size):
end = min(begin + minibatch_size, num_images)
images, labels[begin:end] = dataset_obj.get_minibatch_np(end - begin)
if mirror_augment:
images = misc.apply_mirror_augment(images)
if images.shape[1] == 1:
images = np.tile(images, [1, 3, 1, 1]) # grayscale => RGB
[obj.feed(mode, images) for obj in metric_objs]
results = [obj.end(mode) for obj in metric_objs]
print('%-12s' % misc.format_time(time.time() - time_begin), end='')
for obj, vals in zip(metric_objs, results):
for val, fmt in zip(vals, obj.get_metric_formatting()):
print(fmt % val, end='')
print()
# Evaluate each network snapshot.
for snapshot_idx, snapshot_pkl in enumerate(reversed(snapshot_pkls)):
prefix = 'network-snapshot-'; postfix = '.pkl'
snapshot_name = os.path.basename(snapshot_pkl)
assert snapshot_name.startswith(prefix) and snapshot_name.endswith(postfix)
snapshot_kimg = int(snapshot_name[len(prefix) : -len(postfix)])
print('%-10d' % snapshot_kimg, end='')
mode ='fakes'
[obj.begin(mode) for obj in metric_objs]
time_begin = time.time()
with tf.Graph().as_default(), tfutil.create_session(config.tf_config).as_default():
G, D, Gs = misc.load_pkl(snapshot_pkl)
for begin in range(0, num_images, minibatch_size):
end = min(begin + minibatch_size, num_images)
latents = misc.random_latents(end - begin, Gs)
images = Gs.run(latents, labels[begin:end], num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_dtype=np.uint8)
if images.shape[1] == 1:
images = np.tile(images, [1, 3, 1, 1]) # grayscale => RGB
[obj.feed(mode, images) for obj in metric_objs]
results = [obj.end(mode) for obj in metric_objs]
print('%-12s' % misc.format_time(time.time() - time_begin), end='')
for obj, vals in zip(metric_objs, results):
for val, fmt in zip(vals, obj.get_metric_formatting()):
print(fmt % val, end='')
print()
print()
#----------------------------------------------------------------------------