-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstanfitter.py
665 lines (567 loc) · 25.2 KB
/
stanfitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
"""
A wrapper around PyStan's compilation and fitting methods, providing a somewhat
more "Pythonic" interface to the fit results.
For PyStan info:
https://pystan.readthedocs.org/en/latest/getting_started.html
Created 2014-11-04 by Tom Loredo
2015-04-17: Modified for BDA class
"""
import cPickle, glob
from hashlib import md5
from collections import Mapping, OrderedDict
import numpy as np
from numpy import random
import matplotlib.pyplot as plt
import platform
plat_is_win = platform.system() == 'Windows'
if plat_is_win:
# setuptools MUST be imported (BEFORE pystan) on Windows; it alters
# distutils, enabling PyStan to find the correct MVC compiler. You
# will also need a distutils config file indicating that the MVC compiler
# should be used; it should have the following two lines as content
# (without the Python comment hashes):
# [build]
# compiler = msvc
# For the config file name and location (local and global choices), see:
# https://docs.python.org/2/install/#distutils-configuration-files
import setuptools, pystan
else:
import pystan
__all__ = ['StanFitter']
# ImmutableAttrDict based on discussion from:
# http://stackoverflow.com/questions/9997176/immutable-dictionary-only-use-as-a-key-for-another-dictionary
class ImmutableAttrDict(Mapping):
def __init__(self, *args, **kwargs):
self._odict = OrderedDict(*args, **kwargs) # will copy an input dict
# Copy items to __dict__ so they're discoverable by IPython.
for key, value in self._odict.items():
if self.__dict__.has_key(key):
raise ValueError('Key collision!')
self.__dict__[key] = value
def _asdict(self):
"""
Return a new OrderedDict holding the (key, value) pairs.
"""
return OrderedDict(self._odict)
def __getitem__(self, key):
return self._odict[key]
def __len__(self):
return len(self._odict)
def __iter__(self):
return iter(self._odict)
def __eq__(self, other):
return self._odict == other._odict
def __getattr__(self, name):
try:
return self._odict[name]
except KeyError: # access has_key, etc.
return getattr(self._odict, name)
def __setattr__(self, name, value):
if name == '_odict':
self.__dict__['_odict'] = value
elif self._odict.has_key(name):
raise TypeError('Existing attributes may not be altered!')
else:
if self.__dict__.has_key(name):
raise ValueError('Key collision!')
self._odict[name] = value
# Copy to __dict__ so it's discoverable by IPython.
self.__dict__[name] = value
# def __delattr__(self, name):
# del self._od[name]
# TODO: Rework ParamHandler to avoid self.__dict__ = self; see:
# http://stackoverflow.com/questions/25660358/accessing-ordereddict-keys-like-attributes-in-python
# See ParamValueContainer above.
class ParamHandler(dict):
"""
A container and handler for posterior sample data for a scalar parameter.
This is mostly a dict-like object with access to data also possible via
attributes, based on AttrDict from:
http://stackoverflow.com/questions/4984647/accessing-dict-keys-like-an-attribute-in-python
"""
def __init__(self, *args, **kwargs):
if not kwargs.has_key('fit'):
raise ValueError('fit argument required!')
if not kwargs.has_key('name'):
raise ValueError('name argument required!')
super(ParamHandler, self).__init__(*args, **kwargs)
# NOTE: The following works only because the dict superclass is
# implemented in C, with special members in a struct rather than
# a __dict___, so they remain accessible from self.
self.__dict__ = self
def subsample(self, n):
"""
Return a random subsample of size n from the merged, thinned chains.
Note that calling this separately for different parameters will not
produced a set of parameter vectors from the posterior; the parameter
values will be from different times in the (tinned) chains.
"""
if n > len(self.thinned):
raise ValueError('Requested sample size > thinned chain length!')
return random.choice(self.thinned, n, replace=False)
def trace(self, chain=None, step=True, axes=None,
xlabel=None, ylabel=None, **kwds):
"""
Make a trace plot for the samples in chain `chain`. If `chain` is None,
show traces for all chains, iterating colors accorting to mpl defaults.
By default, a step plot is used; set `step` to False for a line plot.
"""
if axes is None:
fig = plt.figure(figsize=(10,4))
fig.subplots_adjust(bottom=.2, top=.9)
axes = plt.subplot(111)
if chain is None:
if step:
times = xrange(self.chains.shape[0])
for c in range(self.chains.shape[1]):
axes.step(times, self.chains[:,c], where='pre',
label='%i'%c, **kwds)
else:
for c in range(self.chains.shape[1]):
axes.plot(self.chains[:,c], **kwds)
else:
if step:
times = xrange(self.chains.shape[0])
axes.step(times, self.chains[:,chain], where='pre',
label='%i'%c, **kwds)
else:
axes.plot(self.chains[:,chain], **kwds)
if xlabel:
axes.set_xlabel(xlabel)
else:
axes.set_xlabel('Sample #')
if ylabel:
axes.set_ylabel(ylabel)
else:
axes.set_ylabel(self.name)
if chain is None:
axes.legend(fontsize='small', labelspacing=.2, borderpad=.3)
axes.figure.show() # needed for display update with axes
def str(self, fmt=None):
"""
Return a string summarizing fit results.
If `fmt` is provided it is used as the format for the float values
in point and interval estimates. The default format is '.3g' for
all parameters except log_p, for which it is '.2f'.
"""
if fmt is None:
if self.name == 'log_p':
fmt = '.2f' # log_p scale is absolute, ~1. per param
else:
fmt = '.3g'
s = 'Parameter <{}> summary:\n'.format(self.name)
s += 'Convergence and mixing diagnostics: '
s += 'Rhat = {:.2f}, ESS = {:d}\n'.format(self.Rhat, int(self.ess))
s += 'Mean (se), median, sd: {:{fmt}} ({:{fmt}}), {:{fmt}}, {:{fmt}}\n'.format(
self.mean, self.se_mean, self.median, self.sd, fmt=fmt)
s += 'Central intvls: 50%: [{:{fmt}}, {:{fmt}}]; 95%: [{:{fmt}}, {:{fmt}}]\n'.format(
self.q25, self.q75, self.q025, self.q975, fmt=fmt)
return s
def __str__(self):
return self.str()
def fitparams2attrs(fit, obj):
"""
Extract parameter space info from a Stan fit object, storing it as
attributes of the passed object `obj`.
Extracted info includes (by attribute name):
`par_names` : list of names of model parameters (unicode strings), not
including the log_p "parameter" also tracked by Stan
`par_dims` : dict of dimensions of parameters
`par_attr_names` : dict of attribute names used to store parameter values
in a StanFitResults instance; this is usually just the parameter name
unless there is a collision with one of the initial attributes of
the instance, in which case an underscore is appended to the name
"""
obj.par_names = fit._get_param_names() # unicode param names
obj.par_dims = {}
for name, dim in zip(obj.par_names, fit._get_param_dims()):
obj.par_dims[name] = dim
# Make an index for accessing chains in fit.extract() results.
# Note that 'lp__' is included here, and used in _make_param_handler.
indx = 0
obj.par_indx = {}
for name in obj.par_names:
obj.par_indx[name] = indx
dims = obj.par_dims[name]
if dims:
indx += np.prod(dims)
else:
indx += 1 # technically could use prod(dims)=1. for dims=[]
# obj.log_p_indx = obj.par_indx['lp__']
# Stan includes log(prob) in the param list; we'll track it separately
# so remove it from the param info.
indx_of_lp = obj.par_names.index('lp__')
del obj.par_names[indx_of_lp]
del obj.par_dims['lp__']
# del obj.par_indx['lp__']
# Collect attribute names for storing param info, protecting from name
# collision in the namespace of `obj`.
# *** This doesn't protect against subsequent collision/overwriting of
# parameter attributes by subsequent values. ***
# TODO: Make sure all needed class attributes are defined before this
# runs, or otherwise protected.
par_attr_names = {}
for name in obj.par_names:
if hasattr(obj, name):
name_ = name + '_'
if hasattr(obj, name_):
raise ValueError('Cannot handle param name collision!')
print '*** Access param "{0}" via "{0}_". ***'.format(name)
par_attr_names[name] = name_
else:
par_attr_names[name] = name
obj.par_attr_names = par_attr_names
class StanFitResults:
"""
Container class storing all results from a Stan fit, i.e., a run of
a StanModel instance's sample() command.
"""
# These keys are from the raw summary col names; hope they won't change!
# Map them to valid Python attribute names.
col_map = {'mean':'mean',
'se_mean' : 'se_mean',
'sd' : 'sd',
'2.5%' : 'q025',
'25%' : 'q25',
'50%' : 'median',
'75%' : 'q75',
'97.5%' : 'q975',
'n_eff' : 'ess',
'Rhat' : 'Rhat'}
def __init__(self, fitter, stan_fit):
"""
Gather results from a StanModel fit (a posterior sampling run),
providing access via attributes.
Parameters
----------
fitter : StanFitter instance
The StanFitter instance that implemented the fit; model properties
describing the fit are accessed from `fitter`
fit : PyStan fit instance
PyStan fit object with results of a posterior sampling run
"""
self.fitter = fitter
self.fit = stan_fit
fitparams2attrs(stan_fit, self)
self._get_table_info()
self._gather_sample_results()
def _get_table_info(self):
"""
Get information about the summary table from a fit to the current data.
This information (largely dimensional/indexing) is in principle
available once the model and data are both defined, but it is only
available from Stan post-fit.
"""
# Collect info from the fit that shouldn't change if the fit is
# re-run.
self.raw_summary = self.fit.summary() # dict of fit statistics (Rhat, ess...)
# Column names list the various types of statistics.
self.sum_cols = self.raw_summary['summary_colnames']
# Get indices into the summary table for the columns.
self.col_indices = {}
for i, name in enumerate(self.sum_cols):
self.col_indices[name] = i
# Row names list the parameters; convert from an ndarray to a list.
self.sum_rows = [name for name in self.raw_summary['summary_rownames']]
# Get indices for params; for vectors store the offset for 0th entry.
self.par_indices = {}
for name in self.par_names:
if not self.par_dims[name]: # scalar param
self.par_indices[name] = self.sum_rows.index(name)
else: # vector
self.par_indices[name] = self.sum_rows.index(name+'[0]')
def _make_param_handler(self, name, row=None, item=None, log_p=False):
"""
Create a ParamHandler instance for parameter name `name` and make
it an attribute, using data from (row,col) in the fit summary table.
Call with (name, row) for a scalar parameter.
Call with (name, row, item) for an element of a vector parameter.
Call with (name, log_p=True) for log(prob).
"""
# Set the key to use for Stan table lookups.
if log_p:
key = 'lp__'
row = -1
else:
key = name
# Scalars and vectors handle names differently; vectors use `item`.
if item is None: # scalar case
pname = name # name to store in the handler
prow = row
permuted = self.permuted[key]
chains = self.chains[:,:,self.par_indx[key]]
else: # vector case
pname = name + '[%i]' % item
prow = row + item
permuted = self.permuted[key][:,item]
chains = self.chains[:,:,self.par_indx[key]+item]
param = ParamHandler(fit=self.fit, name=pname)
param['permuted'] = permuted
param['chains'] = chains
for stat in self.sum_cols:
col = self.col_indices[stat]
param[self.col_map[stat]] = self.summaries[prow,col]
# 95% central credible interval:
param['intvl95'] = (param['q025'], param['q975'])
return param
def _gather_sample_results(self):
"""
Define attributes holding results from the current fit.
"""
# Extract chains, kept separate and ordered (permuted=False), with
# burn-in discarded (inc_warmup=False), as an array indexed as
# [sample #, chain #, param #]; note that log_p is added to the end
# of the param list.
self.chains = self.fit.extract(permuted=False)
# Collect samples from the chains, merged via random permutation
# (permuted=True), with burn-in discarded (inc_warmup=False), as a
# param-keyed dict.
self.permuted = self.fit.extract(permuted=True)
self.summaries = self.raw_summary['summary']
# Populate namespace with handlers for each param, holding
# various data from the fit.
self.min_ess = None
for name in self.par_names:
attr_name = self.par_attr_names[name]
row = self.par_indices[name]
if not self.par_dims[name]: # scalar param
param = self._make_param_handler(name, row)
setattr(self, attr_name, param)
elif len(self.par_dims[name]) == 1: # vector param as list attr
l = []
for i in xrange(self.par_dims[name][0]):
param = self._make_param_handler(name, row, i)
l.append(param)
setattr(self, attr_name, l)
else:
# Could just direct user to summary attribute...
raise NotImplementedError('Only scalar & vector params supported!')
# Find minimum ESS, to guide thinning.
if self.min_ess is None:
self.min_ess = param.ess
else:
self.min_ess = min(self.min_ess, param.ess)
# Make a handler for log_p, the last "parameter" in the Stan table.
param = self._make_param_handler('log_p', log_p=True)
setattr(self, 'log_p', param)
self.min_ess = min(self.min_ess, param.ess)
# Provide samples merged from thinned chains. These are views of
# the chains; the data are not copied.
clen, nc, npar = self.chains.shape # chain length, # chains, # params
tb = self.thinned_by = int(np.ceil(clen / self.min_ess))
for name in self.par_names:
attr_name = self.par_attr_names[name]
if not self.par_dims[name]: # scalar param
param = getattr(self, attr_name)
# Note that a chain is a *column*, not a row.
thinned = param.chains[::tb,:]
param.thinned = np.ravel(thinned, order='F')
elif len(self.par_dims[name]) == 1: # vector param as list
params = getattr(self, attr_name)
for param in params:
thinned = param.chains[::tb,:]
param.thinned = np.ravel(thinned, order='F')
param = getattr(self, 'log_p')
thinned = param.chains[::tb,:]
param.thinned = np.ravel(thinned, order='F')
self.n_thinned = param.thinned.shape[0]
def subsample_indices(self, n):
"""
Return a set of indices defining a random subsample of size n from the
merged, thinned chains.
"""
if n > self.n_thinned:
raise ValueError('Requested sample size > thinned chain length!')
return random.choice(self.n_thinned, n)
def point(self, i):
"""
Return a point in parameter space corresponding to sample `i` in the
thinned, merged chain for each parameter. The point is returned as an
object with both a dict and an attribute interface to the parameter
values, accessed by parameter name.
"""
if i > self.n_thinned:
raise ValueError('Requested sample is beyond thinned chain length!')
d = {}
for name in self.par_names:
attr_name = self.par_attr_names[name]
if not self.par_dims[name]: # scalar param
param = getattr(self, name)
d[attr_name] = param.thinned[i]
elif len(self.par_dims[name]) == 1: # vector param as list
params = getattr(self, attr_name)
l = []
for param in params:
l.append(param.thinned[i])
d[attr_name] = np.array(l)
d['log_p'] = getattr(self, 'log_p').thinned[i]
return ImmutableAttrDict(d)
def log_prob_upar(self, upar_array, adjust_transform=False):
"""
Compute the log posterior PDF for the point in *unconstrained*
parameter space specified by the array `upar_array`.
Internally, Stan works in a parameter space in which the support
for each parameter is the entire real line. If a model parameter
is constrained (e.g., must be positive), Stan internally transforms
to an unconstrained version of the parameter. This method takes
unconstrained parameter values as its arguments.
When `adjust_transform` is True, a log Jacobian term is added, as
used by Stan internally. It should be false for tasks such as
finding the mode in the original parameter space.
"""
return self.fit.log_prob(upar_array, adjust_transform)
def stan_plot(self, par_names=None):
"""
Create a new mpl figure with Stan's default summary plot,
with a marginal PDF estimate and a traceplot produced for model
parameters. The traceplot is created by merging
all chains and randomly permuting the compiled samples.
If `par_names` is None, the plot will contain results for all
parameters (in subplots as necessary). Otherwise, it should be
a list of names of parameters whose summary plots will be produced.
Stan's plot is in fact PyMC's traceplot.
The resulting figure instance is returned.
"""
return self.fit.plot(par_names)
def __str__(self):
return str(self.fit)
class StanFitter:
"""
Helper class for PyStan model fitting, providing automatic caching of
a model, and easy access to fit results via attributes.
Only scalar and vector parameters are supported; in particular,
matrix-valued parameters are not currently supported.
"""
def __init__(self, source, data=None, n_chains=None, n_iter=None,
name=None, n_jobs=-1, **kwds):
"""
Prepare a Stan model; perform a fit (computing posterior samples
and summary statistics) if `data`, `n_chains` and `n_iter` are
provided. If only a subset of these arguments are provided, save
them for possible use in future fits run with the `sample()` method.
If the model is new (or revised), it is compiled and the compiled
code is cached. If the model has been previously compiled (in the
runtime directory), the cached code is used, accelerating startup.
Parameters
----------
source : string
Path to a file (ending with ".stan") containing the Stan code for
a model, or a string containing the code itself
data : dict
Dict of data corresponding to the model's data block
n_chains : int
Number of posterior sampler chains to run
n_iter : int
Number of iterations per chain for the initial run
n_jobs : int, optional
Sample in parallel if possible, using the multiprocessing module
to distribute computations among the specified number of jobs.
(Note that PyStan on Windows does not currently support
multiprocessing.) If -1, all CPUs are used. All Windows runs
use n_jobs=1.
"""
self.name = name
if source.count('\n') == 0 and source[-5:] == '.stan':
with open(source, 'r') as sfile:
self.code = sfile.read()
else:
self.code = source
self.code_hash = md5(self.code.encode('ascii')).hexdigest()
# ID is model name + hash, or just hash if no name:
if name:
self.id = '{}-{}'.format(name, self.code_hash)
else:
self.id = 'Anon-{}'.format(self.code_hash)
self._compile()
self.data = data
self.n_chains = n_chains
self.n_iter = n_iter
self.set_n_jobs(n_jobs)
if data:
self.set_data(data)
# An actual fit, if one is fully specified.
if data is not None and n_chains is not None and n_iter is not None:
fit = self.sample(data=data, chains=n_chains, iter=n_iter, n_jobs=n_jobs, **kwds)
self.fits = [fit]
return fit
else:
self.fits = None
return None
def _compile(self):
"""
Compile a Stan model if necessary, loading a previously compiled
version if available.
"""
cache_path = 'cached-model-{}.pkl'.format(self.id)
files = glob.glob(cache_path)
if files:
cache_path = files[0]
self.name, self.id, self.model = cPickle.load(open(files[0], 'rb'))
print 'Using cached StanModel from {}...'.format(files[0])
else:
self.model = pystan.StanModel(model_code=self.code)
with open(cache_path, 'wb') as f:
cPickle.dump((self.name, self.id, self.model), f)
def set_n_jobs(self, n_jobs):
"""
Set the number of multiprocessing jobs to use, adjusting the
number to always be 1 on Windows platforms.
If `n_jobs` is -1, all CPUs will be used (except on Windows).
"""
if plat_is_win:
self.n_jobs = 1
else:
self.n_jobs = n_jobs
def set_data(self, data):
"""
Set the data info dictionary, and collect info about parameters for an
application of the model to the dataset.
Note that since hierarchical models are supported by Stan, the
parameter space may not be completely defined until a dataset is
specified (the dataset size determines the number of latent
parameters in hierarchical models).
"""
self.data = data
self.fit = self.model.fit_class(self.data)
fitparams2attrs(self.fit, self)
def sample(self, n_iter=None, n_chains=None, data=None, **kwds):
"""
Run a posterior sampler using the compiled model, potentially using new
data.
The argument order was chosen to make it easiest to refit the same
data with another (perhaps longer) run of the sampler; sample(n) does
this.
This skips the model compilation step, but otherwise runs a fresh
MCMC chain.
"""
if n_iter is None:
n_iter = self.n_iter
else:
self.n_iter = n_iter
if data is not None:
self.set_data(data)
if n_chains is None:
n_chains = self.n_chains
else:
self.n_chains = n_chains
self.n_iter = n_iter
# The actual fit!
fit = self.model.sampling(data=self.data, chains=self.n_chains,
iter=self.n_iter, n_jobs=self.n_jobs, **kwds)
# fit = pystan.stan(fit=self.fit, data=self.data, chains=self.n_chains,
# iter=self.n_iter, **kwds)
# *** Consider gathering model info from the 1st fit to a data set
# here, e.g., as in _get_table_info().
return StanFitResults(self, fit)
def mode(self, **kwds):
"""
Return the mode of the posterior PDF as an object with both a dict
and an attribute interface to the parameter values.
Any keyword arguments are passed to PyStan's optimizing() method.
See the docstring for self.model.optimizing for more info. Do
not provide an as_vector argument.
"""
mode_dict = self.model.optimizing(data=self.data, as_vector=False, **kwds)
point = ImmutableAttrDict(mode_dict['par'])
point.log_p = mode_dict['value']
return point