-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsharpness.py
398 lines (313 loc) · 15.5 KB
/
sharpness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import torch
import utils
import copy
import math
from functools import partial
def zero_init_delta_dict(delta_dict, rho):
for param in delta_dict:
delta_dict[param] = torch.zeros_like(param).cuda()
delta_norm = torch.cat([delta_param.flatten() for delta_param in delta_dict.values()]).norm()
for param in delta_dict:
delta_dict[param] *= rho / delta_norm
return delta_dict
def random_init_on_sphere_delta_dict(delta_dict, rho, **unused_kwargs):
for param in delta_dict:
delta_dict[param] = torch.randn_like(param).cuda()
delta_norm = torch.cat([delta_param.flatten() for delta_param in delta_dict.values()]).norm()
for param in delta_dict:
delta_dict[param] *= rho / delta_norm
return delta_dict
def random_gaussian_dict(delta_dict, rho):
n_el = 0
for param_name, p in delta_dict.items():
delta_dict[param_name] = torch.randn_like(p).cuda()
n_el += p.numel()
for param_name in delta_dict.keys():
delta_dict[param_name] *= rho / (n_el ** .5)
return delta_dict
def random_init_lw(delta_dict, rho, orig_param_dict, norm='l2', adaptive=False):
assert norm in ['l2', 'linf'], f'Unknown perturbation model {norm}.'
for param in delta_dict:
if norm == 'l2':
delta_dict[param] = torch.randn_like(delta_dict[param]).cuda()
elif norm == 'linf':
delta_dict[param] = (2 * torch.rand_like(delta_dict[param], device='cuda') - 1)
for param in delta_dict:
param_norm_curr = orig_param_dict[param].abs() if adaptive else 1
delta_dict[param] *= rho * param_norm_curr
return delta_dict
def weight_ascent_step_momentum(
model, x, y, loss_f, orig_param_dict, delta_dict, prev_delta_dict,
step_size, rho, momentum=0.75, layer_name_pattern='all', no_grad_norm=False,
verbose=False, adaptive=False, eot_iter=0, eot_sigma=1., norm='linf'):
"""
model: w[k]
orig_param_dict: w[0]
delta_dict: w[k]-w[0]
prev_delta_dict: w[k-1]-w[0]
1-alpha: momentum coefficient
-----------------------------------------------
z[k+1] = P(w[k] + step_size*Grad F(w[k]))
w[k+1] = P(w[k] + alpha*(z[k+1]-w[k])+(1-alpha)*(w[k]-w[k-1]))
versions
- old -> L2-bound on all parameters, layer-wise rescaling
- lw_l2_indep -> L2-bound on each layer of rho * norm of the layer (if adaptive)
"""
delta_dict_backup = {param: delta_dict[param].clone() for param in delta_dict} # copy of perturbation dictionary (w[k]-w[0])
# curr_params = {name_p: p.clone() for name_p, p in model.named_parameters()}
utils.zero_grad(model)
output = model(x)
# print(output.data)
obj = loss_f(output, y)
obj.backward()
# # Average gradients in a neighborhood of current model.
# for _ in range(eot_iter):
# for n, p in model.named_parameters():
# p.data = curr_params[n] + torch.randn_like(p) * eot_sigma
# obj = loss_f(model(x), y) / (eot_iter + 1)
# obj.backward()
with torch.no_grad():
# Gradient ascent step, calculating perturbations
if norm == 'l2':
grad_norm = sum([param.grad.norm()**2 for _, param in model.named_parameters()])**0.5
for _, param in model.named_parameters():
delta_dict[param] += (
step_size / (grad_norm + 1e-12) * param.grad * (
1 if not adaptive else orig_param_dict[param].abs()))
elif norm == 'linf':
for _, param in model.named_parameters():
grad_sign_curr = param.grad.sign()
delta_dict[param] += (step_size * grad_sign_curr * (
1 if not adaptive else orig_param_dict[param].abs()))
else:
raise ValueError('wrong norm')
utils.zero_grad(model)
with torch.no_grad():
# Projection step I, rescaling perturbations
if norm == 'l2': # Project onto L2-ball of radius rho (* ||w|| if adaptive)
def weighted_norm(delta_dict):
return sum([((delta_dict[param] / (orig_param_dict[param].abs() if adaptive else 1))**2).sum() for param in delta_dict])**0.5
if not adaptive: # standard projection on the sphere
delta_norm = weighted_norm(delta_dict)
if delta_norm > rho:
for param in delta_dict:
delta_dict[param] *= rho / delta_norm
else: # projection on the ellipsoid
lmbd = 0.1 # weighted_norm(delta_dict_tmp) / 2 / rho - 0.5
max_lmbd_limit = 10.0
min_lmbd, max_lmbd = 0.0, max_lmbd_limit
delta_dict_tmp = {param: delta_dict[param].clone() for param in delta_dict}
curr_norm = new_norm = weighted_norm(delta_dict_tmp)
if curr_norm > rho:
while (new_norm - rho).abs() > 10**-5:
curr_norm = new_norm
for param in delta_dict:
c = 1/orig_param_dict[param].abs() if adaptive else 1
delta_dict_tmp[param] = delta_dict[param] / (1 + 2*lmbd*c**2)
new_norm = weighted_norm(delta_dict_tmp)
if new_norm > rho: # if the norm still exceeds rho, increase lmbd and set a new min_lmbd
lmbd, min_lmbd = (lmbd + max_lmbd) / 2, lmbd
else:
lmbd, max_lmbd = (min_lmbd + lmbd) / 2, lmbd
if (max_lmbd_limit - max_lmbd) < 10**-2:
max_lmbd_limit, max_lmbd = max_lmbd_limit*2, max_lmbd*2
# print(lmbd, weighted_norm(delta_dict_tmp))
delta_dict = {param: delta_dict_tmp[param].clone() for param in delta_dict_tmp}
elif norm == 'linf':
# Project onto Linf-ball of radius rho (* |w| if adaptive)
for param in delta_dict:
param_curr = orig_param_dict[param].abs() if adaptive else torch.ones_like(orig_param_dict[param])
delta_dict[param] = torch.max(
torch.min(delta_dict[param], param_curr * rho), -1. * param_curr * rho)
else:
raise ValueError('wrong norm')
# Average perturbations (apply momentum)
for param_name, param in model.named_parameters():
delta_dict[param] = (
momentum * delta_dict[param] + (1 - momentum) * prev_delta_dict[param])
# Applying perturbations
for param in model.parameters():
param.data = orig_param_dict[param] + delta_dict[param]
for param_name, param in model.named_parameters():
prev_delta_dict[param] = delta_dict_backup[param]
return delta_dict, prev_delta_dict
def eval_APGD_sharpness(
model, batches, loss_f, train_err, train_loss, rho=0.01,
step_size_mult=1, n_iters=200, layer_name_pattern='all',
n_restarts=1, min_update_ratio=0.75, rand_init=True,
no_grad_norm=False, verbose=False, return_output=False,
adaptive=False, version='default', norm='linf', **kwargs,
):
"""Computes worst-case sharpness for every batch independently, and returns
the average values.
"""
assert n_restarts == 1 or rand_init, 'Restarts need random init.'
del train_err
del train_loss
gradient_step_kwargs = kwargs.get('gradient_step_kwargs', {})
init_fn = partial(random_init_lw, norm=norm, adaptive=adaptive),
def get_loss_and_err(model, loss_fn, x, y):
"""Compute loss and class. error on a single batch."""
with torch.no_grad():
output = model(x)
loss = loss_fn(output, y)
err = (output.max(1)[1] != y).float().mean()
return loss.cpu().item(), err.cpu().item()
orig_model_state_dict = copy.deepcopy(model.state_dict())
orig_param_dict = {param: param.clone() for param in model.parameters()}
n_batches, delta_norm = 0, 0.
avg_loss, avg_err, avg_init_loss, avg_init_err = 0., 0., 0., 0.
output = ""
if version == 'default':
p = [0, 0.22]
w = [0, math.ceil(n_iters * 0.22)]
while w[-1] < n_iters and w[-1] != w[-2]:
p.append(p[-1] + max(p[-1] - p[-2] - 0.03, 0.06))
w.append(math.ceil(p[-1] * n_iters))
w = w[1:] # No check needed at the first iteration.
print(w)
step_size_scaler = .5
else:
raise ValueError(f'Unknown version {version}')
for i_batch, (x, _, y, _, _) in enumerate(batches):
x, y = x.cuda(), y.cuda()
# Loss and err on the unperturbed model.
init_loss, init_err = get_loss_and_err(model, loss_f, x, y)
# Accumulate over batches.
avg_init_loss += init_loss
avg_init_err += init_err
worst_loss_over_restarts = init_loss
worst_err_over_restarts = init_err
worst_delta_norm_over_restarts = 0.
for restart in range(n_restarts):
if rand_init:
delta_dict = {param: torch.zeros_like(param) for param in model.parameters()}
delta_dict = init_fn(delta_dict, rho, orig_param_dict=orig_param_dict)
for param in model.parameters():
param.data += delta_dict[param]
else:
delta_dict = {param: torch.zeros_like(param) for param in model.parameters()}
prev_delta_dict = {param: delta_dict[param].clone() for param in delta_dict}
worst_model_dict = copy.deepcopy(model.state_dict())
prev_worst_loss, worst_loss = init_loss, init_loss
worst_err = init_err
step_size, prev_step_size = 2 * rho * step_size_mult, 2 * rho * step_size_mult
prev_cp = 0
num_of_updates = 0
for i in range(n_iters):
delta_dict, prev_delta_dict = weight_ascent_step_momentum(
model, x, y, loss_f, orig_param_dict, delta_dict, prev_delta_dict,
step_size, rho, momentum=0.75, layer_name_pattern=layer_name_pattern,
no_grad_norm=no_grad_norm, verbose=False, adaptive=adaptive,
norm=norm, **gradient_step_kwargs)
with torch.no_grad():
curr_loss, curr_err = get_loss_and_err(model, loss_f, x, y)
delta_norm_total = torch.cat([delta_param.flatten() for delta_param in delta_dict.values()]).norm().item()
if curr_loss > worst_loss:
worst_loss = curr_loss
worst_err = curr_err
worst_model_dict = copy.deepcopy(model.state_dict())
worst_delta_norm = delta_norm_total
num_of_updates += 1
if i in w:
cond1 = num_of_updates < (min_update_ratio * (i - prev_cp))
cond2 = (prev_step_size == step_size) and (prev_worst_loss == worst_loss)
prev_step_size, prev_worst_loss, prev_cp = step_size, worst_loss, i
num_of_updates = 0
if cond1 or cond2:
print('Reducing step size.')
step_size *= step_size_scaler
model.load_state_dict(worst_model_dict)
str_to_log = '[batch={} restart={} iter={}] Sharpness: obj={:.4f}, err={:.2%}, delta_norm={:.5f} (step={:.5f})'.format(
i_batch + 1, restart + 1, i + 1, curr_loss - init_loss, curr_err - init_err, delta_norm_total, step_size)
if verbose:
print(str_to_log)
output += str_to_log + '\n'
# Keep the best values over restarts.
if worst_loss > worst_loss_over_restarts:
worst_loss_over_restarts = worst_loss
worst_err_over_restarts = worst_err
worst_delta_norm_over_restarts = worst_delta_norm
# Reload the unperturbed model for the next restart or batch.
model.load_state_dict(orig_model_state_dict)
if verbose:
print('')
# Accumulate over batches.
n_batches += 1
avg_loss += worst_loss_over_restarts
avg_err += worst_err_over_restarts
delta_norm = max(delta_norm, worst_delta_norm_over_restarts)
if verbose:
print('')
vals = (
(avg_loss - avg_init_loss) / n_batches,
(avg_err - avg_init_err) / n_batches,
delta_norm,
)
if return_output:
vals += (output,)
return vals
def eval_average_sharpness(
model,
batches,
loss_f,
n_iters=100,
rho=1.,
verbose=False,
adaptive=False,
return_output=True,
norm='l2'):
"""Average case sharpness with Gaussian noise ~ (0, rho)."""
def get_loss_and_err(model, loss_fn, x, y):
"""Compute loss and class. error on a single batch."""
with torch.no_grad():
output = model(x)
loss = loss_fn(output, y)
err = (output.max(1)[1] != y).float().mean()
return loss.cpu().item(), err.cpu().item()
orig_param_dict = {param_name: p.clone() for param_name, p in model.named_parameters()} # {param: param.clone() for param in model.parameters()}
# orig_norm = torch.cat([p.flatten() for p in orig_param_dict.values()]).norm()
orig_norm = 0
n_el = 0
for p in orig_param_dict.values():
orig_norm += p.flatten().norm() ** 2. * p.numel()
n_el += p.numel()
orig_norm = (orig_norm / n_el) ** .5
noisy_model = copy.deepcopy(model)
delta_dict = {param_name: torch.zeros_like(param) for param_name, param in model.named_parameters()}
print('Named params:', len(delta_dict))
print('Params:', len([None for _ in model.parameters()]))
print('rho:', rho, 'samples:', n_iters)
n_batches, avg_loss, avg_err, avg_init_loss, avg_init_err = 0, 0., 0., 0., 0.
output = ''
with torch.no_grad():
for i_batch, (x, _, y, _, _) in enumerate(batches):
x, y = x.cuda(), y.cuda()
# Loss and err on the unperturbed model.
init_loss, init_err = get_loss_and_err(model, loss_f, x, y)
avg_init_loss += init_loss
avg_init_err += init_err
batch_loss, batch_err = 0., 0.
for i in range(n_iters):
delta_dict = random_init_lw(delta_dict, rho, orig_param_dict, norm=norm, adaptive=adaptive)
for (param_name, delta), (_, param) in zip(delta_dict.items(), noisy_model.named_parameters()):
param.data = orig_param_dict[param_name] + delta_dict[param_name]
curr_loss, curr_err = get_loss_and_err(noisy_model, loss_f, x, y)
batch_loss += curr_loss
batch_err += curr_err
n_batches += 1
avg_loss += (batch_loss / n_iters)
avg_err += (batch_err / n_iters)
str_to_log = f'[batch={i_batch + 1}] obj={batch_loss / n_iters - init_loss}' + \
f' err={batch_err / n_iters - init_err}'
if verbose:
print(str_to_log)
output += str_to_log + '\n'
vals = (
(avg_loss - avg_init_loss) / n_batches,
(avg_err - avg_init_err) / n_batches,
0.,
)
if return_output:
vals += (output,)
return vals