-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtime_dependence_animation.m
33 lines (33 loc) · 1.29 KB
/
time_dependence_animation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
% prepares a movie of Psi(x,t) over time with specified conditions
function [] = time_dependence_animation(C, e_scale)
L = 1; % relative units
x_step = 0.01; % resolution of spatial grid
t_step = 0.02; % time between movie frames
x = linspace(0, L, L/x_step + 1);
t_end = 2*L/e_scale; % complete one full cycle
n_frames = t_end/t_step + 1;
t = 0; % start at time zero
% calculate figure plot for each frame
for frame_num = 1:n_frames
RePsi = 0; % real part
ImPsi = 0; % imaginary part
for n = 1:length(C) % add amplitude from each eigenfunction
psi_n = sqrt(2/L)*sin(n*pi*x/L);
RePsi = RePsi + C(n)*cos(n^2 * pi*e_scale*t/L)*psi_n;
ImPsi = ImPsi + C(n)*sin(n^2 * pi*e_scale*t/L)*psi_n;
end
Psi2 = RePsi.^2 + ImPsi.^2;
t = t + t_step; % propogate time
plot(x, RePsi, x, ImPsi, x, Psi2); % prepare this frame's figure
axis([0 L -(2/L)*(sum(C.^2)) (2/L)*(sum(C.^2))]);
xlabel('Position (x / L)');
ylabel('Function Amplitude');
text(0.12*L, 1.7*(sum(C.^2)), ...
'Time Dependent Particle in a Box Wavefunction Animation');
movie_frames(frame_num) = getframe; % add frame to movie
end
% play resulting movie
n_cycles = 50;
framerate = 60;
movie(movie_frames, n_cycles, framerate);
end