forked from deeplearningshare/multi-line-plate-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlateCommon.py
201 lines (167 loc) · 7.75 KB
/
PlateCommon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#coding=utf-8
import os
import random
# import sys
import numpy as np
import cv2
import argparse
# import PIL
from PIL import ImageFont
from PIL import Image
from PIL import ImageDraw
from math import *
INDEX_PROVINCE = {"京": 0, "沪": 1, "津": 2, "渝": 3, "冀": 4, "晋": 5, "蒙": 6, "辽": 7, "吉": 8, "黑": 9,
"苏": 10, "浙": 11, "皖": 12, "闽": 13, "赣": 14, "鲁": 15, "豫": 16, "鄂": 17, "湘": 18, "粤": 19,
"桂": 20, "琼": 21, "川": 22, "贵": 23, "云": 24, "藏": 25, "陕": 26, "甘": 27, "青": 28, "宁": 29,
"新": 30}
INDEX_DIGIT = {"0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36, "6": 37, "7": 38, "8": 39, "9": 40}
INDEX_LETTER = {"A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47,
"H": 48, "J": 49, "K": 50, "L": 51, "M": 52, "N": 53,
"P": 54, "Q": 55, "R": 56, "S": 57, "T": 58,
"U": 59, "V": 60, "W": 61, "X": 62, "Y": 63, "Z": 64}
PLATE_CHARS_PROVINCE = {"京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑",
"苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤",
"桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁",
"新"}
PLATE_CHARS_DIGIT = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}
PLATE_CHARS_LETTER = {"A", "B", "C", "D", "E", "F", "G",
"H", "J", "K", "L", "M", "N",
"P", "Q", "R", "S", "T",
"U", "V", "W", "X", "Y", "Z"}
index = {"京": 0, "沪": 1, "津": 2, "渝": 3, "冀": 4, "晋": 5, "蒙": 6, "辽": 7, "吉": 8, "黑": 9, "苏": 10, "浙": 11, "皖": 12,
"闽": 13, "赣": 14, "鲁": 15, "豫": 16, "鄂": 17, "湘": 18, "粤": 19, "桂": 20, "琼": 21, "川": 22, "贵": 23, "云": 24,
"藏": 25, "陕": 26, "甘": 27, "青": 28, "宁": 29, "新": 30, "0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36,
"6": 37, "7": 38, "8": 39, "9": 40, "A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47, "H": 48,
"J": 49, "K": 50, "L": 51, "M": 52, "N": 53, "P": 54, "Q": 55, "R": 56, "S": 57, "T": 58, "U": 59, "V": 60,
"W": 61, "X": 62, "Y": 63, "Z": 64}
chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂",
"琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A",
"B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X",
"Y", "Z"]
# 增加脏污效果
def AddSmudginess(img, Smu):
img_h, img_w = img.shape[:2]
rows = r(Smu.shape[0] - img_h)
cols = r(Smu.shape[1] - img_w)
adder = Smu[rows:rows + img_h, cols:cols + img_w]
adder = cv2.resize(adder, (img_w, img_h))
adder = cv2.bitwise_not(adder)
# adder = cv2.bitwise_not(adder)
# img = cv2.resize(img,(50,50))
# img = cv2.bitwise_not(img)
# img = cv2.bitwise_and(adder, img)
# img = cv2.bitwise_not(img)
val = random.random() * 0.5
img = cv2.addWeighted(img, 1 - val, adder, val, 0.0)
return img
def rot(img, angel, shape, max_angel):
""" 使图像轻微的畸变
img 输入图像
factor 畸变的参数
size 为图片的目标尺寸
"""
size_o = [shape[1],shape[0]]
# print size_o
# size = (shape[1]+ int(shape[0]*cos((float(max_angel )/180) * 3.14)),shape[0])
# print size
size = (shape[1] + int(shape[0] * sin((float(max_angel) / 180) * 3.14)), shape[0])
# print size
interval = abs(int(sin((float(angel) / 180) * 3.14) * shape[0]))
pts1 = np.float32([[0, 0], [0, size_o[1]], [size_o[0], 0], [size_o[0], size_o[1]]])
if(angel > 0):
pts2 = np.float32([[interval, 0], [0, size[1]], [size[0], 0], [size[0] - interval, size_o[1]]])
else:
pts2 = np.float32([[0, 0], [interval, size[1]], [size[0] - interval, 0], [size[0], size_o[1]]])
M = cv2.getPerspectiveTransform(pts1, pts2)
dst = cv2.warpPerspective(img, M, size)
return dst
def rotRandrom(img, factor, size):
shape = size
pts1 = np.float32([[0, 0], [0, shape[0]], [shape[1], 0], [shape[1], shape[0]]])
pts2 = np.float32([[r(factor), r(factor)],
[ r(factor), shape[0] - r(factor)],
[shape[1] - r(factor), r(factor)],
[shape[1] - r(factor), shape[0] - r(factor)]])
M = cv2.getPerspectiveTransform(pts1, pts2)
dst = cv2.warpPerspective(img, M, size)
return dst
def tfactor(img):
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
hsv[:, :, 0] = hsv[:, :, 0] * (0.8 + np.random.random() * 0.2)
hsv[:, :, 1] = hsv[:, :, 1] * (0.3 + np.random.random() * 0.7)
hsv[:, :, 2] = hsv[:, :, 2] * (0.2 + np.random.random() * 0.8)
img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return img
def random_envirment(img, data_set):
index = r(len(data_set))
env = cv2.imread(data_set[index])
env = cv2.resize(env, (img.shape[1], img.shape[0]))
# bak = (img==0);
# bak = bak.astype(np.uint8)*255;
# inv = cv2.bitwise_and(bak,env)
# img = cv2.bitwise_or(inv,img)
val = random.random() * 0.4
img = cv2.addWeighted(img, 1 - val, env, val, 0.0)
return img
def random_scene(img, data_set):
'''将车牌放入自然场景图像中,并返回该图像和位置信息'''
bg_img_path = data_set[r(len(data_set))]
print(bg_img_path)
env = cv2.imread(bg_img_path)
if env is None:
print(bg_img_path, 'is not a good file')
return None, None
# print env.shape, img.shape
# 如果背景图片小于(65,21)则不使用
if env.shape[1] <= 65 or env.shape[0] <= 21:
print(env.shape)
return None, None
# 车牌宽高比变化范围是(1.5, 4.0)
new_height = img.shape[0] * (0.5 + np.random.random()) # 0.5 -- 1.5
new_width = img.shape[1] * (0.5 + np.random.random()) # 0.5 -- 1.5
scale = 0.3 + np.random.random() * 2.5
new_width = int(new_width * scale + 0.5)
new_height = int(new_height * scale + 0.5)
img = cv2.resize(img, (new_width, new_height))
if env.shape[1] <= img.shape[1] or env.shape[0] <= img.shape[0]:
print(env.shape, '---', img.shape)
return None, None
x = r(env.shape[1] - img.shape[1])
y = r(env.shape[0] - img.shape[0])
bak = (img == 0)
bak = bak.astype(np.uint8) * 255
inv = cv2.bitwise_and(bak, env[y:y + new_height, x:x + new_width, :])
img = cv2.bitwise_or(inv, img)
env[y:y + new_height, x:x + new_width, :] = img[:, :, :]
return env, (x, y, x + img.shape[1], y + img.shape[0])
def GenCh(f, val):
img = Image.new("RGB", (45, 70), (255, 255, 255))
draw = ImageDraw.Draw(img)
draw.text((0, 3), val, (0, 0, 0), font=f)
img = img.resize((23, 70))
A = np.array(img)
return A
def GenCh1(f, val):
img = Image.new("RGB", (23, 70), (255, 255, 255))
draw = ImageDraw.Draw(img)
# draw.text((0, 2), val.decode('utf-8'), (0, 0, 0), font=f)
draw.text((0, 2), val, (0, 0, 0), font=f)
A = np.array(img)
return A
def AddGauss(img, level):
return cv2.blur(img, (level * 2 + 1, level * 2 + 1))
def r(val):
return int(np.random.random() * val)
def AddNoiseSingleChannel(single):
diff = 255 - single.max()
noise = np.random.normal(0, 1 + r(6), single.shape)
noise = (noise - noise.min()) / (noise.max() - noise.min())
noise = diff * noise
noise = noise.astype(np.uint8)
dst = single + noise
return dst
def addNoise(img, sdev=0.5, avg=10):
img[:, :, 0] = AddNoiseSingleChannel(img[:, :, 0])
img[:, :, 1] = AddNoiseSingleChannel(img[:, :, 1])
img[:, :, 2] = AddNoiseSingleChannel(img[:, :, 2])
return img