-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathgradientMex.cpp
415 lines (391 loc) · 18.5 KB
/
gradientMex.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/*******************************************************************************
* Piotr's Computer Vision Matlab Toolbox Version 3.30
* Copyright 2014 Piotr Dollar & Ron Appel. [pdollar-at-gmail.com]
* Licensed under the Simplified BSD License [see external/bsd.txt]
*******************************************************************************/
#include "wrappers.hpp"
#include <math.h>
#include "string.h"
#include "sse.hpp"
#define PI 3.14159265f
// compute x and y gradients for just one column (uses sse)
void grad1( float *I, float *Gx, float *Gy, int h, int w, int x ) {
int y, y1; float *Ip, *In, r; __m128 *_Ip, *_In, *_G, _r;
// compute column of Gx
Ip=I-h; In=I+h; r=.5f;
if(x==0) { r=1; Ip+=h; } else if(x==w-1) { r=1; In-=h; }
if( h<4 || h%4>0 || (size_t(I)&15) || (size_t(Gx)&15) ) {
for( y=0; y<h; y++ ) *Gx++=(*In++-*Ip++)*r;
} else {
_G=(__m128*) Gx; _Ip=(__m128*) Ip; _In=(__m128*) In; _r = SET(r);
for(y=0; y<h; y+=4) *_G++=MUL(SUB(*_In++,*_Ip++),_r);
}
// compute column of Gy
#define GRADY(r) *Gy++=(*In++-*Ip++)*r;
Ip=I; In=Ip+1;
// GRADY(1); Ip--; for(y=1; y<h-1; y++) GRADY(.5f); In--; GRADY(1);
y1=((~((size_t) Gy) + 1) & 15)/4; if(y1==0) y1=4; if(y1>h-1) y1=h-1;
GRADY(1); Ip--; for(y=1; y<y1; y++) GRADY(.5f);
_r = SET(.5f); _G=(__m128*) Gy;
for(; y+4<h-1; y+=4, Ip+=4, In+=4, Gy+=4)
*_G++=MUL(SUB(LDu(*In),LDu(*Ip)),_r);
for(; y<h-1; y++) GRADY(.5f); In--; GRADY(1);
#undef GRADY
}
// compute x and y gradients at each location (uses sse)
void grad2( float *I, float *Gx, float *Gy, int h, int w, int d ) {
int o, x, c, a=w*h; for(c=0; c<d; c++) for(x=0; x<w; x++) {
o=c*a+x*h; grad1( I+o, Gx+o, Gy+o, h, w, x );
}
}
// build lookup table a[] s.t. a[x*n]~=acos(x) for x in [-1,1]
float* acosTable() {
const int n=10000, b=10; int i;
static float a[n*2+b*2]; static bool init=false;
float *a1=a+n+b; if( init ) return a1;
for( i=-n-b; i<-n; i++ ) a1[i]=PI;
for( i=-n; i<n; i++ ) a1[i]=float(acos(i/float(n)));
for( i=n; i<n+b; i++ ) a1[i]=0;
for( i=-n-b; i<n/10; i++ ) if( a1[i] > PI-1e-6f ) a1[i]=PI-1e-6f;
init=true; return a1;
}
// compute gradient magnitude and orientation at each location (uses sse)
void gradMag( float *I, float *M, float *O, int h, int w, int d, bool full ) {
int x, y, y1, c, h4, s; float *Gx, *Gy, *M2; __m128 *_Gx, *_Gy, *_M2, _m;
float *acost = acosTable(), acMult=10000.0f;
// allocate memory for storing one column of output (padded so h4%4==0)
h4=(h%4==0) ? h : h-(h%4)+4; s=d*h4*sizeof(float);
M2=(float*) alMalloc(s,16); _M2=(__m128*) M2;
Gx=(float*) alMalloc(s,16); _Gx=(__m128*) Gx;
Gy=(float*) alMalloc(s,16); _Gy=(__m128*) Gy;
// compute gradient magnitude and orientation for each column
for( x=0; x<w; x++ ) {
// compute gradients (Gx, Gy) with maximum squared magnitude (M2)
for(c=0; c<d; c++) {
grad1( I+x*h+c*w*h, Gx+c*h4, Gy+c*h4, h, w, x );
for( y=0; y<h4/4; y++ ) {
y1=h4/4*c+y;
_M2[y1]=ADD(MUL(_Gx[y1],_Gx[y1]),MUL(_Gy[y1],_Gy[y1]));
if( c==0 ) continue; _m = CMPGT( _M2[y1], _M2[y] );
_M2[y] = OR( AND(_m,_M2[y1]), ANDNOT(_m,_M2[y]) );
_Gx[y] = OR( AND(_m,_Gx[y1]), ANDNOT(_m,_Gx[y]) );
_Gy[y] = OR( AND(_m,_Gy[y1]), ANDNOT(_m,_Gy[y]) );
}
}
// compute gradient mangitude (M) and normalize Gx
for( y=0; y<h4/4; y++ ) {
_m = MIN( RCPSQRT(_M2[y]), SET(1e10f) );
_M2[y] = RCP(_m);
if(O) _Gx[y] = MUL( MUL(_Gx[y],_m), SET(acMult) );
if(O) _Gx[y] = XOR( _Gx[y], AND(_Gy[y], SET(-0.f)) );
};
memcpy( M+x*h, M2, h*sizeof(float) );
// compute and store gradient orientation (O) via table lookup
if( O!=0 ) for( y=0; y<h; y++ ) O[x*h+y] = acost[(int)Gx[y]];
if( O!=0 && full ) {
y1=((~size_t(O+x*h)+1)&15)/4; y=0;
for( ; y<y1; y++ ) O[y+x*h]+=(Gy[y]<0)*PI;
for( ; y<h-4; y+=4 ) STRu( O[y+x*h],
ADD( LDu(O[y+x*h]), AND(CMPLT(LDu(Gy[y]),SET(0.f)),SET(PI)) ) );
for( ; y<h; y++ ) O[y+x*h]+=(Gy[y]<0)*PI;
}
}
alFree(Gx); alFree(Gy); alFree(M2);
}
// normalize gradient magnitude at each location (uses sse)
void gradMagNorm( float *M, float *S, int h, int w, float norm ) {
__m128 *_M, *_S, _norm; int i=0, n=h*w, n4=n/4;
_S = (__m128*) S; _M = (__m128*) M; _norm = SET(norm);
bool sse = !(size_t(M)&15) && !(size_t(S)&15);
if(sse) for(; i<n4; i++) { *_M=MUL(*_M,RCP(ADD(*_S++,_norm))); _M++; }
if(sse) i*=4; for(; i<n; i++) M[i] /= (S[i] + norm);
}
// helper for gradHist, quantize O and M into O0, O1 and M0, M1 (uses sse)
void gradQuantize( float *O, float *M, int *O0, int *O1, float *M0, float *M1,
int nb, int n, float norm, int nOrients, bool full, bool interpolate )
{
// assumes all *OUTPUT* matrices are 4-byte aligned
int i, o0, o1; float o, od, m;
__m128i _o0, _o1, *_O0, *_O1; __m128 _o, _od, _m, *_M0, *_M1;
// define useful constants
const float oMult=(float)nOrients/(full?2*PI:PI); const int oMax=nOrients*nb;
const __m128 _norm=SET(norm), _oMult=SET(oMult), _nbf=SET((float)nb);
const __m128i _oMax=SET(oMax), _nb=SET(nb);
// perform the majority of the work with sse
_O0=(__m128i*) O0; _O1=(__m128i*) O1; _M0=(__m128*) M0; _M1=(__m128*) M1;
if( interpolate ) for( i=0; i<=n-4; i+=4 ) {
_o=MUL(LDu(O[i]),_oMult); _o0=CVT(_o); _od=SUB(_o,CVT(_o0));
_o0=CVT(MUL(CVT(_o0),_nbf)); _o0=AND(CMPGT(_oMax,_o0),_o0); *_O0++=_o0;
_o1=ADD(_o0,_nb); _o1=AND(CMPGT(_oMax,_o1),_o1); *_O1++=_o1;
_m=MUL(LDu(M[i]),_norm); *_M1=MUL(_od,_m); *_M0++=SUB(_m,*_M1); _M1++;
} else for( i=0; i<=n-4; i+=4 ) {
_o=MUL(LDu(O[i]),_oMult); _o0=CVT(ADD(_o,SET(.5f)));
_o0=CVT(MUL(CVT(_o0),_nbf)); _o0=AND(CMPGT(_oMax,_o0),_o0); *_O0++=_o0;
*_M0++=MUL(LDu(M[i]),_norm); *_M1++=SET(0.f); *_O1++=SET(0);
}
// compute trailing locations without sse
if( interpolate ) for(; i<n; i++ ) {
o=O[i]*oMult; o0=(int) o; od=o-o0;
o0*=nb; if(o0>=oMax) o0=0; O0[i]=o0;
o1=o0+nb; if(o1==oMax) o1=0; O1[i]=o1;
m=M[i]*norm; M1[i]=od*m; M0[i]=m-M1[i];
} else for(; i<n; i++ ) {
o=O[i]*oMult; o0=(int) (o+.5f);
o0*=nb; if(o0>=oMax) o0=0; O0[i]=o0;
M0[i]=M[i]*norm; M1[i]=0; O1[i]=0;
}
}
// compute nOrients gradient histograms per bin x bin block of pixels
void gradHist( float *M, float *O, float *H, int h, int w,
int bin, int nOrients, int softBin, bool full )
{
const int hb=h/bin, wb=w/bin, h0=hb*bin, w0=wb*bin, nb=wb*hb;
const float s=(float)bin, sInv=1/s, sInv2=1/s/s;
float *H0, *H1, *M0, *M1; int x, y; int *O0, *O1; float xb, init;
O0=(int*)alMalloc(h*sizeof(int),16); M0=(float*) alMalloc(h*sizeof(float),16);
O1=(int*)alMalloc(h*sizeof(int),16); M1=(float*) alMalloc(h*sizeof(float),16);
// main loop
for( x=0; x<w0; x++ ) {
// compute target orientation bins for entire column - very fast
gradQuantize(O+x*h,M+x*h,O0,O1,M0,M1,nb,h0,sInv2,nOrients,full,softBin>=0);
if( softBin<0 && softBin%2==0 ) {
// no interpolation w.r.t. either orienation or spatial bin
H1=H+(x/bin)*hb;
#define GH H1[O0[y]]+=M0[y]; y++;
if( bin==1 ) for(y=0; y<h0;) { GH; H1++; }
else if( bin==2 ) for(y=0; y<h0;) { GH; GH; H1++; }
else if( bin==3 ) for(y=0; y<h0;) { GH; GH; GH; H1++; }
else if( bin==4 ) for(y=0; y<h0;) { GH; GH; GH; GH; H1++; }
else for( y=0; y<h0;) { for( int y1=0; y1<bin; y1++ ) { GH; } H1++; }
#undef GH
} else if( softBin%2==0 || bin==1 ) {
// interpolate w.r.t. orientation only, not spatial bin
H1=H+(x/bin)*hb;
#define GH H1[O0[y]]+=M0[y]; H1[O1[y]]+=M1[y]; y++;
if( bin==1 ) for(y=0; y<h0;) { GH; H1++; }
else if( bin==2 ) for(y=0; y<h0;) { GH; GH; H1++; }
else if( bin==3 ) for(y=0; y<h0;) { GH; GH; GH; H1++; }
else if( bin==4 ) for(y=0; y<h0;) { GH; GH; GH; GH; H1++; }
else for( y=0; y<h0;) { for( int y1=0; y1<bin; y1++ ) { GH; } H1++; }
#undef GH
} else {
// interpolate using trilinear interpolation
float ms[4], xyd, yb, xd, yd; __m128 _m, _m0, _m1;
bool hasLf, hasRt; int xb0, yb0;
if( x==0 ) { init=(0+.5f)*sInv-0.5f; xb=init; }
hasLf = xb>=0; xb0 = hasLf?(int)xb:-1; hasRt = xb0 < wb-1;
xd=xb-xb0; xb+=sInv; yb=init; y=0;
// macros for code conciseness
#define GHinit yd=yb-yb0; yb+=sInv; H0=H+xb0*hb+yb0; xyd=xd*yd; \
ms[0]=1-xd-yd+xyd; ms[1]=yd-xyd; ms[2]=xd-xyd; ms[3]=xyd;
#define GH(H,ma,mb) H1=H; STRu(*H1,ADD(LDu(*H1),MUL(ma,mb)));
// leading rows, no top bin
for( ; y<bin/2; y++ ) {
yb0=-1; GHinit;
if(hasLf) { H0[O0[y]+1]+=ms[1]*M0[y]; H0[O1[y]+1]+=ms[1]*M1[y]; }
if(hasRt) { H0[O0[y]+hb+1]+=ms[3]*M0[y]; H0[O1[y]+hb+1]+=ms[3]*M1[y]; }
}
// main rows, has top and bottom bins, use SSE for minor speedup
if( softBin<0 ) for( ; ; y++ ) {
yb0 = (int) yb; if(yb0>=hb-1) break; GHinit; _m0=SET(M0[y]);
if(hasLf) { _m=SET(0,0,ms[1],ms[0]); GH(H0+O0[y],_m,_m0); }
if(hasRt) { _m=SET(0,0,ms[3],ms[2]); GH(H0+O0[y]+hb,_m,_m0); }
} else for( ; ; y++ ) {
yb0 = (int) yb; if(yb0>=hb-1) break; GHinit;
_m0=SET(M0[y]); _m1=SET(M1[y]);
if(hasLf) { _m=SET(0,0,ms[1],ms[0]);
GH(H0+O0[y],_m,_m0); GH(H0+O1[y],_m,_m1); }
if(hasRt) { _m=SET(0,0,ms[3],ms[2]);
GH(H0+O0[y]+hb,_m,_m0); GH(H0+O1[y]+hb,_m,_m1); }
}
// final rows, no bottom bin
for( ; y<h0; y++ ) {
yb0 = (int) yb; GHinit;
if(hasLf) { H0[O0[y]]+=ms[0]*M0[y]; H0[O1[y]]+=ms[0]*M1[y]; }
if(hasRt) { H0[O0[y]+hb]+=ms[2]*M0[y]; H0[O1[y]+hb]+=ms[2]*M1[y]; }
}
#undef GHinit
#undef GH
}
}
alFree(O0); alFree(O1); alFree(M0); alFree(M1);
// normalize boundary bins which only get 7/8 of weight of interior bins
if( softBin%2!=0 ) for( int o=0; o<nOrients; o++ ) {
x=0; for( y=0; y<hb; y++ ) H[o*nb+x*hb+y]*=8.f/7.f;
y=0; for( x=0; x<wb; x++ ) H[o*nb+x*hb+y]*=8.f/7.f;
x=wb-1; for( y=0; y<hb; y++ ) H[o*nb+x*hb+y]*=8.f/7.f;
y=hb-1; for( x=0; x<wb; x++ ) H[o*nb+x*hb+y]*=8.f/7.f;
}
}
/******************************************************************************/
// HOG helper: compute 2x2 block normalization values (padded by 1 pixel)
float* hogNormMatrix( float *H, int nOrients, int hb, int wb, int bin ) {
float *N, *N1, *n; int o, x, y, dx, dy, hb1=hb+1, wb1=wb+1;
float eps = 1e-4f/4/bin/bin/bin/bin; // precise backward equality
N = (float*) wrCalloc(hb1*wb1,sizeof(float)); N1=N+hb1+1;
for( o=0; o<nOrients; o++ ) for( x=0; x<wb; x++ ) for( y=0; y<hb; y++ )
N1[x*hb1+y] += H[o*wb*hb+x*hb+y]*H[o*wb*hb+x*hb+y];
for( x=0; x<wb-1; x++ ) for( y=0; y<hb-1; y++ ) {
n=N1+x*hb1+y; *n=1/float(sqrt(n[0]+n[1]+n[hb1]+n[hb1+1]+eps)); }
x=0; dx= 1; dy= 1; y=0; N[x*hb1+y]=N[(x+dx)*hb1+y+dy];
x=0; dx= 1; dy= 0; for(y=0; y<hb1; y++) N[x*hb1+y]=N[(x+dx)*hb1+y+dy];
x=0; dx= 1; dy=-1; y=hb1-1; N[x*hb1+y]=N[(x+dx)*hb1+y+dy];
x=wb1-1; dx=-1; dy= 1; y=0; N[x*hb1+y]=N[(x+dx)*hb1+y+dy];
x=wb1-1; dx=-1; dy= 0; for( y=0; y<hb1; y++) N[x*hb1+y]=N[(x+dx)*hb1+y+dy];
x=wb1-1; dx=-1; dy=-1; y=hb1-1; N[x*hb1+y]=N[(x+dx)*hb1+y+dy];
y=0; dx= 0; dy= 1; for(x=0; x<wb1; x++) N[x*hb1+y]=N[(x+dx)*hb1+y+dy];
y=hb1-1; dx= 0; dy=-1; for(x=0; x<wb1; x++) N[x*hb1+y]=N[(x+dx)*hb1+y+dy];
return N;
}
// HOG helper: compute HOG or FHOG channels
void hogChannels( float *H, const float *R, const float *N,
int hb, int wb, int nOrients, float clip, int type )
{
#define GETT(blk) t=R1[y]*N1[y-(blk)]; if(t>clip) t=clip; c++;
const float r=.2357f; int o, x, y, c; float t;
const int nb=wb*hb, nbo=nOrients*nb, hb1=hb+1;
for( o=0; o<nOrients; o++ ) for( x=0; x<wb; x++ ) {
const float *R1=R+o*nb+x*hb, *N1=N+x*hb1+hb1+1;
float *H1 = (type<=1) ? (H+o*nb+x*hb) : (H+x*hb);
if( type==0) for( y=0; y<hb; y++ ) {
// store each orientation and normalization (nOrients*4 channels)
c=-1; GETT(0); H1[c*nbo+y]=t; GETT(1); H1[c*nbo+y]=t;
GETT(hb1); H1[c*nbo+y]=t; GETT(hb1+1); H1[c*nbo+y]=t;
} else if( type==1 ) for( y=0; y<hb; y++ ) {
// sum across all normalizations (nOrients channels)
c=-1; GETT(0); H1[y]+=t*.5f; GETT(1); H1[y]+=t*.5f;
GETT(hb1); H1[y]+=t*.5f; GETT(hb1+1); H1[y]+=t*.5f;
} else if( type==2 ) for( y=0; y<hb; y++ ) {
// sum across all orientations (4 channels)
c=-1; GETT(0); H1[c*nb+y]+=t*r; GETT(1); H1[c*nb+y]+=t*r;
GETT(hb1); H1[c*nb+y]+=t*r; GETT(hb1+1); H1[c*nb+y]+=t*r;
}
}
#undef GETT
}
// compute HOG features
void hog( float *M, float *O, float *H, int h, int w, int binSize,
int nOrients, int softBin, bool full, float clip )
{
float *N, *R; const int hb=h/binSize, wb=w/binSize, nb=hb*wb;
// compute unnormalized gradient histograms
R = (float*) wrCalloc(wb*hb*nOrients,sizeof(float));
gradHist( M, O, R, h, w, binSize, nOrients, softBin, full );
// compute block normalization values
N = hogNormMatrix( R, nOrients, hb, wb, binSize );
// perform four normalizations per spatial block
hogChannels( H, R, N, hb, wb, nOrients, clip, 0 );
wrFree(N); wrFree(R);
}
// compute FHOG features
void fhog( float *M, float *O, float *H, int h, int w, int binSize,
int nOrients, int softBin, float clip )
{
const int hb=h/binSize, wb=w/binSize, nb=hb*wb, nbo=nb*nOrients;
float *N, *R1, *R2; int o, x;
// compute unnormalized constrast sensitive histograms
R1 = (float*) wrCalloc(wb*hb*nOrients*2,sizeof(float));
gradHist( M, O, R1, h, w, binSize, nOrients*2, softBin, true );
// compute unnormalized contrast insensitive histograms
R2 = (float*) wrCalloc(wb*hb*nOrients,sizeof(float));
for( o=0; o<nOrients; o++ ) for( x=0; x<nb; x++ )
R2[o*nb+x] = R1[o*nb+x]+R1[(o+nOrients)*nb+x];
// compute block normalization values
N = hogNormMatrix( R2, nOrients, hb, wb, binSize );
// normalized histograms and texture channels
hogChannels( H+nbo*0, R1, N, hb, wb, nOrients*2, clip, 1 );
hogChannels( H+nbo*2, R2, N, hb, wb, nOrients*1, clip, 1 );
hogChannels( H+nbo*3, R1, N, hb, wb, nOrients*2, clip, 2 );
wrFree(N); wrFree(R1); wrFree(R2);
}
/******************************************************************************/
#ifdef MATLAB_MEX_FILE
// Create [hxwxd] mxArray array, initialize to 0 if c=true
mxArray* mxCreateMatrix3( int h, int w, int d, mxClassID id, bool c, void **I ){
const int dims[3]={h,w,d}, n=h*w*d; int b; mxArray* M;
if( id==mxINT32_CLASS ) b=sizeof(int);
else if( id==mxDOUBLE_CLASS ) b=sizeof(double);
else if( id==mxSINGLE_CLASS ) b=sizeof(float);
else mexErrMsgTxt("Unknown mxClassID.");
*I = c ? mxCalloc(n,b) : mxMalloc(n*b);
M = mxCreateNumericMatrix(0,0,id,mxREAL);
mxSetData(M,*I); mxSetDimensions(M,dims,3); return M;
}
// Check inputs and outputs to mex, retrieve first input I
void checkArgs( int nl, mxArray *pl[], int nr, const mxArray *pr[], int nl0,
int nl1, int nr0, int nr1, int *h, int *w, int *d, mxClassID id, void **I )
{
const int *dims; int nDims;
if( nl<nl0 || nl>nl1 ) mexErrMsgTxt("Incorrect number of outputs.");
if( nr<nr0 || nr>nr1 ) mexErrMsgTxt("Incorrect number of inputs.");
nDims = mxGetNumberOfDimensions(pr[0]); dims = mxGetDimensions(pr[0]);
*h=dims[0]; *w=dims[1]; *d=(nDims==2) ? 1 : dims[2]; *I = mxGetPr(pr[0]);
if( nDims!=2 && nDims!=3 ) mexErrMsgTxt("I must be a 2D or 3D array.");
if( mxGetClassID(pr[0])!=id ) mexErrMsgTxt("I has incorrect type.");
}
// [Gx,Gy] = grad2(I) - see gradient2.m
void mGrad2( int nl, mxArray *pl[], int nr, const mxArray *pr[] ) {
int h, w, d; float *I, *Gx, *Gy;
checkArgs(nl,pl,nr,pr,1,2,1,1,&h,&w,&d,mxSINGLE_CLASS,(void**)&I);
if(h<2 || w<2) mexErrMsgTxt("I must be at least 2x2.");
pl[0]= mxCreateMatrix3( h, w, d, mxSINGLE_CLASS, 0, (void**) &Gx );
pl[1]= mxCreateMatrix3( h, w, d, mxSINGLE_CLASS, 0, (void**) &Gy );
grad2( I, Gx, Gy, h, w, d );
}
// [M,O] = gradMag( I, channel, full ) - see gradientMag.m
void mGradMag( int nl, mxArray *pl[], int nr, const mxArray *pr[] ) {
int h, w, d, c, full; float *I, *M, *O=0;
checkArgs(nl,pl,nr,pr,1,2,3,3,&h,&w,&d,mxSINGLE_CLASS,(void**)&I);
if(h<2 || w<2) mexErrMsgTxt("I must be at least 2x2.");
c = (int) mxGetScalar(pr[1]); full = (int) mxGetScalar(pr[2]);
if( c>0 && c<=d ) { I += h*w*(c-1); d=1; }
pl[0] = mxCreateMatrix3(h,w,1,mxSINGLE_CLASS,0,(void**)&M);
if(nl>=2) pl[1] = mxCreateMatrix3(h,w,1,mxSINGLE_CLASS,0,(void**)&O);
gradMag(I, M, O, h, w, d, full>0 );
}
// gradMagNorm( M, S, norm ) - operates on M - see gradientMag.m
void mGradMagNorm( int nl, mxArray *pl[], int nr, const mxArray *pr[] ) {
int h, w, d; float *M, *S, norm;
checkArgs(nl,pl,nr,pr,0,0,3,3,&h,&w,&d,mxSINGLE_CLASS,(void**)&M);
if( mxGetM(pr[1])!=h || mxGetN(pr[1])!=w || d!=1 ||
mxGetClassID(pr[1])!=mxSINGLE_CLASS ) mexErrMsgTxt("M or S is bad.");
S = (float*) mxGetPr(pr[1]); norm = (float) mxGetScalar(pr[2]);
gradMagNorm(M,S,h,w,norm);
}
// H=gradHist(M,O,[...]) - see gradientHist.m
void mGradHist( int nl, mxArray *pl[], int nr, const mxArray *pr[] ) {
int h, w, d, hb, wb, nChns, binSize, nOrients, softBin, useHog;
bool full; float *M, *O, *H, clipHog;
checkArgs(nl,pl,nr,pr,1,3,2,8,&h,&w,&d,mxSINGLE_CLASS,(void**)&M);
O = (float*) mxGetPr(pr[1]);
if( mxGetM(pr[1])!=h || mxGetN(pr[1])!=w || d!=1 ||
mxGetClassID(pr[1])!=mxSINGLE_CLASS ) mexErrMsgTxt("M or O is bad.");
binSize = (nr>=3) ? (int) mxGetScalar(pr[2]) : 8;
nOrients = (nr>=4) ? (int) mxGetScalar(pr[3]) : 9;
softBin = (nr>=5) ? (int) mxGetScalar(pr[4]) : 1;
useHog = (nr>=6) ? (int) mxGetScalar(pr[5]) : 0;
clipHog = (nr>=7) ? (float) mxGetScalar(pr[6]) : 0.2f;
full = (nr>=8) ? (bool) (mxGetScalar(pr[7])>0) : false;
hb = h/binSize; wb = w/binSize;
nChns = useHog== 0 ? nOrients : (useHog==1 ? nOrients*4 : nOrients*3+5);
pl[0] = mxCreateMatrix3(hb,wb,nChns,mxSINGLE_CLASS,1,(void**)&H);
if( nOrients==0 ) return;
if( useHog==0 ) {
gradHist( M, O, H, h, w, binSize, nOrients, softBin, full );
} else if(useHog==1) {
hog( M, O, H, h, w, binSize, nOrients, softBin, full, clipHog );
} else {
fhog( M, O, H, h, w, binSize, nOrients, softBin, clipHog );
}
}
// inteface to various gradient functions (see corresponding Matlab functions)
void mexFunction( int nl, mxArray *pl[], int nr, const mxArray *pr[] ) {
int f; char action[1024]; f=mxGetString(pr[0],action,1024); nr--; pr++;
if(f) mexErrMsgTxt("Failed to get action.");
else if(!strcmp(action,"gradient2")) mGrad2(nl,pl,nr,pr);
else if(!strcmp(action,"gradientMag")) mGradMag(nl,pl,nr,pr);
else if(!strcmp(action,"gradientMagNorm")) mGradMagNorm(nl,pl,nr,pr);
else if(!strcmp(action,"gradientHist")) mGradHist(nl,pl,nr,pr);
else mexErrMsgTxt("Invalid action.");
}
#endif