-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathrun_MKCFup.cpp
1287 lines (1221 loc) · 45.3 KB
/
run_MKCFup.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*******************************************************************************
* MKCFup Version 1.0
* Copyright 2018 Bin Yu, UCAS&NLPR, Beijing. [yubin2017@ia.ac.cn]
* Paper [High-speed Tracking with Multi-kernel Correlation Filters]
*******************************************************************************/
#include <fftw3.h>
#include <opencv2\opencv.hpp>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <string>
#include "fhog.hpp"
#include "cnfeat.hpp"
#include "omp.h"
#include "ComplexMat.h"
#include "Params.h"
using namespace cv;
using namespace std;
typedef struct _COMPLEX
{
float real;
float img;
}COMPLEX;
struct model {
complex_mat alphaf;
float d[2];
};
float **m;
COMPLEX **fm;
float **ffm;
COMPLEX **fmy;
float **ffmy;
float** allocfloat(float **mem, int h, int w)
{
mem = (float **)malloc(sizeof(float *) * h);
mem[0] = (float *)malloc(sizeof(float) * h * w);
for (int i = 1; i<h; i++)
{
mem[i] = mem[i - 1] + w;
}
return(mem);
}
COMPLEX** alloccomplex(COMPLEX **mem, int h, int w)
{
mem = (COMPLEX **)malloc(sizeof(COMPLEX *) * h);
mem[0] = (COMPLEX *)malloc(sizeof(COMPLEX) * h * w);
for (int i = 1; i<h; i++)
{
mem[i] = mem[i - 1] + w;
}
return(mem);
}
void FFT2(float **input, COMPLEX **output, int height, int width)
{
fftwf_plan planR;
fftwf_complex *inR, *outR;
inR = (fftwf_complex*)fftw_malloc(sizeof(fftwf_complex) * height * width);
outR = (fftwf_complex*)fftw_malloc(sizeof(fftwf_complex) * height * width);
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++)
{
inR[i * width + j][0] = input[i][j];
inR[i * width + j][1] = 0;
}
planR = fftwf_plan_dft_2d(height, width, inR, outR, FFTW_FORWARD, FFTW_ESTIMATE);
fftwf_execute(planR);
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++)
{
output[i][j]._COMPLEX::real = outR[i * width + j][0];
output[i][j]._COMPLEX::img = outR[i * width + j][1];
}
fftwf_destroy_plan(planR);
fftwf_free(inR);
fftwf_free(outR);
}
void IFFT2(COMPLEX **input, float **output, int height, int width)
{
fftwf_plan planR;
fftwf_complex *inR, *outR;
inR = (fftwf_complex*)fftw_malloc(sizeof(fftwf_complex) * height * width);
outR = (fftwf_complex*)fftw_malloc(sizeof(fftwf_complex) * height * width);
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++)
{
inR[i * width + j][0] = input[i][j]._COMPLEX::real;
inR[i * width + j][1] = input[i][j]._COMPLEX::img;
}
planR = fftwf_plan_dft_2d(height, width, inR, outR, FFTW_BACKWARD, FFTW_ESTIMATE);
fftwf_execute(planR);
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++)
{
output[i][j] = outR[i * width + j][0] / (height*width);
}
fftwf_destroy_plan(planR);
fftwf_free(inR);
fftwf_free(outR);
}
struct complex_mat newfft2(const Mat &input)
{
complex_mat out;
/*m = allocfloat(m, input.rows, input.cols);
fm = alloccomplex(fm, input.rows, input.cols);*/
Mat real(input.rows, input.cols, CV_32FC1);
Mat img(input.rows, input.cols, CV_32FC1);
Mat temp = input.clone();
for (int i = 0; i < input.rows; i++)
{
float *data = temp.ptr<float>(i);
for (int j = 0; j < input.cols; j++)
{
m[i][j] = data[j];
}
}
FFT2(m, fm, input.rows, input.cols);
for (int i = 0; i < input.rows; i++)
{
float *data = real.ptr<float>(i);
float *data1 = img.ptr<float>(i);
for (int j = 0; j < input.cols; j++)
{
data[j] = fm[i][j]._COMPLEX::real;
data1[j] = fm[i][j]._COMPLEX::img;
}
}
out.real = real.clone();
out.img = img.clone();
return out;
}
struct complex_mat newfft2(const Mat &input, const Mat &cos_window)
{
complex_mat out;
Mat real(input.rows, input.cols, CV_32FC1);
Mat img(input.rows, input.cols, CV_32FC1);
Mat temp = input.mul(cos_window);
for (int i = 0; i < input.rows; i++)
{
float *data = temp.ptr<float>(i);
for (int j = 0; j < input.cols; j++)
{
m[i][j] = data[j];
}
}
FFT2(m, fm, input.rows, input.cols);
for (int i = 0; i < input.rows; i++)
{
float *data = real.ptr<float>(i);
float *data1 = img.ptr<float>(i);
for (int j = 0; j < input.cols; j++)
{
data[j] = fm[i][j]._COMPLEX::real;
data1[j] = fm[i][j]._COMPLEX::img;
}
}
out.real = real.clone();
out.img = img.clone();
return out;
}
Mat newifft2(const complex_mat &input)
{
Mat real = input.real.clone();
Mat img = input.img.clone();
/*ffm = allocfloat(ffm, real.rows, real.cols);
fm = alloccomplex(fm, real.rows, real.cols);*/
Mat tempp(real.rows, real.cols, CV_32FC1);
for (int i = 0; i < real.rows; i++)
{
float *data = real.ptr<float>(i);
float *data1 = img.ptr<float>(i);
for (int j = 0; j < real.cols; j++)
{
fm[i][j]._COMPLEX::real = data[j];
fm[i][j]._COMPLEX::img = data1[j];
}
}
IFFT2(fm, ffm, real.rows, real.cols);
for (int i = 0; i < real.rows; i++)
{
float *data = tempp.ptr<float>(i);
for (int j = 0; j < real.cols; j++)
{
data[j] = ffm[i][j];
}
}
return tempp;
}
Mat newifft2_for_y(const complex_mat &input)
{
Mat real = input.real.clone();
Mat img = input.img.clone();
Mat tempp(real.rows, real.cols, CV_32FC1);
for (int i = 0; i < real.rows; i++)
{
float *data = real.ptr<float>(i);
float *data1 = img.ptr<float>(i);
for (int j = 0; j < real.cols; j++)
{
fmy[i][j]._COMPLEX::real = data[j];
fmy[i][j]._COMPLEX::img = data1[j];
}
}
IFFT2(fmy, ffmy, real.rows, real.cols);
for (int i = 0; i < real.rows; i++)
{
float *data = tempp.ptr<float>(i);
for (int j = 0; j < real.cols; j++)
{
data[j] = ffmy[i][j];
}
}
return tempp;
}
Mat cosine_window_function(int dim1, int dim2)
{
Mat m1(1, dim1, CV_32FC1), m2(dim2, 1, CV_32FC1);
double N_inv = 1. / (static_cast<double>(dim1) - 1.);
for (int i = 0; i < dim1; ++i)
m1.at<float>(i) = 0.5*(1. - cos(2. * CV_PI * static_cast<double>(i) * N_inv));
N_inv = 1. / (static_cast<double>(dim2) - 1.);
for (int i = 0; i < dim2; ++i)
m2.at<float>(i) = 0.5*(1. - cos(2. * CV_PI * static_cast<double>(i) * N_inv));
Mat ret = m2*m1;
return ret;
}
Mat scale_window_function(int dim1)
{
Mat m1(1, dim1, CV_32FC1);
double N_inv = 1. / (static_cast<double>(dim1) - 1.);
for (int i = 0; i < dim1; ++i)
m1.at<float>(i) = 0.5*(1. - cos(2. * CV_PI * static_cast<double>(i) * N_inv));
return m1;
}
Mat circshift(const Mat &patch, int x_rot, int y_rot)
{
Mat rot_patch(patch.size(), CV_32FC1);
Mat tmp_x_rot(patch.size(), CV_32FC1);
//circular rotate x-axis
if (x_rot < 0) {
//move part that does not rotate over the edge
Range orig_range(-x_rot, patch.cols);
Range rot_range(0, patch.cols - (-x_rot));
patch(Range::all(), orig_range).copyTo(tmp_x_rot(Range::all(), rot_range));
//rotated part
orig_range = Range(0, -x_rot);
rot_range = Range(patch.cols - (-x_rot), patch.cols);
patch(Range::all(), orig_range).copyTo(tmp_x_rot(Range::all(), rot_range));
}
else if (x_rot > 0) {
//move part that does not rotate over the edge
Range orig_range(0, patch.cols - x_rot);
Range rot_range(x_rot, patch.cols);
patch(Range::all(), orig_range).copyTo(tmp_x_rot(Range::all(), rot_range));
//rotated part
orig_range = Range(patch.cols - x_rot, patch.cols);
rot_range = Range(0, x_rot);
patch(Range::all(), orig_range).copyTo(tmp_x_rot(Range::all(), rot_range));
}
else { //zero rotation
//move part that does not rotate over the edge
Range orig_range(0, patch.cols);
Range rot_range(0, patch.cols);
patch(Range::all(), orig_range).copyTo(tmp_x_rot(Range::all(), rot_range));
}
//circular rotate y-axis
if (y_rot < 0) {
//move part that does not rotate over the edge
Range orig_range(-y_rot, patch.rows);
Range rot_range(0, patch.rows - (-y_rot));
tmp_x_rot(orig_range, Range::all()).copyTo(rot_patch(rot_range, Range::all()));
//rotated part
orig_range = Range(0, -y_rot);
rot_range = Range(patch.rows - (-y_rot), patch.rows);
tmp_x_rot(orig_range, Range::all()).copyTo(rot_patch(rot_range, Range::all()));
}
else if (y_rot > 0) {
//move part that does not rotate over the edge
Range orig_range(0, patch.rows - y_rot);
Range rot_range(y_rot, patch.rows);
tmp_x_rot(orig_range, Range::all()).copyTo(rot_patch(rot_range, Range::all()));
//rotated part
orig_range = Range(patch.rows - y_rot, patch.rows);
rot_range = Range(0, y_rot);
tmp_x_rot(orig_range, Range::all()).copyTo(rot_patch(rot_range, Range::all()));
}
else { //zero rotation
//move part that does not rotate over the edge
Range orig_range(0, patch.rows);
Range rot_range(0, patch.rows);
tmp_x_rot(orig_range, Range::all()).copyTo(rot_patch(rot_range, Range::all()));
}
return rot_patch;
}
Mat gaussian_shaped_labels(double sigma, int dim1, int dim2)
{
Mat labels(dim2, dim1, CV_32FC1);
int range_y[2] = { -dim2 / 2, dim2 - dim2 / 2 };
int range_x[2] = { -dim1 / 2, dim1 - dim1 / 2 };
double sigma_s = sigma*sigma;
for (int y = range_y[0], j = 0; y < range_y[1]; ++y, ++j)
{
float * row_ptr = labels.ptr<float>(j);
double y_s = y*y;
for (int x = range_x[0], i = 0; x < range_x[1]; ++x, ++i)
{
row_ptr[i] = std::exp(-0.5 * (y_s + x*x) / sigma_s);
}
}
//rotate so that 1 is at top-left corner (see KCF paper for explanation)
Mat rot_labels = circshift(labels, range_x[0], range_y[0]);
assert(rot_labels.at<float>(0, 0) >= 1.f - 1e-10f);
return rot_labels;
}
Mat get_subwindow(const Mat &input, int cx, int cy, int width, int height, float currentScaleFactor)
{
cv::Size sz, model_sz;
cv::Point centerCoor;
model_sz.width = floor(width);
model_sz.height = floor(height);
sz.width = floor(width*currentScaleFactor);
sz.height = floor(height*currentScaleFactor);
cv::Mat subWindow;
centerCoor.x = cx;
centerCoor.y = cy;
cv::Point lefttop(min(input.cols - 2, max(-sz.width + 1, centerCoor.x - cvFloor(float(sz.width) / 2.0) + 1)),
min(input.rows - 2, max(-sz.height + 1, centerCoor.y - cvFloor(float(sz.height) / 2.0) + 1)));
cv::Point rightbottom(lefttop.x + sz.width, lefttop.y + sz.height);
cv::Rect border(-min(lefttop.x, 0), -min(lefttop.y, 0),
max(rightbottom.x - (input.cols - 1), 0), max(rightbottom.y - (input.rows - 1), 0));
cv::Point lefttopLimit(max(lefttop.x, 0), max(lefttop.y, 0));
cv::Point rightbottomLimit(min(rightbottom.x, input.cols - 1), min(rightbottom.y, input.rows - 1));
cv::Rect roiRect(lefttopLimit, rightbottomLimit);
input(roiRect).copyTo(subWindow);
if (border != cv::Rect(0, 0, 0, 0))
cv::copyMakeBorder(subWindow, subWindow, border.y, border.height, border.x, border.width, cv::BORDER_REPLICATE);
Mat out;
resize(subWindow, out, model_sz);
return out;
}
vector<Mat> average_faeture_region(const vector<Mat> &input, int region_size, int size1, int size2, int channels)
{
float maxval = 1;
vector<Mat> out(channels);
float region_area = region_size*region_size;
#pragma omp parallel for
for (int n = 0; n < channels; ++n)
{
//cout << input.rows << " "<<input.cols<<endl;
Mat region_image(size1, size2, CV_32FC1);
Mat iImage;
integral(input[n], iImage, CV_32FC1);
/*cout << iImage.type() << endl;
cout << iImage.rows << " " << iImage.cols << endl;
cout << region_image.rows << " " << region_image.cols << endl;*/
int *i1 = new int[size1];
int *i2 = new int[size2];
for (int i = 0; i < size1; ++i)
{
i1[i] = region_size*(i + 1);
//cout << i1[i] << endl;
}
for (int i = 0; i < size2; ++i)
i2[i] = region_size*(i + 1);
for (int i = 0; i < size1; ++i)
{
float *data1 = iImage.ptr<float>(i1[i]);
float *data2 = iImage.ptr<float>(i1[i] - region_size);
float *out = region_image.ptr<float>(i);
for (int j = 0; j < size2; ++j)
{
out[j] = (data1[i2[j]] - data1[i2[j] - region_size] - data2[i2[j]] + data2[i2[j] - region_size]) / (region_area * maxval);
}
}
out[n] = region_image.clone();
//cout << region_image << endl;
delete[]i1;
delete[]i2;
}
return out;
}
Mat get_scale_subwindow(const Mat &input, int cx, int cy, int width, int height, float *scaleFactors, int *scale_model_sz, float currentScaleFactor, int nScales, int featureRatio, int num_hog_fea)
{
Mat out_pca;
cv::Size outsize;
outsize.width = scale_model_sz[1];
outsize.height = scale_model_sz[0];
int imchannel = input.channels();
int dim_scale = floor(scale_model_sz[1] / featureRatio)*floor(scale_model_sz[0]/ featureRatio) * num_hog_fea;
int dimm = floor(scale_model_sz[1] / featureRatio)*floor(scale_model_sz[0] / featureRatio);
cv::Point centerCoor;
centerCoor.x = cx;
centerCoor.y = cy;
out_pca = Mat::zeros(nScales, dim_scale, CV_32FC1);
omp_set_num_threads(num_threads);
#pragma omp parallel for
for (int i = 0; i < nScales; ++i)
{
vector<Mat> hog_feat(num_hog_fea);
cv::Size sz;
sz.width = floor(width*scaleFactors[i]* currentScaleFactor);
sz.height = floor(height*scaleFactors[i]* currentScaleFactor);
cv::Mat subWindow;
cv::Point lefttop(min(input.cols - 2, max(-sz.width + 1, centerCoor.x - cvFloor(float(sz.width) / 2.0) + 1)),
min(input.rows - 2, max(-sz.height + 1, centerCoor.y - cvFloor(float(sz.height) / 2.0) + 1)));
cv::Point rightbottom(lefttop.x + sz.width, lefttop.y + sz.height);
cv::Rect border(-min(lefttop.x, 0), -min(lefttop.y, 0),
max(rightbottom.x - (input.cols - 1), 0), max(rightbottom.y - (input.rows - 1), 0));
cv::Point lefttopLimit(max(lefttop.x, 0), max(lefttop.y, 0));
cv::Point rightbottomLimit(min(rightbottom.x, input.cols - 1), min(rightbottom.y, input.rows - 1));
cv::Rect roiRect(lefttopLimit, rightbottomLimit);
input(roiRect).copyTo(subWindow);
if (border != cv::Rect(0, 0, 0, 0))
cv::copyMakeBorder(subWindow, subWindow, border.y, border.height, border.x, border.width, cv::BORDER_REPLICATE);
Mat out, temp;
resize(subWindow, out, outsize);
if (imchannel == 3)
{
cvtColor(out, temp, CV_BGR2GRAY);
hog_feat = FHoG::extract(out);
}
else
hog_feat = FHoG::extract(out);
float *data = out_pca.ptr<float>(i);
int p = 0;
for (int j = 0; j < num_hog_fea; ++j)
{
hog_feat[j] = hog_feat[j].t();
float *data2 = hog_feat[j].ptr<float>(0);
for (int q = 0; q < dimm; ++q)
data[p+q] = data2[q];
p += dimm;
}
}
return out_pca.t();
}
Mat new_gaussian_correlation(const vector<complex_mat> &xf, const vector<complex_mat> &yf, double sigma, bool auto_correlation, int fea, int channel, int num_pca_fea)
{
float xf_sqr_norm = sqrnorm(xf, fea, channel);
float yf_sqr_norm = auto_correlation ? xf_sqr_norm : sqrnorm(yf, fea, channel);
float numel_xf_inv;
vector<complex_mat> xyf = auto_correlation ? sqrmag(xf, fea, channel) : sqrmag(xf, yf, fea, channel);
//ifft2 and sum over 3rd dimension, we dont care about individual channels
Mat xy_sum(xf[0].img.rows, xf[0].img.cols, CV_32FC1);
complex_mat temp;
temp.real = Mat::zeros(xf[0].img.rows, xf[0].img.cols, CV_32FC1);
temp.img = Mat::zeros(xf[0].img.rows, xf[0].img.cols, CV_32FC1);
xy_sum.setTo(0);
if (fea == 0 & channel == 1)
{
for (int i = 0; i < 1; ++i)
{
temp.img += xyf[i].img;
temp.real += xyf[i].real;
}
numel_xf_inv = 1.f / (xf[0].img.rows * xf[0].img.cols );
}
else
{
for (int i = 0; i < num_pca_fea; ++i)
{
temp.img += xyf[i].img;
temp.real += xyf[i].real;
}
numel_xf_inv = 1.f / (xf[0].img.rows * xf[0].img.cols * num_pca_fea);
}
xy_sum = newifft2(temp);
Mat tmp;
//complex_mat temp;
cv::exp(-1.f / (sigma * sigma) * cv::max((xf_sqr_norm + yf_sqr_norm - 2 * xy_sum) * numel_xf_inv, 0), tmp);
return tmp;
}
struct model newtrainmodel(complex_mat &alphaf_num1, complex_mat &alphaf_num2, complex_mat &alphaf_den1, complex_mat &alphaf_den2, float &d_num1, float &d_num2, float &d_den1, float &d_den2,
const Mat &k_hog, const Mat &k_cn, const complex_mat &yf, int frame, int start_frame, float learning_rate_cn, float learning_rate_hog, const Mat &y, int imchannel, float lambda)
{
complex_mat kf_hog = newfft2(k_hog);
complex_mat kf_cn = newfft2(k_cn);
struct model p;
p.d[0] = 0.5;
p.d[1] = 0.5;
float prevD[2] = { 0.5, 0.5 }, deltaD[2];
int stop = 0;
int count = 0;
float threshold = 0.03;
float d_new_num1, d_new_num2, d_new_den1, d_new_den2, d_num11, d_num22, d_den11, d_den22;
Mat alpha, temp1, temp2, temp, out_temp, prevalpha, deltaalpha;
complex_mat new_num1, new_num2, new_den1, new_den2, alphaf_num11, alphaf_num22, alphaf_den11, alphaf_den22, alphaf_num, alphaf_den;
while (stop == 0)
{
//train alpha
new_num1 = mul_com(yf, mul_com(kf_cn, p.d[0]));
new_num2 = mul_com(yf, mul_com(kf_hog, p.d[1]));
new_den1 = mul_com(mul_com(kf_cn, p.d[0]) , plus_com(mul_com(conj_com(kf_cn),p.d[0]),lambda));
new_den2 = mul_com(mul_com(kf_hog, p.d[1]), plus_com(mul_com(conj_com(kf_hog), p.d[1]), lambda));
if (frame == start_frame)
{
alphaf_num11 = new_num1;
alphaf_num22 = new_num2;
alphaf_num = plus_com(alphaf_num11 , alphaf_num22);
alphaf_den11 = new_den1;
alphaf_den22 = new_den2;
alphaf_den = plus_com(alphaf_den11, alphaf_den22);
}
else
{
alphaf_num11 = plus_com(mul_com(alphaf_num1, (1 - learning_rate_cn)) , mul_com(new_num1, learning_rate_cn));
alphaf_num22 = plus_com(mul_com(alphaf_num2, (1 - learning_rate_hog)), mul_com(new_num2, learning_rate_hog));
alphaf_den11 = plus_com(mul_com(alphaf_den1, (1 - learning_rate_cn)), mul_com(new_den1, learning_rate_cn));
alphaf_den22 = plus_com(mul_com(alphaf_den2, (1 - learning_rate_hog)), mul_com(new_den2, learning_rate_hog));
alphaf_num = plus_com(alphaf_num11, alphaf_num22);
alphaf_den = plus_com(alphaf_den11, alphaf_den22);
}
p.alphaf = div_com(alphaf_num , alphaf_den);
//train D
temp1 = newifft2(mul_com(conj_com(kf_cn),p.alphaf));
temp2 = newifft2(mul_com(conj_com(kf_hog),p.alphaf));
temp = 2 * y - alpha*lambda;
multiply(temp, temp1, out_temp);
d_new_num1 = sum(out_temp)[0];
multiply(temp, temp2, out_temp);
d_new_num2 = sum(out_temp)[0];
multiply(temp1, temp1, out_temp);
d_new_den1 = sum(2 * out_temp)[0];
multiply(temp2, temp2, out_temp);
d_new_den2 = sum(2 * out_temp)[0];
alpha = newifft2(p.alphaf);
if (frame == start_frame)
{
d_num11 = d_new_num1;
d_num22 = d_new_num2;
d_den11 = d_new_den1;
d_den22 = d_new_den2;
}
else
{
d_num11 = d_num1*(1 - learning_rate_cn) + learning_rate_cn*d_new_num1;
d_num22 = d_num2*(1 - learning_rate_hog) + learning_rate_hog*d_new_num2;
d_den11 = d_den1*(1 - learning_rate_cn) + learning_rate_cn*d_new_den1;
d_den22 = d_den2*(1 - learning_rate_hog) + learning_rate_hog*d_new_den2;
}
p.d[0] = d_num11 / d_den11;
p.d[1] = d_num22 / d_den22;
float summ = p.d[0] + p.d[1];
p.d[0] = p.d[0] / summ;
p.d[1] = p.d[1] / summ;
//iteration
count++;
if (count > 1)
{
deltaalpha = abs(alpha - prevalpha);
deltaD[0] = abs(p.d[0] - prevD[0]);
deltaD[1] = abs(p.d[1] - prevD[1]);
if (sum(deltaalpha)[0] <= threshold*sum(abs(prevalpha))[0] && (deltaD[0] + deltaD[1]) <= threshold*(prevD[0] + prevD[1]))
stop = 1;
}
prevalpha = alpha;
prevD[0] = p.d[0];
prevD[1] = p.d[1];
if (count > 100)break;
}
alphaf_num1 = alphaf_num11;
alphaf_num2 = alphaf_num22;
alphaf_den1 = alphaf_den11;
alphaf_den2 = alphaf_den22;
d_num1 = d_num11;
d_num2 = d_num22;
d_den1 = d_den11;
d_den2 = d_den22;
return p;
}
struct complex_mat resizeDFT2(const complex_mat &input, const int *sz)
{
int imsz[2], minsz[2], mids[2], mide[2];
imsz[0] = input.img.rows;
imsz[1] = input.img.cols;
minsz[0] = imsz[0];
minsz[1] = imsz[1];
float scaling = sz[0] * sz[1] / (imsz[0] * imsz[1]);
//cout << minsz[0] << " " << minsz[1] << endl;
//cout << sz[0] << " " << sz[1] << endl;
complex_mat resizeddft, imf;
imf.real = input.real.clone();
imf.img = input.img.clone();
resizeddft.real = Mat::zeros(sz[0], sz[1], CV_32FC1);
resizeddft.img = Mat::zeros(sz[0], sz[1], CV_32FC1);//cout << resizeddft.real.rows << " " << resizeddft.real.cols << endl;
//cout << imf.real << endl;
mids[0] = ceil(minsz[0] / 2.0);
mids[1] = ceil(minsz[1] / 2.0);
mide[0] = floor((minsz[0] - 1) / 2.0 - 1);
mide[1] = floor((minsz[1] - 1) / 2.0 - 1);
for (int i = 0; i < mids[0]; ++i)
{
float *data1 = imf.real.ptr<float>(i);
float *data2 = imf.img.ptr<float>(i);
float *out1 = resizeddft.real.ptr<float>(i);
float *out2 = resizeddft.img.ptr<float>(i);
for (int j = 0; j < mids[1]; ++j)
{
out1[j] = scaling * data1[j];
out2[j] = scaling * data2[j];
}
}
for (int i = 0; i < mids[0]; ++i)
{
float *data1 = imf.real.ptr<float>(i);
float *data2 = imf.img.ptr<float>(i);
float *out1 = resizeddft.real.ptr<float>(i);
float *out2 = resizeddft.img.ptr<float>(i);
for (int j = sz[1] - mide[1] -1; j < sz[1]; ++j)
{
out1[j] = scaling * data1[j - sz[1] + minsz[1]];
out2[j] = scaling * data2[j - sz[1] + minsz[1]];
}
}
for (int i = sz[0] - mide[0] - 1; i < sz[0]; ++i)
{
float *data1 = imf.real.ptr<float>(i - sz[0]+ minsz[0] );
float *data2 = imf.img.ptr<float>(i - sz[0] + minsz[0]);
float *out1 = resizeddft.real.ptr<float>(i);
float *out2 = resizeddft.img.ptr<float>(i);
for (int j = 0; j < mids[1]; ++j)
{
out1[j] = scaling * data1[j];
out2[j] = scaling * data2[j];
}
}
for (int i = sz[0] - mide[0] - 1; i < sz[0]; ++i)
{
float *data1 = imf.real.ptr<float>(i - sz[0] + minsz[0]);
float *data2 = imf.img.ptr<float>(i - sz[0] + minsz[0]);
float *out1 = resizeddft.real.ptr<float>(i);
float *out2 = resizeddft.img.ptr<float>(i);
for (int j = sz[1] - mide[1] - 1; j < sz[1]; ++j)
{
out1[j] = scaling * data1[j - sz[1] + minsz[1]];
out2[j] = scaling * data2[j - sz[1] + minsz[1]];
}
}
return resizeddft;
}
struct complex_mat resizeDFT(const complex_mat &input, const int n)
{
int imsz, minsz, mids, mide;
imsz = input.img.cols;
minsz = imsz;
float scaling = float(n) / float(imsz);
complex_mat resizeddft, imf;
imf.real = input.real.clone();
imf.img = input.img.clone();
resizeddft.real = Mat::zeros(1, n, CV_32FC1);
resizeddft.img = Mat::zeros(1, n, CV_32FC1);
mids = ceil(minsz / 2.0);
mide = floor((minsz - 1) / 2.0 - 1);
float *data1 = imf.real.ptr<float>(0);
float *data2 = imf.img.ptr<float>(0);
float *out1 = resizeddft.real.ptr<float>(0);
float *out2 = resizeddft.img.ptr<float>(0);
for (int i = 0; i < mids; ++i)
{
out1[i] = scaling * data1[i];
out2[i] = scaling * data2[i];
}
for (int i = n - mide - 1; i < n; ++i)
{
out1[i] = scaling * data1[i - n + minsz];
out2[i] = scaling * data2[i - n + minsz];
}
return resizeddft;
}
int main()
{
//choose one params set for the certain benchmark
params.choose_benchmarks("OTB2013");
int featureRatio = params.featureRatio;
double padding = params.get_padding();
double output_sigma_factor = params.output_sigma_factor;
double cnsigma_color = params.cnsigma_color;
double hogsigma_color = params.hogsigma_color;
double learning_rate_cn_color = params.get_learning_rate_cn_color();
double learning_rate_hog_color = params.get_learning_rate_hog_color();
double cnsigma_gray = params.get_cnsigma_gray();
double hogsigma_gray = params.get_hogsigma_gray();
double learning_rate_cn_gray = params.get_learning_rate_cn_gray();
double learning_rate_hog_gray = params.get_learning_rate_hog_gray();
double lambda = params.lambda;
double scale_step = params.scale_step;
double scale_sigma_factor = params.scale_sigma_factor;
double scale_model_max_area = params.scale_model_max_area;
double translation_model_max_area = params.translation_model_max_area;
double translation_model_min_area = params.translation_model_min_area;
double scale_interp_factor = params.scale_interp_factor;
bool use_dsst = params.use_dsst;
int gap = params.gap;
bool visualization = params.visualization;
int num_cn_fea = params.num_cn_fea;
int num_hog_fea = params.num_hog_fea;
int num_pca_fea = params.num_pca_fea;
int nScales = params.nScales;
int nScalesInterp = params.nScalesInterp;
string sequences[] = { "Jogging-2" };
int total_num = sizeof(sequences) / sizeof(string);
//set the openmp set
omp_set_num_threads(num_threads);
float fps = 0;
for (int seq_num = 0; seq_num < total_num; ++seq_num)
{
//load_video_info
char buf[100];
sprintf(buf, "res/results_%s.txt", sequences[seq_num].c_str());
FILE *res = fopen(buf, "w+");
const char *name;
name = sequences[seq_num].c_str();
if (res == NULL) cout << "Cannot read the res file." << endl;
sprintf(buf, "sequences/%s/%s_gt.txt", name, name);
FILE *fp_gt = fopen(buf, "r");
int init_gt[4];
for (int i = 0; i < 4; ++i)init_gt[i] = 0;
if (fp_gt == NULL) cout << "Cannot read the gt file." << endl;
else
{
fscanf(fp_gt, "%d,%d,%d,%d", &init_gt[0], &init_gt[1], &init_gt[2], &init_gt[3]);
fclose(fp_gt);
}
if (init_gt[3] == 0)
{
fp_gt = fopen(buf, "r");
fscanf(fp_gt, "%d %d %d %d", &init_gt[0], &init_gt[1], &init_gt[2], &init_gt[3]);
fclose(fp_gt);
}
sprintf(buf, "sequences/%s/%s_frames.txt", name, name);
FILE *fp_frame = fopen(buf, "r");
int start_frame, end_frame;
if (fp_frame == NULL) cout << "Cannot read the file." << endl;
else
{
fscanf(fp_frame, "%d,%d", &start_frame, &end_frame);
fclose(fp_frame);
}
//size initialize
int target_sz[2];
target_sz[0] = init_gt[3];
target_sz[1] = init_gt[2];
int pos[2];
pos[0] = init_gt[1];
pos[1] = init_gt[0];
int init_pos[2];
init_pos[0] = pos[0] + target_sz[0] / 2;
init_pos[1] = pos[1] + target_sz[1] / 2;
pos[0] = init_pos[0];
pos[1] = init_pos[1];
int wsize[2];
wsize[0] = target_sz[0];
wsize[1] = target_sz[1];
int init_target_sz[2];
init_target_sz[0] = wsize[0];
init_target_sz[1] = wsize[1];
float currentScaleFactor;
if (init_target_sz[0] * init_target_sz[1] > translation_model_max_area)
currentScaleFactor = sqrt(init_target_sz[0] * init_target_sz[1] / float(translation_model_max_area));
else
currentScaleFactor = 1.0;
int base_target_sz[2];
base_target_sz[0] = target_sz[0] / currentScaleFactor;
base_target_sz[1] = target_sz[1] / currentScaleFactor;
int sz[2];
sz[0] = base_target_sz[0] * (1 + padding);
sz[1] = base_target_sz[1] * (1 + padding);
//adjust size
while (1)
{
if (((sz[1]) % 8) == 0)break;
else sz[1] ++;
}
while (1)
{
if (((sz[0]) % 8) == 0)break;
else sz[0] ++;
}
float output_sigma = sqrt(base_target_sz[0] / featureRatio * base_target_sz[1] / featureRatio) * output_sigma_factor;
int use_sz[2];
use_sz[0] = sz[0] / featureRatio;
use_sz[1] = sz[1] / featureRatio;
int interp_sz[2];
interp_sz[0] = use_sz[0] * featureRatio;
interp_sz[1] = use_sz[1] * featureRatio;
//allocate fft space
ffm = allocfloat(ffm, use_sz[0], use_sz[1]);
fm = alloccomplex(fm, use_sz[0], use_sz[1]);
m = allocfloat(m, use_sz[0], use_sz[1]);
ffmy = allocfloat(ffmy, interp_sz[0], interp_sz[1]);
fmy = alloccomplex(fmy, interp_sz[0], interp_sz[1]);
Mat y = gaussian_shaped_labels(output_sigma, use_sz[1], use_sz[0]);
Mat kk, kk2, temp;
vector<Mat> channels(2);
complex_mat yf = newfft2(y);
Mat cos_window = cosine_window_function(use_sz[1], use_sz[0]);
sprintf(buf, "./sequences/%s/img/%04d.jpg", name, start_frame);
Mat img = imread(buf, -1);
int imchannel = img.channels();
if (img.empty()) cout << "Can't load image!" << endl;
//distinguish image channel
float cnsigma, hogsigma, learning_rate_hog, learning_rate_cn;
int modnum, cn_channel, cn_out_channel;
if (imchannel == 3)
{
cnsigma = cnsigma_color;
hogsigma = hogsigma_color;
learning_rate_hog = learning_rate_hog_color;
learning_rate_cn = learning_rate_cn_color;
modnum = gap;
cn_channel = num_cn_fea;
cn_out_channel = num_pca_fea;
}
else
{
cnsigma = cnsigma_gray;
hogsigma = hogsigma_gray;
learning_rate_hog = learning_rate_hog_gray;
learning_rate_cn = learning_rate_cn_gray;
modnum = 1;
cn_channel = 1;
cn_out_channel = 1;
}
vector<Mat> cn_feat(cn_channel), x_cn2(cn_out_channel), z_cn2(cn_out_channel);
vector<complex_mat> zf_cn(cn_out_channel), xf_cn(cn_out_channel);
Mat proj_cn(cn_out_channel, cn_channel, CV_32FC1), proj_hog(num_pca_fea, num_hog_fea, CV_32FC1);
//Scale initialize
float scale_model_factor = 1, scale_sigma = float(nScalesInterp) * scale_sigma_factor;
float min_scale_factor, max_scale_factor;
int scale_model_sz[2];
complex_mat mega_ysf, sf_den, sf_num_test;
Mat mega_scale_window;
float *interpScaleFactors= new float[nScalesInterp], *interp_scale_exp= new float[nScalesInterp], *interp_scale_exp_shift= new float[nScalesInterp], *scaleSizeFactors_test= new float[nScales],
*scaleSizeFactors= new float[nScales], *scale_exp= new float[nScales], *scale_exp_shift= new float[nScales];
if (use_dsst)
{
for (int i = -floor((nScales - 1) / 2.); i <= ceil((nScales - 1) / 2.); ++i)
scale_exp[int(i + floor((nScales - 1) / 2.))] = i * nScalesInterp / float(nScales);
for (int i = 0; i < nScales - floor((nScales - 1) / 2.); ++i)
scale_exp_shift[i] = scale_exp[int(floor((nScales - 1) / 2.) + i)];
for (int i = nScales - floor((nScales - 1) / 2.); i < nScales; ++i)
scale_exp_shift[i] = scale_exp[int(i - (nScales - floor((nScales - 1) / 2.)))];
for (int i = -floor((nScalesInterp - 1) / 2.); i <= ceil((nScalesInterp - 1) / 2.); ++i)
interp_scale_exp[int(i + floor((nScalesInterp - 1) / 2.))] = i;
for (int i = 0; i < nScalesInterp - floor((nScalesInterp - 1) / 2.); i++)
interp_scale_exp_shift[i] = interp_scale_exp[int(floor((nScalesInterp - 1) / 2.) + i)];
for (int i = nScalesInterp - floor((nScalesInterp - 1) / 2.); i < nScalesInterp; ++i)
interp_scale_exp_shift[i] = interp_scale_exp[int(i - (nScalesInterp - floor((nScalesInterp - 1) / 2.)))];
for (int i = 0; i < nScales; ++i)
scaleSizeFactors[i] = pow(scale_step, scale_exp[i]);
for (int i = 0; i < nScales; ++i)
scaleSizeFactors_test[i] = pow(scale_step, scale_exp_shift[i]);
for (int i = 0; i < nScalesInterp; ++i)
interpScaleFactors[i] = pow(scale_step, interp_scale_exp_shift[i]);
Mat ys(1, nScales, CV_32FC1);
float *data = ys.ptr<float>(0);
for (int i = 0; i < nScales; ++i)
data[i] = exp(-0.5 * (scale_exp_shift[i] * scale_exp_shift[i]) / (scale_sigma*scale_sigma));
dft(ys, kk, DFT_COMPLEX_OUTPUT);
split(kk, channels);
complex_mat ysf;
ysf.real = channels[0].clone();
ysf.img = channels[1].clone();
Mat scale_window = scale_window_function(nScales);
if (scale_model_factor*scale_model_factor *init_target_sz[0] * init_target_sz[1] > scale_model_max_area)
scale_model_factor = sqrt(scale_model_max_area / float(init_target_sz[0] * init_target_sz[1]));
scale_model_sz[0] = floor(init_target_sz[0] * scale_model_factor);
scale_model_sz[1] = floor(init_target_sz[1] * scale_model_factor);
mega_scale_window = repeat(scale_window, floor(scale_model_sz[1] / featureRatio)*floor(scale_model_sz[0] / featureRatio) * num_hog_fea, 1);
mega_ysf.real = repeat(ysf.real, floor(scale_model_sz[1] / featureRatio)*floor(scale_model_sz[0] / featureRatio) * num_hog_fea, 1);
mega_ysf.img = repeat(ysf.img, floor(scale_model_sz[1] / featureRatio)*floor(scale_model_sz[0] / featureRatio) * num_hog_fea, 1);
min_scale_factor = pow(scale_step, ceil(log(max(5. / float(sz[0]), 5. / float(sz[1]))) / log(scale_step)));
max_scale_factor = pow(scale_step, floor(log(min(float(img.rows) / float(base_target_sz[0]), float(img.cols) / float(base_target_sz[1]))) / log(scale_step)));
}
//model initialize
float d_num1 = 0, d_num2 = 0, d_den1 = 0, d_den2 = 0;
complex_mat alphaf_num1, alphaf_num2, alphaf_den1, alphaf_den2;
struct model p;
vector<Mat> x_hog, x_cn, hog_feat, z_hog, z_cn, x_hog2(num_pca_fea), z_hog2(num_pca_fea);
vector<complex_mat> zf_hog(num_pca_fea), xf_hog(num_pca_fea);
int use_num = use_sz[0] * use_sz[1];
Mat x_hog_pca(num_hog_fea, use_num, CV_32FC1);
Mat z_hog_pca(num_hog_fea, use_num, CV_32FC1);
Mat x_cn_pca(cn_channel, use_num, CV_32FC1);
Mat z_cn_pca(cn_channel, use_num, CV_32FC1);
Mat x_channel(use_sz[0], use_sz[1], CV_32FC1);
Mat proj_hog_t, proj_cn_t, U1, U2, s_num;
for (int i = 0; i < num_pca_fea; ++i)
{
x_hog2[i] = x_channel.clone();
if (imchannel == 3)
x_cn2[i] = x_channel.clone();
}
if (imchannel != 3)
x_cn2[0] = x_channel.clone();
double total_time = 0;
clock_t startTime, endTime;
//start tracking
for (int frame = start_frame; frame <= end_frame; ++frame)
{
//load image
sprintf(buf, "./sequences/%s/img/%04d.jpg", name, frame);
Mat im = imread(buf, -1);
if (im.empty())
{
cout << "Can't load image!" << endl;
break;
}
startTime = clock();
//Detection
if (frame > start_frame)
{
//get feature
Mat patch = get_subwindow(im, pos[1], pos[0], sz[1], sz[0], currentScaleFactor);
hog_feat = FHoG::extract(patch);
if (imchannel == 3)
cn_feat = CNFeat::extract(patch);
else
{
patch.convertTo(patch, CV_32FC1, 1.0 / 255);
cn_feat[0] = patch - 0.5;
}
cn_feat = average_faeture_region(cn_feat, num_pca_fea, use_sz[0], use_sz[1], cn_channel);
z_hog = hog_feat;
z_cn = cn_feat;
//PCA
#pragma omp parallel for
for (int i = 0; i < num_hog_fea; ++i)
{
float *data = z_hog_pca.ptr<float>(i);
float *data2 = z_hog[i].ptr<float>(0);
for (int q = 0; q < use_num; ++q)
data[q] = data2[q];
}
Mat z_hog_pca_t = z_hog_pca.t();
Mat z_hog2_temp = z_hog_pca_t * proj_hog_t;
z_hog2_temp = z_hog2_temp.t();
Mat z_cn2_temp;
if (imchannel == 3)
{
#pragma omp parallel for
for (int i = 0; i < num_cn_fea; ++i)
{
float *data = z_cn_pca.ptr<float>(i);
float *data2 = z_cn[i].ptr<float>(0);
for (int q = 0; q < use_num; ++q)
data[q] = data2[q];