-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopenalex.py
executable file
·101 lines (83 loc) · 2.97 KB
/
openalex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import pyalex
import pandas as pd
import tiktoken
from openai_utils import get_embedding, cosine_similarity
import os
pyalex.config.api_key = os.getenv("OPENALEX_API_KEY")
pyalex.config.email = "trang.le@bms.com"
def find_abs(keywords, per_page=100):
print("Finding pubs...")
woi = pyalex.Works().search_filter(abstract=keywords).get(per_page=per_page)
while not woi:
keywords = remove_last_keyword(keywords)
if keywords == "":
return None
woi = pyalex.Works().search_filter(abstract=keywords).get(per_page=per_page)
abs_df = pd.DataFrame(
[
{
"title": e["title"],
"abstract": e["abstract"],
"url": e["doi"],
}
for e in woi
]
)
abs_df["abstract"] = abs_df["abstract"].apply(shorten_abstract)
print("Done!")
return abs_df
def shorten_abstract(text, max_words=500, max_length=300):
words = text.split()
if len(words) > max_words:
return " ".join(words[:max_length])
else:
return text
def remove_last_keyword(s):
last_plus_index = s.rfind("+")
if last_plus_index != -1:
return s[:last_plus_index]
return ""
def get_embed(
df,
embedding_model="text-embedding-ada-002", # "tcell_ada_embeddings",
embedding_encoding="cl100k_base", # this the encoding for text-embedding-ada-002
max_tokens=8000, # the maximum for text-embedding-ada-002 is 8191
top_n=1000,
):
print("Finding embeddings...")
# omit reviews that are too long to embed
encoding = tiktoken.get_encoding(embedding_encoding)
df["n_tokens"] = df.abstract.apply(lambda x: len(encoding.encode(x)))
df = df[df.n_tokens <= max_tokens].tail(top_n)
df["embedding"] = df.abstract.apply(
lambda x: get_embedding(x, model=embedding_model)
)
print("Done!")
return df
def search_docs(
df,
user_query,
embedding_model="text-embedding-ada-002",
top_n=10,
):
# perform semantic search on these abstracts and find
# the top 10 relevant abstracts
if df is None:
return None
embedding = get_embedding(user_query, model=embedding_model)
df["similarities"] = df.embedding.apply(lambda x: cosine_similarity(x, embedding))
res = df.sort_values("similarities", ascending=False).head(top_n)
return res
def style_dataframe(df):
# check that the input DataFrame has the correct columns
expected_columns = ["similarities", "title", "abstract", "url"]
missing_columns = set(expected_columns) - set(df.columns)
if missing_columns:
raise ValueError(f"Missing columns in input DataFrame: {missing_columns}")
styled_df = pd.DataFrame()
styled_df["Publication"] = df.apply(
lambda row: f'<p style="font-weight: bold; font-size: larger"><a href="{row["url"]}">{row["title"]}</a></p><p>{row["abstract"]}</p>',
axis=1,
)
styled_df["Similarity"] = df["similarities"].apply(lambda x: f"{x:.3f}")
return styled_df