-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathmodel_non_linear_3DMM.py
793 lines (563 loc) · 39.8 KB
/
model_non_linear_3DMM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
'''
Outline of the main training script
Part of data/input pipeline is ommitted
'''
from __future__ import division
import os
import time
import csv
import random
from random import randint
from math import floor
from glob import glob
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
from six.moves import xrange
#from progress.bar import Bar
from rendering_ops import *
from ops import *
from utils import *
TRI_NUM = 105840
VERTEX_NUM = 53215
CONST_PIXELS_NUM = 20
class DCGAN(object):
def __init__(self, sess, config, devices=None):
"""
Args:
sess: TensorFlow session
batch_size: The size of batch. Should be specified before training.
"""
self.sess = sess
self.c_dim = config.c_dim
self.gpu_num = len(config.gpu.split())
self.batch_size = config.batch_size
self.image_size = config.image_size
self.sample_size = config.sample_size
self.image_size = 224 #config.image_size
self.texture_size = [192, 224]
self.z_dim = config.z_dim
self.gf_dim = config.gf_dim
self.df_dim = config.df_dim
self.gfc_dim = config.gfc_dim
self.dfc_dim = config.dfc_dim
self.shape_loss = config.shape_loss if hasattr(config, 'shape_loss') else "l2"
self.tex_loss = config.tex_loss if hasattr(config, 'tex_loss') else "l1"
self.is_using_landmark = config.is_using_landmark
self.is_using_symetry = config.is_using_symetry
self.is_using_recon = config.is_using_recon
self.is_using_frecon = config.is_using_frecon
self.is_batchwise_white_shading = config.is_batchwise_white_shading
self.is_const_albedo = config.is_const_albedo
self.is_const_local_albedo = config.is_const_local_albedo
self.is_smoothness = config.is_smoothness
self.mDim = 8
self.ilDim = 27
self.vertexNum = VERTEX_NUM
self.landmark_num = 68
self.checkpoint_dir = config.checkpoint_dir
self.samples_dir = config.samples_dir
if not os.path.exists(self.samples_dir+"/"+self.model_dir):
os.makedirs(self.samples_dir+"/"+self.model_dir)
if not os.path.exists(self.checkpoint_dir+"/"+self.model_dir):
os.makedirs(self.checkpoint_dir+"/"+self.model_dir)
self.setupParaStat()
#self.setupValData()
self.build_model()
def build_model(self):
def filename2image(input_filenames, offset_height = None, offset_width = None, target_height=None, target_width=None):
batch_size = len(input_filenames)
if offset_height != None:
offset_height = tf.split(offset_height, batch_size)
offset_width = tf.split(offset_width, batch_size)
images = []
for i in range(batch_size):
file_contents = tf.read_file(input_filenames[i])
image = tf.image.decode_png(file_contents, channels=3)
if offset_height != None:
image = tf.image.crop_to_bounding_box(image, tf.reshape(offset_height[i], []), tf.reshape(offset_width[i], []), target_height, target_width)
images.append(image)
return tf.cast(tf.stack(images), tf.float32)
self.m_300W_labels = tf.placeholder(tf.float32, [self.batch_size, self.mDim], name='m_300W_labels')
self.shape_300W_labels = tf.placeholder(tf.float32, [self.batch_size, self.vertexNum * 3], name='shape_300W_labels')
self.texture_300W_labels = tf.placeholder(tf.float32, [self.batch_size, self.texture_size[0], self.texture_size[1], self.c_dim], name='tex_300W_labels')
#self.exp_300W_labels = tf.placeholder(tf.float32, [self.batch_size, self.expDim], name='exp_300W_labels')
#self.il_300W_labels = tf.placeholder(tf.float32, [self.batch_size, self.ilDim], name='lighting_300W_labels')
self.input_offset_height = tf.placeholder(tf.int32, [self.batch_size], name='input_offset_height')
self.input_offset_width = tf.placeholder(tf.int32, [self.batch_size], name='input_offset_width')
self.input_images_fn_300W = [tf.placeholder(dtype=tf.string) for _ in range(self.batch_size)]
self.input_masks_fn_300W = [tf.placeholder(dtype=tf.string) for _ in range(self.batch_size)]
self.texture_labels_fn_300W = [tf.placeholder(dtype=tf.string) for _ in range(self.batch_size)]
self.texture_masks_fn_300W = [tf.placeholder(dtype=tf.string) for _ in range(self.batch_size)]
# For const alb loss
self.albedo_indexes_x1 = tf.placeholder(tf.int32, [self.batch_size, CONST_PIXELS_NUM, 1], name='idexes_x1')
self.albedo_indexes_y1 = tf.placeholder(tf.int32, [self.batch_size, CONST_PIXELS_NUM, 1], name='idexes_y1')
self.albedo_indexes_x2 = tf.placeholder(tf.int32, [self.batch_size, CONST_PIXELS_NUM, 1], name='idexes_x2')
self.albedo_indexes_y2 = tf.placeholder(tf.int32, [self.batch_size, CONST_PIXELS_NUM, 1], name='idexes_y2')
self.const_alb_mask = load_const_alb_mask()
def model_and_loss(input_images_fn_300W, input_masks_fn_300W, texture_labels_fn_300W, texture_masks_fn_300W, input_offset_height, input_offset_width, m_300W_labels, shape_300W_labels, albedo_indexes_x1, albedo_indexes_y1, albedo_indexes_x2, albedo_indexes_y2):
batch_size = self.batch_size / self.gpu_num
input_images_300W_ = filename2image(input_images_fn_300W, offset_height = input_offset_height, offset_width = input_offset_width, target_height=self.image_size, target_width=self.image_size)
input_images_300W = input_images_300W_ /127.5 - 1
input_masks_300W = filename2image(input_masks_fn_300W, offset_height = input_offset_height, offset_width = input_offset_width, target_height=self.image_size, target_width=self.image_size)
input_masks_300W = input_masks_300W / 255.0
texture_300W_labels = filename2image(texture_labels_fn_300W)
texture_300W_labels = texture_300W_labels / 127.5 - 1
texture_mask_300W_labels = filename2image(texture_masks_fn_300W)
texture_mask_300W_labels = texture_mask_300W_labels / 255.0
## ------------------------- Network ---------------------------
shape_fx_300W, tex_fx_300W, m_300W, il_300W = self.generator_encoder( input_images_300W, is_reuse=False)
shape_300W, shape_2d_300W = self.generator_decoder_shape(shape_fx_300W, is_reuse=False, is_training=True)
albedo_300W = self.generator_decoder_albedo(tex_fx_300W, is_reuse=False, is_training=True)
m_300W_full = m_300W * self.std_m_tf + self.mean_m_tf
shape_300W_full = shape_300W * self.std_shape_tf + self.mean_shape_tf
shape_300W_labels_full = shape_300W_labels * self.std_shape_tf + self.mean_shape_tf
m_300W_labels_full = m_300W_labels * self.std_m_tf + self.mean_m_tf
shape_for_synthesize = shape_300W_full
m_for_synthesize = m_300W_full
# Rendering
shade_300W = generate_shade(il_300W, m_for_synthesize, shape_for_synthesize, self.texture_size)
texture_300W = 2.0*tf.multiply( (albedo_300W + 1.0)/2.0, shade_300W) - 1
G_images_300W, G_images_300W_mask = warp_texture(texture_300W, m_for_synthesize, shape_for_synthesize, output_size=self.image_size)
G_images_300W_mask = tf.multiply(input_masks_300W, tf.expand_dims(G_images_300W_mask, -1))
G_images_300W = tf.multiply(G_images_300W, G_images_300W_mask) + tf.multiply(input_images_300W, 1 - G_images_300W_mask)
landmark_u_300W, landmark_v_300W = compute_landmarks(m_300W_full, shape_300W_full, output_size=self.image_size)
landmark_u_300W_labels, landmark_v_300W_labels = compute_landmarks(m_300W_labels_full, shape_300W_labels_full, output_size=self.image_size)
##---------------- Losses -------------------------
g_loss = tf.zeros(1)
G_loss_shape = 10*norm_loss(shape_300W, shape_300W_labels, loss_type = self.shape_loss) #tf.zeros(1)
G_loss_m = 5*norm_loss(m_300W, m_300W_labels, loss_type = 'l2')
texture_vis_mask = tf.cast(tf.not_equal(texture_300W_labels, tf.ones_like(texture_300W_labels)*(-1)), tf.float32)
texture_vis_mask = tf.multiply(texture_vis_mask, texture_mask_300W_labels)
texture_ratio = tf.reduce_sum(texture_vis_mask) / (batch_size* self.texture_size[0] * self.texture_size[1] * self.c_dim)
if self.is_batchwise_white_shading:
uv_mask_tf = tf.expand_dims(tf.expand_dims(tf.constant( self.uv_mask, dtype = tf.float32 ), 0), -1)
mean_shade = tf.reduce_mean( tf.multiply(shade_300W, uv_mask_tf) , axis=[0,1,2]) * 16384 / 10379
G_loss_white_shading = 10*norm_loss(mean_shade, 0.99*tf.ones([1, 3], dtype=tf.float32), loss_type = "l2")
else:
G_loss_white_shading = tf.zeros(1)
G_loss_texture = norm_loss(texture_300W, texture_300W_labels, mask = texture_vis_mask, loss_type = self.tex_loss) / texture_ratio
G_loss_recon = 10*norm_loss(G_images_300W, input_images_300W, loss_type = self.tex_loss ) / (tf.reduce_sum(G_images_300W_mask)/ (batch_size* self.image_size * self.image_size))
g_loss += G_loss_m + G_loss_shape + G_loss_white_shading
if self.is_smoothness:
G_loss_smoothness = 1000*norm_loss( (shape_2d_300W[:, :-2, 1:-1, :] + shape_2d_300W[:, 2:, 1:-1, :] + shape_2d_300W[:, 1:-1, :-2, :] + shape_2d_300W[:, 1:-1, 2:, :])/4.0,
shape_2d_300W[:, 1:-1, 1:-1, :], loss_type = self.shape_loss)
else:
G_loss_smoothness = tf.zeros(1)
g_loss = g_loss + G_loss_smoothness
G_landmark_loss = (tf.reduce_mean(tf.nn.l2_loss(landmark_u_300W - landmark_u_300W_labels )) + tf.reduce_mean(tf.nn.l2_loss(landmark_v_300W - landmark_v_300W_labels ))) / self.landmark_num / batch_size / 50
if self.is_using_symetry:
albedo_300W_flip = tf.map_fn(lambda img: tf.image.flip_left_right(img), albedo_300W)
G_loss_symetry = norm_loss(tf.maximum(tf.abs(albedo_300W-albedo_300W_flip), 0.05), 0, loss_type = self.tex_loss)
else:
G_loss_symetry = tf.zeros(1)
g_loss += G_loss_symetry
if self.is_const_albedo:
albedo_1 = get_pixel_value(albedo_300W, albedo_indexes_x1, albedo_indexes_y1)
albedo_2 = get_pixel_value(albedo_300W, albedo_indexes_x2, albedo_indexes_y2)
G_loss_albedo_const = 5*norm_loss( tf.maximum(tf.abs(albedo_1- albedo_2), 0.05), 0, loss_type = self.tex_loss)
else:
G_loss_albedo_const = tf.zeros(1)
g_loss += G_loss_albedo_const
if self.is_const_local_albedo:
local_albedo_alpha = 0.9
texture_300W_labels_chromaticity = (texture_300W_labels + 1.0)/2.0
texture_300W_labels_chromaticity = tf.divide(texture_300W_labels_chromaticity, tf.reduce_sum(texture_300W_labels_chromaticity, axis=[-1], keep_dims=True) + 1e-6)
w_u = tf.stop_gradient(tf.exp(-15*tf.norm( texture_300W_labels_chromaticity[:, :-1, :, :] - texture_300W_labels_chromaticity[:, 1:, :, :], ord='euclidean', axis=-1, keep_dims=True)) * texture_vis_mask[:, :-1, :, :] )
G_loss_local_albedo_const_u = tf.reduce_mean(norm_loss( albedo_300W[:, :-1, :, :], albedo_300W[:, 1:, :, :], loss_type = 'l2,1', reduce_mean=False, p=0.8) * w_u) / tf.reduce_sum(w_u+1e-6)
w_v = tf.stop_gradient(tf.exp(-15*tf.norm( texture_300W_labels_chromaticity[:, :, :-1, :] - texture_300W_labels_chromaticity[:, :, 1:, :], ord='euclidean', axis=-1, keep_dims=True)) * texture_vis_mask[:, :, :-1, :] )
G_loss_local_albedo_const_v = tf.reduce_mean(norm_loss( albedo_300W[:, :, :-1, :], albedo_300W[:, :, 1:, :], loss_type = 'l2,1', reduce_mean=False, p=0.8) * w_v) / tf.reduce_sum(w_v+1e-6)
G_loss_local_albedo_const = (G_loss_local_albedo_const_u + G_loss_local_albedo_const_v)*10
else:
G_loss_local_albedo_const = tf.zeros(1)
g_loss += G_loss_local_albedo_const
if self.is_using_recon:
g_loss += G_loss_recon
else:
g_loss += G_loss_texture
G_loss_frecon = tf.zeros(1)
if self.is_using_landmark:
g_loss_wlandmark = g_loss + G_landmark_loss
else:
g_loss_wlandmark = g_loss
return g_loss, g_loss_wlandmark, G_loss_m, G_loss_shape, G_loss_texture, G_loss_recon, G_loss_frecon, G_landmark_loss, G_loss_symetry, G_loss_white_shading, G_loss_albedo_const, G_loss_smoothness, G_loss_local_albedo_const, \
G_images_300W, texture_300W, albedo_300W, shade_300W, texture_300W_labels, input_images_300W
g_loss, g_loss_wlandmark, G_loss_m, G_loss_shape, G_loss_texture, G_loss_recon, G_loss_frecon, G_landmark_loss, G_loss_symetry, G_loss_white_shading, G_loss_albedo_const, G_loss_smoothness, G_loss_local_albedo_const, \
G_images_300W, texture_300W, albedo_300W, shade_300W, texture_300W_labels, input_images_300W \
= make_parallel(model_and_loss, self.gpu_num,
input_images_fn_300W= self.input_images_fn_300W, input_masks_fn_300W=self.input_masks_fn_300W,
texture_labels_fn_300W=self.texture_labels_fn_300W, texture_masks_fn_300W=self.texture_masks_fn_300W,
input_offset_height=self.input_offset_height, input_offset_width=self.input_offset_width,
m_300W_labels = self.m_300W_labels, shape_300W_labels=self.shape_300W_labels,
albedo_indexes_x1= self.albedo_indexes_x1, albedo_indexes_y1 = self.albedo_indexes_y1,
albedo_indexes_x2=self.albedo_indexes_x2, albedo_indexes_y2 = self.albedo_indexes_y2)
self.G_loss = tf.reduce_mean(g_loss)
self.G_loss_wlandmark = tf.reduce_mean(g_loss_wlandmark)
self.G_loss_m = tf.reduce_mean(G_loss_m)
self.G_loss_shape = tf.reduce_mean(G_loss_shape)
self.G_loss_texture = tf.reduce_mean(G_loss_texture)
self.G_loss_recon = tf.reduce_mean(G_loss_recon)
self.G_loss_frecon = tf.reduce_mean(G_loss_frecon)
self.G_landmark_loss = tf.reduce_mean(G_landmark_loss)
self.G_loss_symetry = tf.reduce_mean(G_loss_symetry)
self.G_loss_white_shading = tf.reduce_mean(G_loss_white_shading)
self.G_loss_albedo_const = tf.reduce_mean(G_loss_albedo_const)
self.G_loss_local_albedo_const = tf.reduce_mean(G_loss_local_albedo_const)
self.G_loss_smoothness = tf.reduce_mean(G_loss_smoothness)
self.G_images_300W = tf.clip_by_value(tf.concat(G_images_300W, axis=0), -1, 1)
self.texture_300W = tf.clip_by_value(tf.concat(texture_300W, axis=0), -1, 1)
self.albedo_300W = tf.concat(albedo_300W, axis=0)
self.shade_300W = tf.concat(shade_300W, axis=0)
self.texture_300W_labels = tf.concat(texture_300W_labels, axis=0)
self.input_images_300W = tf.concat(input_images_300W, axis=0)
t_vars = tf.trainable_variables()
self.d_vars = [var for var in t_vars if 'd_' in var.name]
self.g_vars = [var for var in t_vars if 'g_' in var.name]
self.g_en_vars = [var for var in t_vars if 'g_k' in var.name]
self.g_tex_de_vars = [var for var in t_vars if 'g_h' in var.name]
self.g_shape_de_vars = [var for var in t_vars if 'g_s' in var.name]
self.saver = tf.train.Saver(keep_checkpoint_every_n_hours=1, max_to_keep = 10)
def setupParaStat(self):
self.tri = load_3DMM_tri()
self.vertex_tri = load_3DMM_vertex_tri()
self.vt2pixel_u, self.vt2pixel_v = load_3DMM_vt2pixel()
self.uv_tri, self.uv_mask = load_3DMM_tri_2d(with_mask = True)
# Basis
mu_shape, w_shape = load_Basel_basic('shape')
mu_exp, w_exp = load_Basel_basic('exp')
self.mean_shape = mu_shape + mu_exp
self.std_shape = np.tile(np.array([1e4, 1e4, 1e4]), self.vertexNum)
#self.std_shape = np.load('std_shape.npy')
self.mean_shape_tf = tf.constant(self.mean_shape, tf.float32)
self.std_shape_tf = tf.constant(self.std_shape, tf.float32)
self.mean_m = np.load('mean_m.npy')
self.std_m = np.load('std_m.npy')
self.mean_m_tf = tf.constant(self.mean_m, tf.float32)
self.std_m_tf = tf.constant(self.std_m, tf.float32)
self.w_shape = w_shape
self.w_exp = w_exp
def m2full(self, m):
return m * self.std_m_tf + self.mean_m_tf
def shape2full(self, shape):
return shape * self.std_shape_tf + self.mean_shape_tf
def setupTrainingData(self):
# Training data - 300W
dataset = ['AFW', 'AFW_Flip', 'HELEN', 'HELEN_Flip', 'IBUG', 'IBUG_Flip', 'LFPW', 'LFPW_Flip']
dataset_num = len(dataset)
images = [0] * dataset_num
pid = [0] * dataset_num
m = [0] * dataset_num
pose = [0] * dataset_num
shape = [0] * dataset_num
exp = [0] * dataset_num
tex_para = [0] * dataset_num
tex = [0] * dataset_num
il = [0] * dataset_num
alb = [0] * dataset_num
mask = [0] * dataset_num
for i in range(dataset_num):
images[i], pid[i], m[i], pose[i], shape[i], exp[i], tex_para[i], _ = load_300W_LP_dataset(dataset[i])
self.image_filenames = np.concatenate(images, axis=0)
images = None
all_m = np.concatenate(m, axis=0)
all_shape_para = np.concatenate(shape, axis=0)
all_exp_para = np.concatenate(exp, axis=0)
self.all_tex_para = np.concatenate(tex_para, axis=0)
self.pids_300W = np.concatenate(pid, axis=0)
#self.all_il = np.concatenate(il, axis=0)
self.all_m = np.divide(np.subtract(all_m, self.mean_m), self.std_m)
self.mean_shape_para = np.mean(all_shape_para, axis=0)
self.std_shape_para = np.std(all_shape_para, axis=0)
self.all_shape_para = all_shape_para #np.divide(np.subtract(all_shape_para, self.mean_shape_para), self.std_shape_para)
self.mean_exp_para = np.mean(all_exp_para, axis=0)
self.std_exp_para = np.std(all_exp_para, axis=0)
self.all_exp_para = all_exp_para #np.divide(np.subtract(all_exp_para, self.mean_exp_para), self.std_exp_para)
return
def train(self, config):
# Training data
self.setupTrainingData()
valid_idx = range(self.image_filenames.shape[0])
print("Valid images %d/%d" % ( len(valid_idx), self.image_filenames.shape[0] ))
np.random.shuffle(valid_idx)
# Using 2 separated optim for with and withou landmark losses
g_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1).minimize(self.G_loss, var_list=self.g_vars, colocate_gradients_with_ops=True)
g_en_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1).minimize(self.G_loss_wlandmark, var_list=self.g_en_vars, colocate_gradients_with_ops=True)
tf.global_variables_initializer().run()
"""Train DCGAN"""
could_load, checkpoint_counter = self.load(self.checkpoint_dir)
if could_load:
epoch0 = checkpoint_counter + 1
print(" [*] Load SUCCESS")
else:
epoch0 = 1
print(" [!] Load failed...")
start_time = time.time()
for epoch in xrange(epoch0, config.epoch):
batch_idxs = min(len(valid_idx), config.train_size) // config.batch_size
for idx in xrange(0, batch_idxs):
'''
Data processing. Create feed_dict
'''
# 300W
batch_idx = valid_idx[idx*config.batch_size:(idx+1)*config.batch_size]
tx = np.random.random_integers(0, 32, size=config.batch_size)
ty = np.random.random_integers(0, 32, size=config.batch_size)
batch_300W_images_fn = [self.image_filenames[batch_idx[i]] for i in range(config.batch_size)]
delta_m = np.zeros([config.batch_size, 8])
delta_m[:,6] = np.divide(ty, self.std_m[6])
delta_m[:,7] = np.divide(32 - tx, self.std_m[7])
batch_m = self.all_m[batch_idx,:] - delta_m
batch_shape_para = self.all_shape_para[batch_idx,:]
batch_exp_para = self.all_exp_para[batch_idx,:]
batch_shape = np.divide( np.matmul(batch_shape_para, np.transpose(self.w_shape)) + np.matmul(batch_exp_para, np.transpose(self.w_exp)), self.std_shape)
ffeed_dict={ self.m_300W_labels: batch_m, self.shape_300W_labels: batch_shape, self.input_offset_height: tx, self.input_offset_width: ty}
for i in range(self.batch_size):
ffeed_dict[self.input_images_fn_300W[i]] = _300W_LP_DIR + 'image/'+ batch_300W_images_fn[i]
ffeed_dict[self.input_masks_fn_300W[i]] = _300W_LP_DIR + 'mask_img/'+ batch_300W_images_fn[i]
ffeed_dict[self.texture_labels_fn_300W[i]] = _300W_LP_DIR + 'texture/'+ image2texture_fn(batch_300W_images_fn[i])
ffeed_dict[self.texture_masks_fn_300W[i]] = _300W_LP_DIR + 'mask/'+ image2texture_fn(batch_300W_images_fn[i])
if self.is_const_albedo:
indexes1 = np.random.randint(low=0, high=self.const_alb_mask.shape[0], size=[self.batch_size* CONST_PIXELS_NUM])
indexes2 = np.random.randint(low=0, high=self.const_alb_mask.shape[0], size=[self.batch_size* CONST_PIXELS_NUM])
ffeed_dict[self.albedo_indexes_x1] = np.reshape(self.const_alb_mask[indexes1, 1], [self.batch_size, CONST_PIXELS_NUM, 1])
ffeed_dict[self.albedo_indexes_y1] = np.reshape(self.const_alb_mask[indexes1, 0], [self.batch_size, CONST_PIXELS_NUM, 1])
ffeed_dict[self.albedo_indexes_x2] = np.reshape(self.const_alb_mask[indexes2, 1], [self.batch_size, CONST_PIXELS_NUM, 1])
ffeed_dict[self.albedo_indexes_y2] = np.reshape(self.const_alb_mask[indexes2, 0], [self.batch_size, CONST_PIXELS_NUM, 1])
if np.mod(idx, 2) == 0:
# Update G
self.sess.run([g_optim], feed_dict=ffeed_dict)
else:
# Update G encoder only
self.sess.run([g_en_optim], feed_dict=ffeed_dict)
self.save(config.checkpoint_dir, epoch)
def generator_encoder(self, image, is_reuse=False, is_training = True):
'''
Creating a encoder network
Output: shape_fx, tex_fc, m, il
'''
if not is_reuse:
self.g_bn0_0 = batch_norm(name='g_k_bn0_0')
self.g_bn0_1 = batch_norm(name='g_k_bn0_1')
self.g_bn0_2 = batch_norm(name='g_k_bn0_2')
self.g_bn0_3 = batch_norm(name='g_k_bn0_3')
self.g_bn1_0 = batch_norm(name='g_k_bn1_0')
self.g_bn1_1 = batch_norm(name='g_k_bn1_1')
self.g_bn1_2 = batch_norm(name='g_k_bn1_2')
self.g_bn1_3 = batch_norm(name='g_k_bn1_3')
self.g_bn2_0 = batch_norm(name='g_k_bn2_0')
self.g_bn2_1 = batch_norm(name='g_k_bn2_1')
self.g_bn2_2 = batch_norm(name='g_k_bn2_2')
self.g_bn2_3 = batch_norm(name='g_k_bn2_3')
self.g_bn3_0 = batch_norm(name='g_k_bn3_0')
self.g_bn3_1 = batch_norm(name='g_k_bn3_1')
self.g_bn3_2 = batch_norm(name='g_k_bn3_2')
self.g_bn3_3 = batch_norm(name='g_k_bn3_3')
self.g_bn4_0 = batch_norm(name='g_k_bn4_0')
self.g_bn4_1 = batch_norm(name='g_k_bn4_1')
self.g_bn4_2 = batch_norm(name='g_k_bn4_2')
self.g_bn4_c = batch_norm(name='g_h_bn4_c')
self.g_bn5 = batch_norm(name='g_k_bn5')
self.g_bn5_m = batch_norm(name='g_k_bn5_m')
self.g_bn5_il = batch_norm(name='g_k_bn5_il')
self.g_bn5_shape = batch_norm(name='g_k_bn5_shape')
self.g_bn5_shape_linear = batch_norm(name='g_k_bn5_shape_linear')
self.g_bn5_tex = batch_norm(name='g_k_bn5_tex')
k0_1 = elu(self.g_bn0_1(conv2d(image, self.gf_dim*1, k_h=7, k_w=7, d_h=2, d_w =2, use_bias = False, name='g_k01_conv', reuse = is_reuse), train=is_training, reuse = is_reuse))
k0_2 = elu(self.g_bn0_2(conv2d(k0_1, self.gf_dim*2, d_h=1, d_w =1, use_bias = False, name='g_k02_conv', reuse = is_reuse), train=is_training, reuse = is_reuse))
k1_0 = elu(self.g_bn1_0(conv2d(k0_2, self.gf_dim*2, d_h=2, d_w =2, use_bias = False, name='g_k10_conv', reuse = is_reuse), train=is_training, reuse = is_reuse))
k1_1 = elu(self.g_bn1_1(conv2d(k1_0, self.gf_dim*2, d_h=1, d_w =1, use_bias = False, name='g_k11_conv', reuse = is_reuse), train=is_training, reuse = is_reuse))
k1_2 = elu(self.g_bn1_2(conv2d(k1_1, self.gf_dim*4, d_h=1, d_w =1, use_bias = False, name='g_k12_conv', reuse = is_reuse), train=is_training, reuse = is_reuse))
#k1_3 = maxpool2d(k1_2, k=2, padding='VALID')
k2_0 = elu(self.g_bn2_0(conv2d(k1_2, self.gf_dim*4, d_h=2, d_w =2, use_bias = False, name='g_k20_conv', reuse = is_reuse), train=is_training, reuse = is_reuse))
k2_1 = elu(self.g_bn2_1(conv2d(k2_0, self.gf_dim*3, d_h=1, d_w =1, use_bias = False, name='g_k21_conv', reuse = is_reuse), train=is_training, reuse = is_reuse))
k2_2 = elu(self.g_bn2_2(conv2d(k2_1, self.gf_dim*6, d_h=1, d_w =1, use_bias = False, name='g_k22_conv', reuse = is_reuse), train=is_training, reuse = is_reuse))
#k2_3 = maxpool2d(k2_2, k=2, padding='VALID')
k3_0 = elu(self.g_bn3_0(conv2d(k2_2, self.gf_dim*6, d_h=2, d_w =2, use_bias = False, name='g_k30_conv', reuse = is_reuse), train=is_training, reuse = is_reuse))
k3_1 = elu(self.g_bn3_1(conv2d(k3_0, self.gf_dim*4, d_h=1, d_w =1, use_bias = False, name='g_k31_conv', reuse = is_reuse), train=is_training, reuse = is_reuse))
k3_2 = elu(self.g_bn3_2(conv2d(k3_1, self.gf_dim*8, d_h=1, d_w =1, use_bias = False, name='g_k32_conv', reuse = is_reuse), train=is_training, reuse = is_reuse))
#k3_3 = maxpool2d(k3_2, k=2, padding='VALID')
k4_0 = elu(self.g_bn4_0(conv2d(k3_2, self.gf_dim*8, d_h=2, d_w =2, use_bias = False, name='g_k40_conv', reuse = is_reuse), train=is_training, reuse = is_reuse))
k4_1 = elu(self.g_bn4_1(conv2d(k4_0, self.gf_dim*5, d_h=1, d_w =1, use_bias = False, name='g_k41_conv', reuse = is_reuse), train=is_training, reuse = is_reuse))
# M
k51_m = self.g_bn5_m( conv2d(k4_1, int(self.gfc_dim/5), d_h=1, d_w =1, name='g_k5_m_conv', reuse = is_reuse), train=is_training, reuse = is_reuse)
k51_shape_ = get_shape(k51_m)
k52_m = tf.nn.avg_pool(k51_m, ksize = [1, k51_shape_[1], k51_shape_[2], 1], strides = [1,1,1,1],padding = 'VALID')
k52_m = tf.reshape(k52_m, [-1, int(self.gfc_dim/5)])
k6_m = linear(k52_m, self.mDim, 'g_k6_m_lin', reuse = is_reuse)
# Il
k51_il = self.g_bn5_il( conv2d(k4_1, int(self.gfc_dim/5), d_h=1, d_w =1, name='g_k5_il_conv', reuse = is_reuse), train=is_training, reuse = is_reuse)
k52_il = tf.nn.avg_pool(k51_il, ksize = [1, k51_shape_[1], k51_shape_[2], 1], strides = [1,1,1,1],padding = 'VALID')
k52_il = tf.reshape(k52_il, [-1, int(self.gfc_dim/5)])
k6_il = linear(k52_il, self.ilDim, 'g_k6_il_lin', reuse = is_reuse)
# Shape
k51_shape = self.g_bn5_shape(conv2d(k4_1, self.gfc_dim/2, d_h=1, d_w =1, name='g_k5_shape_conv', reuse = is_reuse), train=is_training, reuse = is_reuse)
k52_shape = tf.nn.avg_pool(k51_shape, ksize = [1, k51_shape_[1], k51_shape_[2], 1], strides = [1,1,1,1],padding = 'VALID')
k52_shape = tf.reshape(k52_shape, [-1, int(self.gfc_dim/2)])
# Albedo
k51_tex = self.g_bn5_tex( conv2d(k4_1, self.gfc_dim/2, d_h=1, d_w =1, name='g_k5_tex_conv', reuse = is_reuse), train=is_training, reuse = is_reuse)
k52_tex = tf.nn.avg_pool(k51_tex, ksize = [1, k51_shape_[1], k51_shape_[2], 1], strides = [1,1,1,1],padding = 'VALID')
k52_tex = tf.reshape(k52_tex, [-1, int(self.gfc_dim/2)])
return k52_shape, k52_tex, k6_m, k6_il
def generator_decoder_shape(self, k52_shape, is_reuse=False, is_training=True):
if False: ## This is for shape decoder as fully connected network (NOT FULLY COMPATIBLE WITH THE REST OF THE CODE)
return self.generator_decoder_shape_1d(k52_shape, is_reuse, is_training)
else:
n_size = get_shape(k52_shape)
n_size = n_size[0]
vt2pixel_u, vt2pixel_v = load_3DMM_vt2pixel()
#Vt2pix
vt2pixel_u_const = tf.constant(vt2pixel_u[:-1], tf.float32)
vt2pixel_v_const = tf.constant(vt2pixel_v[:-1], tf.float32)
#if self.is_partbase_albedo:
# shape_2d = self.generator_decoder_shape_2d_partbase(k52_shape, is_reuse, is_training)
#else:
# shape_2d = self.generator_decoder_shape_2d_v1(k52_shape, is_reuse, is_training)
shape_2d = self.generator_decoder_shape_2d(k52_shape, is_reuse, is_training)
vt2pixel_v_const_ = tf.tile(tf.reshape(vt2pixel_v_const, shape =[1,1,-1]), [n_size, 1,1])
vt2pixel_u_const_ = tf.tile(tf.reshape(vt2pixel_u_const, shape =[1,1,-1]), [n_size, 1,1])
shape_1d = tf.reshape(bilinear_sampler( shape_2d, vt2pixel_v_const_, vt2pixel_u_const_), shape=[n_size, -1])
return shape_1d, shape_2d
def generator_decoder_shape_1d(self, shape_fx, is_reuse=False, is_training=True):
s6 = elu(self.g1_bn6(linear(k52_shape, 1000, scope= 'g_s6_lin', reuse = is_reuse), train=is_training, reuse = is_reuse), name="g_s6_prelu")
s7 = linear(s6, self.vertexNum*3, scope= 'g_s7_lin', reuse = is_reuse)
return s7
def generator_decoder_shape_2d(self, shape_fx, is_reuse=False, is_training=True):
'''
Create shape decoder network
Output: 3d_shape [N, (self.vertexNum*3)]
'''
if not is_reuse:
self.g2_bn0_0 = batch_norm(name='g_s_bn0_0')
self.g2_bn0_1 = batch_norm(name='g_s_bn0_1')
self.g2_bn0_2 = batch_norm(name='g_s_bn0_2')
self.g2_bn1_0 = batch_norm(name='g_s_bn1_0')
self.g2_bn1_1 = batch_norm(name='g_s_bn1_1')
self.g2_bn1_2 = batch_norm(name='g_s_bn1_2')
self.g2_bn2_0 = batch_norm(name='g_s_bn2_0')
self.g2_bn2_1 = batch_norm(name='g_s_bn2_1')
self.g2_bn2_2 = batch_norm(name='g_s_bn2_2')
self.g2_bn3_0 = batch_norm(name='g_s_bn3_0')
self.g2_bn3_1 = batch_norm(name='g_s_bn3_1')
self.g2_bn3_2 = batch_norm(name='g_s_bn3_2')
self.g2_bn4_0 = batch_norm(name='g_s_bn4_0')
self.g2_bn4 = batch_norm(name='g_s_bn4')
self.g2_bn5 = batch_norm(name='g_s_bn5')
s_h = int(self.texture_size[0])
s_w = int(self.texture_size[1])
s32_h= int(s_h/32)
s32_w= int(s_w/32)
# project `z` and reshape
h5 = linear(shape_fx, self.gfc_dim*s32_h*s32_w, scope= 'g_s5_lin', reuse = is_reuse)
h5 = tf.reshape(h5, [-1, s32_h, s32_w, self.gfc_dim])
h5 = elu(self.g2_bn5(h5, train=is_training, reuse = is_reuse))
h4_1 = deconv2d(h5, self.gf_dim*5, name='g_s4', reuse = is_reuse)
h4_1 = elu(self.g2_bn4(h4_1, train=is_training, reuse = is_reuse))
h4_0 = deconv2d(h4_1, self.gf_dim*8, strides=[1,1], name='g_s40', reuse = is_reuse)
h4_0 = elu(self.g2_bn4_0(h4_0, train=is_training, reuse = is_reuse))
h3_2 = deconv2d(h4_0, self.gf_dim*8, strides=[2,2], name='g_s32', reuse = is_reuse)
h3_2 = elu(self.g2_bn3_2(h3_2, train=is_training, reuse = is_reuse))
h3_1 = deconv2d(h3_2, self.gf_dim*4, strides=[1,1], name='g_s31', reuse = is_reuse)
h3_1 = elu(self.g2_bn3_1(h3_1, train=is_training, reuse = is_reuse))
h3_0 = deconv2d(h3_1, self.gf_dim*6, strides=[1,1], name='g_s30', reuse = is_reuse)
h3_0 = elu(self.g2_bn3_0(h3_0, train=is_training, reuse = is_reuse))
h2_2 = deconv2d(h3_0, self.gf_dim*6, strides=[2,2], name='g_s22', reuse = is_reuse)
h2_2 = elu(self.g2_bn2_2(h2_2, train=is_training, reuse = is_reuse))
h2_1 = deconv2d(h2_2, self.gf_dim*3, strides=[1,1], name='g_s21', reuse = is_reuse)
h2_1 = elu(self.g2_bn2_1(h2_1, train=is_training, reuse = is_reuse))
h2_0 = deconv2d(h2_1, self.gf_dim*4, strides=[1,1], name='g_s20', reuse = is_reuse)
h2_0 = elu(self.g2_bn2_0(h2_0, train=is_training, reuse = is_reuse))
h1_2 = deconv2d(h2_0, self.gf_dim*4, strides=[2,2], name='g_s12', reuse = is_reuse)
h1_2 = elu(self.g2_bn1_2(h1_2, train=is_training, reuse = is_reuse))
h1_1 = deconv2d(h1_2, self.gf_dim*2, strides=[1,1], name='g_s11', reuse = is_reuse)
h1_1 = elu(self.g2_bn1_1(h1_1, train=is_training, reuse = is_reuse))
h1_0 = deconv2d(h1_1,self.gf_dim*2, strides=[1,1], name='g_s10', reuse = is_reuse)
h1_0 = elu(self.g2_bn1_0(h1_0, train=is_training, reuse = is_reuse))
h0_2 = deconv2d(h1_0, self.gf_dim*2, strides=[2,2], name='g_s02', reuse = is_reuse)
h0_2 = elu(self.g2_bn0_2(h0_2, train=is_training, reuse = is_reuse))
h0_1 = deconv2d(h0_2, self.gf_dim, strides=[1,1], name='g_s01', reuse = is_reuse)
h0_1 = elu(self.g2_bn0_1(h0_1, train=is_training, reuse = is_reuse))
h0 = 2*tf.nn.tanh(deconv2d(h0_1, self.c_dim, strides=[1,1], name='g_s0', reuse = is_reuse))
return h0
def generator_decoder_albedo(self, tex_fx, is_reuse=False, is_training=True):
'''
Create texture decoder network
Output: uv_texture [N, self.texture_sz[0], self.texture_sz[1], self.c_dim]
'''
if not is_reuse:
self.g1_bn0_0 = batch_norm(name='g_h_bn0_0')
self.g1_bn0_1 = batch_norm(name='g_h_bn0_1')
self.g1_bn0_2 = batch_norm(name='g_h_bn0_2')
self.g1_bn1_0 = batch_norm(name='g_h_bn1_0')
self.g1_bn1_1 = batch_norm(name='g_h_bn1_1')
self.g1_bn1_2 = batch_norm(name='g_h_bn1_2')
self.g1_bn2_0 = batch_norm(name='g_h_bn2_0')
self.g1_bn2_1 = batch_norm(name='g_h_bn2_1')
self.g1_bn2_2 = batch_norm(name='g_h_bn2_2')
self.g1_bn3_0 = batch_norm(name='g_h_bn3_0')
self.g1_bn3_1 = batch_norm(name='g_h_bn3_1')
self.g1_bn3_2 = batch_norm(name='g_h_bn3_2')
self.g1_bn4_0 = batch_norm(name='g_h_bn4_0')
self.g1_bn4 = batch_norm(name='g_h_bn4')
self.g1_bn5 = batch_norm(name='g_h_bn5')
#self.g1_bn6 = batch_norm(name='g_s_bn6')
s_h = int(self.texture_size[0])
s_w = int(self.texture_size[1])
s32_h= int(s_h/32)
s32_w= int(s_w/32)
df = int(self.gf_dim)
# project `z` and reshape
h5 = linear(tex_fx, df*10*s32_h*s32_w, scope= 'g_h5_lin', reuse = is_reuse)
h5 = tf.reshape(h5, [-1, s32_h, s32_w, df*10])
h5 = elu(self.g1_bn5(h5, train=is_training, reuse = is_reuse))
h4_1 = deconv2d(h5, df*5, name='g_h4', reuse = is_reuse)
h4_1 = elu(self.g1_bn4(h4_1, train=is_training, reuse = is_reuse))
h4_0 = deconv2d(h4_1, df*8, strides=[1,1], name='g_h40', reuse = is_reuse)
h4_0 = elu(self.g1_bn4_0(h4_0, train=is_training, reuse = is_reuse))
h3_2 = deconv2d(h4_0, df*8, strides=[2,2], name='g_h32', reuse = is_reuse)
h3_2 = elu(self.g1_bn3_2(h3_2, train=is_training, reuse = is_reuse))
h3_1 = deconv2d(h3_2, df*4, strides=[1,1], name='g_h31', reuse = is_reuse)
h3_1 = elu(self.g1_bn3_1(h3_1, train=is_training, reuse = is_reuse))
h3_0 = deconv2d(h3_1, df*6, strides=[1,1], name='g_h30', reuse = is_reuse)
h3_0 = elu(self.g1_bn3_0(h3_0, train=is_training, reuse = is_reuse))
h2_2 = deconv2d(h3_0, df*6, strides=[2,2], name='g_h22', reuse = is_reuse)
h2_2 = elu(self.g1_bn2_2(h2_2, train=is_training, reuse = is_reuse))
h2_1 = deconv2d(h2_2, df*3, strides=[1,1], name='g_h21', reuse = is_reuse)
h2_1 = elu(self.g1_bn2_1(h2_1, train=is_training, reuse = is_reuse))
h2_0 = deconv2d(h2_1, df*4, strides=[1,1], name='g_h20', reuse = is_reuse)
h2_0 = elu(self.g1_bn2_0(h2_0, train=is_training, reuse = is_reuse))
h1_2 = deconv2d(h2_0, df*4, strides=[2,2], name='g_h12', reuse = is_reuse)
h1_2 = elu(self.g1_bn1_2(h1_2, train=is_training, reuse = is_reuse))
h1_1 = deconv2d(h1_2, df*2, strides=[1,1], name='g_h11', reuse = is_reuse)
h1_1 = elu(self.g1_bn1_1(h1_1, train=is_training, reuse = is_reuse))
h1_0 = deconv2d(h1_1,df*2, strides=[1,1], name='g_h10', reuse = is_reuse)
h1_0 = elu(self.g1_bn1_0(h1_0, train=is_training, reuse = is_reuse))
h0_2 = deconv2d(h1_0, df*2, strides=[2,2], name='g_h02', reuse = is_reuse)
h0_2 = elu(self.g1_bn0_2(h0_2, train=is_training, reuse = is_reuse))
h0_1 = deconv2d(h0_2, df, strides=[1,1], name='g_h01', reuse = is_reuse)
h0_1 = elu(self.g1_bn0_1(h0_1, train=is_training, reuse = is_reuse))
h0 = tf.nn.tanh(deconv2d(h0_1, self.c_dim, strides=[1,1], name='g_h0', reuse = is_reuse))
return h0
@property
def model_dir(self):
return "" # "%s_%s_%s_%s_%s_%s_%s" % (self.dataset_name, self.batch_size, self.output_size, self.gf_dim, self.gfc_dim, self.df_dim, self.dfc_dim)
def save(self, checkpoint_dir, step):
model_name = "Nonlinear3DMM.model"
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess, os.path.join(checkpoint_dir, model_name), global_step=step)
print(" Saved checkpoint %s-%d" % (os.path.join(checkpoint_dir, model_name), step))
def load(self, checkpoint_dir):
import re
print(" [*] Reading checkpoints...")
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
counter = int(next(re.finditer("(\d+)(?!.*\d)",ckpt_name)).group(0))
print(" [*] Success to read {}".format(ckpt_name))
return True, counter
else:
print(" [*] Failed to find a checkpoint")
return False, 0