-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCDMP.py
264 lines (236 loc) · 12.1 KB
/
CDMP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import torch
import numpy as np
import matplotlib.pyplot as plt
import cv2
import os
from datetime import datetime as dt
import argparse
from tensorboardX import SummaryWriter
from config import Config
from utils import *
from model import *
parser = argparse.ArgumentParser(description='CDMP')
parser.add_argument('--model-path', type=str, nargs='?', default='', help='load model')
args = parser.parse_args()
g_net_param = torch.load(args.model_path) if args.model_path else None
if g_net_param:
cfg = g_net_param['config']
else:
cfg = Config()
logger = SummaryWriter(os.path.join(cfg.log_path, cfg.experiment_name))
torch.cuda.set_device(cfg.gpu)
if cfg.use_DMP:
dmp = DMP(cfg)
#loader
generator_train = build_loader(cfg, True) # function pointer
generator_test = build_loader(cfg, False) # function pointer
class CMP(object):
def __init__(self, config):
self.cfg = config
self.condition_net = NN_img_c(sz_image=self.cfg.image_size,
ch_image=self.cfg.image_channels,
tasks=self.cfg.number_of_tasks,
task_img_sz=(self.cfg.object_size[0] if self.cfg.img_as_task else -1))
self.encoder = NN_qz_w(n_z=self.cfg.number_of_hidden,
ch_image=self.cfg.image_channels,
sz_image=self.cfg.image_size,
tasks=self.cfg.number_of_tasks,
dim_w=self.cfg.trajectory_dimension,
n_k=self.cfg.number_of_MP_kernels)
self.decoder = NN_pw_zimc(sz_image=self.cfg.image_size,
ch_image=self.cfg.image_channels,
n_z=self.cfg.number_of_hidden,
tasks=self.cfg.number_of_tasks,
dim_w=self.cfg.trajectory_dimension,
n_k=self.cfg.number_of_MP_kernels)
if g_net_param:
self.encoder.load_state_dict(g_net_param['encoder'])
self.decoder.load_state_dict(g_net_param['decoder'])
self.condition_net.load_state_dict(g_net_param['condition_net'])
self.use_gpu = (self.cfg.use_gpu and torch.cuda.is_available())
if self.use_gpu:
print("Use GPU for training, all parameters will move to GPU {}".format(self.cfg.gpu))
self.encoder.cuda()
self.decoder.cuda()
self.condition_net.cuda()
# TODO: loading from check points
# generator: (traj, task_id, img) x n_batch
def train(self):
def batchToVariable(traj_batch):
batch_im = torch.zeros(self.cfg.batch_size_train, self.cfg.image_channels,
self.cfg.image_size[0], self.cfg.image_size[1])
batch_w = torch.zeros(
self.cfg.batch_size_train, self.cfg.number_of_MP_kernels, self.cfg.trajectory_dimension)
if self.cfg.img_as_task:
batch_c = torch.zeros(self.cfg.batch_size_train, self.cfg.image_channels,
self.cfg.object_size[0], self.cfg.object_size[1])
else:
batch_c = torch.zeros(self.cfg.batch_size_train, self.cfg.number_of_tasks)
for i, b in enumerate(traj_batch):
batch_w[i] = torch.from_numpy(b[0])
if self.cfg.img_as_task:
batch_c[i] = torch.from_numpy(b[2].transpose(2, 0, 1))
batch_im[i] = torch.from_numpy(b[3].transpose(2, 0, 1))
else:
batch_c[i,b[1]] = 1.
batch_im[i] = torch.from_numpy(b[2].transpose(2, 0, 1))
if self.use_gpu:
return torch.autograd.Variable(batch_w.cuda()),\
torch.autograd.Variable(batch_c.cuda()),\
torch.autograd.Variable(batch_im.cuda())
else:
return torch.autograd.Variable(batch_w),\
torch.autograd.Variable(batch_c),\
torch.autograd.Variable(batch_im)
optim = torch.optim.Adam(
list(self.decoder.parameters()) + list(self.encoder.parameters()) +
list(self.condition_net.parameters()))
loss = []
if g_net_param:
base = g_net_param['epoch']
else:
base = 0
for epoch in range(base, self.cfg.epochs+base):
avg_loss = []
avg_loss_de = []
avg_loss_ee = []
for i, batch in enumerate(generator_train):
w, c, im = batchToVariable(batch)
optim.zero_grad()
im_c = self.condition_net(im, c)
z = self.encoder.sample(
w, im_c, samples=self.cfg.number_of_oversample, reparameterization=True)
de = self.decoder.mse_error(w, z, im_c).mean()
ee = self.encoder.Dkl(w, im_c).mean()
l = de + ee
l.backward()
optim.step()
avg_loss.append(l.item())
avg_loss_de.append(de.item())
avg_loss_ee.append(ee.item())
bar(i + 1, self.cfg.batches_train, "Epoch %d/%d: " % (epoch + 1, self.cfg.epochs),
" | D-Err=%f; E-Err=%f" % (de.item(), ee.item()), end_string='')
# update training counter and make check points
if i + 1 >= self.cfg.batches_train:
loss.append(sum(avg_loss) / len(avg_loss))
print("Epoch=%d, Average Loss=%f" % (epoch + 1, loss[-1]))
logger.add_scalar('loss', sum(avg_loss)/len(avg_loss), epoch)
logger.add_scalar('loss_de', sum(avg_loss_de)/len(avg_loss_de), epoch)
logger.add_scalar('loss_ee', sum(avg_loss_ee)/len(avg_loss_ee), epoch)
break
if (epoch % self.cfg.save_interval == 0 and epoch != 0) or\
(self.cfg.save_interval <= 0 and loss[-1] == min(loss)):
net_param = {
"epoch": epoch,
"config": self.cfg,
"loss": loss,
"encoder": self.encoder.state_dict(),
"decoder": self.decoder.state_dict(),
"condition_net": self.condition_net.state_dict()
}
os.makedirs(self.cfg.check_point_path, exist_ok=True)
check_point_file = os.path.join(self.cfg.check_point_path,
"%s:%s.check" % (self.cfg.experiment_name, str(dt.now())))
torch.save(net_param, check_point_file)
print("Check point saved @ %s" % check_point_file)
if epoch != 0 and epoch % self.cfg.display_interval == 0:
if self.cfg.img_as_task:
img, img_gt, feature, c = self.test()
else:
img, img_gt, feature = self.test()
feature = feature.transpose([0,2,3,1]).sum(axis=-1, keepdims=True)
h = feature.shape[1]*4 # CNN factor
heatmap = np.zeros((h*2 + 20*3, h*3 + 20*4, 3), # output 2*3
dtype=np.uint8)
for ind in range(feature.shape[0]):
heatmap[(ind//3)*(h+20)+20:(ind//3)*(h+20)+20+h,
(ind%3)*(h+20)+20:(ind%3)*(h+20)+20+h, :] = colorize(feature[ind, ...], 4)
if self.cfg.img_as_task:
# output 2*3
h, w = self.cfg.object_size
task_map = np.zeros((h*2+20*3, w*3+20*4, 3)).astype(np.uint8)
for ind, task_img in enumerate(c.cpu().data.numpy()):
task_map[(ind//3)*(h+20)+20:(ind//3)*(h+20)+20+h,
(ind%3)*(w+20)+20:(ind%3)*(w+20)+20+w, :] = task_img.transpose([1,2,0])*255
logger.add_image('test_task_img', task_map, epoch)
logger.add_image('test_img', img, epoch)
logger.add_image('heatmap', heatmap, epoch)
logger.add_image('test_img_gt', img_gt, epoch)
# generator: (task_id, img) x n_batch
def test(self):
def batchToVariable(traj_batch):
batch_im = torch.zeros(self.cfg.batch_size_test, self.cfg.image_channels,
self.cfg.image_size[0], self.cfg.image_size[1])
batch_z = torch.normal(torch.zeros(self.cfg.batch_size_test, self.cfg.number_of_hidden),
torch.ones(self.cfg.batch_size_test, self.cfg.number_of_hidden))
batch_w = torch.zeros(
self.cfg.batch_size_test, self.cfg.number_of_MP_kernels, self.cfg.trajectory_dimension)
batch_target = torch.zeros(
self.cfg.batch_size_test, 2)
if self.cfg.img_as_task:
batch_c = torch.zeros(self.cfg.batch_size_test, self.cfg.image_channels,
self.cfg.object_size[0], self.cfg.object_size[1])
else:
batch_c = torch.zeros(self.cfg.batch_size_test, self.cfg.number_of_tasks)
for i, b in enumerate(traj_batch):
batch_w[i] = torch.from_numpy(b[0])
batch_target[i] = torch.from_numpy(b[-1])
if self.cfg.img_as_task:
batch_c[i] = torch.from_numpy(b[2].transpose(2, 0, 1))
batch_im[i] = torch.from_numpy(b[3].transpose(2, 0, 1))
else:
batch_c[i,b[1]] = 1.
batch_im[i] = torch.from_numpy(b[2].transpose(2, 0, 1))
if self.use_gpu:
return torch.autograd.Variable(batch_z.cuda(), volatile=True),\
torch.autograd.Variable(batch_c.cuda(), volatile=True),\
torch.autograd.Variable(batch_im.cuda(), volatile=True),\
batch_target,\
batch_w
else:
return torch.autograd.Variable(batch_z, volatile=True),\
torch.autograd.Variable(batch_c, volatile=True),\
torch.autograd.Variable(batch_im, volatile=True),\
batch_target,\
batch_w
for batch in generator_test:
break
_, c, im, target, wgt = batchToVariable(batch)
im_c = self.condition_net(im, c)
z = self.encoder.sample(None, im_c, reparameterization=False, prior=True)
if self.cfg.use_DMP:
p0 = np.tile(np.asarray((0., self.cfg.image_y_range[0]), dtype=np.float32), (self.cfg.batch_size_test, 1))
w = self.decoder.sample(z, im_c).cpu().data.numpy()
tauo = tuple(dmp.generate(w, target.cpu().numpy(), self.cfg.number_time_samples, p0=p0, init=True))
tau = tuple(dmp.generate(wgt.cpu().numpy(), target.cpu().numpy(), self.cfg.number_time_samples, p0=p0, init=True))
else:
tauo = tuple(RBF.generate(wo, self.cfg.number_time_samples)
for wo in self.decoder.sample(z, im_c).cpu().data.numpy())
tau = tuple(RBF.generate(wo, self.cfg.number_of_MP_kernels)
for wo in wgt)
if self.cfg.img_as_task:
_, cls, _, imo, _ = tuple(zip(*batch))
else:
_, cls, imo, _ = tuple(zip(*batch))
env = self.cfg.env(self.cfg)
img = display(self.cfg, tauo, imo, cls, interactive=True)
img_gt = display(self.cfg, tau, imo, cls, interactive=True)
feature = self.condition_net.feature_map(im).data.cpu().numpy()
if self.cfg.img_as_task:
return img, img_gt, feature, c
else:
return img, img_gt, feature
def main():
alg = CMP(config=cfg)
alg.train()
alg.test()
if __name__ == "__main__":
main()
# from env import ToyEnv, display
# cfg = Config()
# env. = Env(cfg)
# for i in range(10):
# batch = (env.sample(task_id=0, im_id=list(range(10))) for j in range(6))
# batch = tuple(zip(*batch))
# display(cfg, batch[0], batch[2], batch[1], interactive=True)
# plt.pause(3)