forked from ikostrikov/pytorch-a2c-ppo-acktr-gail
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistributions.py
68 lines (47 loc) · 1.97 KB
/
distributions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import init, init_normc_, AddBias
"""
Modify standard PyTorch distributions so they are compatible with this code.
"""
FixedCategorical = torch.distributions.Categorical
old_sample = FixedCategorical.sample
FixedCategorical.sample = lambda self: old_sample(self).unsqueeze(-1)
log_prob_cat = FixedCategorical.log_prob
FixedCategorical.log_probs = lambda self, actions: log_prob_cat(self, actions.squeeze(-1)).unsqueeze(-1)
FixedCategorical.mode = lambda self: self.probs.argmax(dim=1, keepdim=True)
FixedNormal = torch.distributions.Normal
log_prob_normal = FixedNormal.log_prob
FixedNormal.log_probs = lambda self, actions: log_prob_normal(self, actions).sum(-1, keepdim=True)
entropy = FixedNormal.entropy
FixedNormal.entropy = lambda self: entropy(self).sum(-1)
FixedNormal.mode = lambda self: self.mean
class Categorical(nn.Module):
def __init__(self, num_inputs, num_outputs):
super(Categorical, self).__init__()
init_ = lambda m: init(m,
nn.init.orthogonal_,
lambda x: nn.init.constant_(x, 0),
gain=0.01)
self.linear = init_(nn.Linear(num_inputs, num_outputs))
def forward(self, x):
x = self.linear(x)
return FixedCategorical(logits=x)
class DiagGaussian(nn.Module):
def __init__(self, num_inputs, num_outputs):
super(DiagGaussian, self).__init__()
init_ = lambda m: init(m,
init_normc_,
lambda x: nn.init.constant_(x, 0))
self.fc_mean = init_(nn.Linear(num_inputs, num_outputs))
self.logstd = AddBias(torch.zeros(num_outputs))
def forward(self, x):
action_mean = self.fc_mean(x)
# An ugly hack for my KFAC implementation.
zeros = torch.zeros(action_mean.size())
if x.is_cuda:
zeros = zeros.cuda()
action_logstd = self.logstd(zeros)
return FixedNormal(action_mean, action_logstd.exp())