forked from ikostrikov/pytorch-a2c-ppo-acktr-gail
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistributions_tor.py
26 lines (21 loc) · 919 Bytes
/
distributions_tor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import torch
import torch.nn as nn
from utils_tor import init_param_openaibaselines
class GaussianDistributionNetwork(nn.Module):
def __init__(self, input_dim, output_dim):
super(GaussianDistributionNetwork, self).__init__()
self.mean_net = init_param_openaibaselines(nn.Linear(input_dim, output_dim))
self.logstd_net = MeanBiasNetwork(output_dim)
def forward(self, x):
mean = self.mean_net(x)
logstd = self.logstd_net(torch.zeros_like(mean))
return torch.distributions.Normal(loc=mean, scale=torch.exp(logstd))
class MeanBiasNetwork(nn.Module):
def __init__(self, output_dim):
super(MeanBiasNetwork, self).__init__()
init_param = torch.zeros(output_dim)
self._param = nn.Parameter(init_param.unsqueeze(dim=1))
def forward(self, x):
assert x.dim()==2
bias = self._param.t().view(1, -1)
return x + bias