-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolicy_evaluation.py
304 lines (262 loc) · 11.2 KB
/
policy_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import ray
from ray.tune.registry import register_env
# parser
from utils.parse_args import parse_args
# callbacks
# configs
import configs.configs_v2 as configs
#evaluation
import wandb
#env
import os
import matplotlib.pyplot as plt
# matplotlib inline
from policies.heuristic_handcrafted_policy import HeuristicHandcraftedTrainer
# GAE slight modif. policy
import ray
from ray.rllib.agents.ppo.ppo_tf_policy import PPOTFPolicy
from ray.tune.registry import register_env
from ray.rllib.agents.ppo.ppo import PPOTrainer
from ray.rllib.models import ModelCatalog
from ray.rllib.utils import try_import_tf, try_import_tfp
from ray.rllib.policy.tf_policy import LearningRateSchedule, \
EntropyCoeffSchedule
from ray.rllib.agents.ppo.ppo_tf_policy import ValueNetworkMixin, KLCoeffMixin
from ray.rllib.utils.tf_ops import make_tf_callable
###########################################################################################
tf = try_import_tf()
tfp = try_import_tfp()
if type(tf) == tuple:
tf = tf[0]
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
class DebuggingLayersMixin:
def __init__(self):
self.compute_encoding_layer = make_tf_callable(self.get_session())(self.model.encoder_output)
self.compute_action = make_tf_callable(self.get_session())(self.model.action_computation)# DO THIS
self.output_inputs = make_tf_callable(self.get_session())(self.model.output_inputs)
def setup_mixins(policy, obs_space, action_space, config):
ValueNetworkMixin.__init__(policy, obs_space, action_space, config)
KLCoeffMixin.__init__(policy, config)
EntropyCoeffSchedule.__init__(policy, config["entropy_coeff"],
config["entropy_coeff_schedule"])
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
DebuggingLayersMixin.__init__(policy)
from custom_ray.ppo_functions import postprocess_ppo_gae
MixinPPOTFPolicy = PPOTFPolicy.with_updates(
name="MixinPPOTFPolicy",
before_loss_init=setup_mixins,
postprocess_fn=postprocess_ppo_gae,
mixins=[
LearningRateSchedule, EntropyCoeffSchedule, KLCoeffMixin,
ValueNetworkMixin, DebuggingLayersMixin
])
def get_policy_class(config):
return MixinPPOTFPolicy
MixinPPOTrainer = PPOTrainer.with_updates(
name="MixinPPOTrainer",
default_policy=MixinPPOTFPolicy,
get_policy_class=get_policy_class,
)
##############################
def generate_checkpoint_dir(heuristic_handcrafted, policy_dir, env_name, experiment, ncheckpoint, old_system=True): ## TODO!!!!
savedir = './ray_results'
if heuristic_handcrafted:
if policy_dir != '':
savedir = savedir + '/' + policy_dir
else:
savedir = savedir + '/' + env_name
# if not os.path.isdir(savedir):
# os.makedirs(savedir)
experiment = 1
expstr = '/exp' + str(experiment)
video_dir = savedir + '/videos_exp_' + str(
1) # _' + str(experiment) + '_ckpoint_' + str(ncheckpoint)
if not os.path.isdir(video_dir): os.makedirs(video_dir)
savedir = savedir + expstr
savedir = savedir + '/' + os.listdir(savedir)[0]
if old_system:
if 'Trainer' in os.listdir(savedir)[0]:
savedir = savedir + '/' + os.listdir(savedir)[0]
else:
savedir = savedir + '/' + os.listdir(savedir)[1]
savedir = savedir + '/checkpoint_' + str(1) + '/checkpoint-' + str(1)
checkpoint = savedir
else:
if policy_dir != '':
savedir = savedir + '/' + policy_dir
else:
savedir = savedir + '/' + env_name
# if not os.path.isdir(savedir):
# os.makedirs(savedir)
experiment = experiment
expstr = '/exp' + str(experiment)
video_dir = savedir + '/videos_exp_' + str(experiment) + '_ckpoint_' + str(ncheckpoint)
if not os.path.isdir(video_dir): os.makedirs(video_dir)
savedir = savedir + expstr
if old_system:
savedir = savedir + '/' + os.listdir(savedir)[0]
if 'Trainer' in os.listdir(savedir)[0]:
savedir = savedir + '/' + os.listdir(savedir)[0]
else:
savedir = savedir + '/' + os.listdir(savedir)[1]
savedir = savedir + '/checkpoint_' + str(ncheckpoint) + '/checkpoint-' + str(ncheckpoint)
checkpoint = savedir
return checkpoint, video_dir
def load_config_env_param(args):
# Import custom models
from models.multi_target import SetTransformers
from models.single_target import FullyConnectedModel
# Register custom model into the ray framework
# Tf
ModelCatalog.register_custom_model("Set_Transformers", SetTransformers)
ModelCatalog.register_custom_model("baseline2", FullyConnectedModel)
# Environment variables/creator
config_env = configs.config_env(args)
config_env["nclasses"] = 2
if args.env == 'SceneEnv_RLlibMA':
from env.SceneEnv_RLlibMA import SceneEnv
config_env["heuristic_policy"] = args.heuristic_policy
config_env["heuristic_target_order"] = args.heuristic_target_order
config_env["reverse_heuristic_target_order"] = args.reverse_heuristic_target_order
# config_env["static_targets"] = args.static_targets
config_env["test"] = args.test
config_env["env_mode"] = args.env_mode
config_env["save_scn"] = args.save_test_scn
config_env["save_scn_folder"] = args.test_save_dir
config_env["max_episodes"] = args.episodes
config_env['load_scn'] = args.load_test_scn
config_env['load_scn_folder'] = args.test_load_dir
config_env['reward_1target'] = False
config_env['horizon'] = args.horizon
config_env['random_beliefs'] = False
config_env['random_static_dynamic'] = True
register_env("SceneEnv", lambda c: SceneEnv(config_env))
env = SceneEnv(config_env)
elif args.env == 'SceneEnv_RLlibMA_test':
from env.SceneEnv_RLlibMA_test import SceneEnv
config_env["heuristic_policy"] = args.heuristic_policy
config_env["heuristic_target_order"] = args.heuristic_target_order
config_env["reverse_heuristic_target_order"] = args.reverse_heuristic_target_order
# config_env["static_targets"] = args.static_targets
config_env["test"] = args.test
config_env["env_mode"] = args.env_mode
config_env["save_scn"] = args.save_test_scn
config_env["save_scn_folder"] = args.test_save_dir
config_env["max_episodes"] = args.episodes
config_env['load_scn'] = args.load_test_scn
config_env['load_scn_folder'] = args.test_load_dir
config_env['reward_1target'] = False
config_env['horizon'] = args.horizon
config_env['random_beliefs'] = False
config_env['random_static_dynamic'] = True
register_env("SceneEnv", lambda c: SceneEnv(config_env))
env = SceneEnv(config_env)
# Training and model configuration
config, stop = configs.config(args, env)
config['env'] = 'SceneEnv'
config['horizon'] = args.horizon # 40 # TODO MAX steps come here
config["model"] = {
"custom_model": None, # "SE_Attention", # "customized_model",
"custom_model_config": {
"num_other_robots": env.nrobots - 1, # this shall be DEPRECATED in the FUTURE (need to compute this online)
"num_targets": env.MAX_TARGETS, # env.ntargets,
"dim_p": env.observation_space_dict[0].spaces[0].child_space['location'].shape[0]
if env.multiagent_policy else env.observation_space.child_space['location'].shape[0],
"training": True
}
}
config["explore"] = False
# Final training specifications
config['no_done_at_end'] = True
config['lr'] = 3e-4 # 1e4 #9.99999e5
config["num_gpus"] = 0
config["num_workers"] = 0
config["grad_clip"] = 0.1
config["rollout_fragment_length"] = 2000
config["vf_loss_coeff"] = 0.5
config["vf_clip_param"] = 120
config["model"]["custom_model_config"]["num_gpus"] = config["num_gpus"]
config["model"]["custom_model_config"]["vf_share_layers"] = False
env_name = "SceneEnv"
return env, env_name, config
def load_agent(args,env_name,config):
model_paths = []
# Model architecture and registering
### Tensorflow policies
## OURS
policy_dir = "RAL2023/Ours/setTransformer_opt_v2/50x50_env/seed100/2ndphase"
config["framework"] = "tf"
config["model"]["custom_model"] = "Set_Transformers"
experiment = 1
ncheckpoint = 8000
checkpoint_dir, video_dir = generate_checkpoint_dir(args.heuristic_handcrafted, policy_dir, env_name, experiment,
ncheckpoint, old_system=True)
model_paths += [
checkpoint_dir
]
## Single-target
# policy_dir = "CORL2022/baseline_2/seed100"
# config["model"]["custom_model"] = "baseline2"
# config["framework"] = "tf"
# experiment = 1
# ncheckpoint = 6000
# checkpoint_dir, video_dir = generate_checkpoint_dir(args.heuristic_handcrafted, policy_dir, env_name, experiment,
# ncheckpoint, old_system=True)
# model_paths += [
# checkpoint_dir
# ]
#Trainer = PPOTrainer
Trainer = MixinPPOTrainer
agent = Trainer(config=config, env="SceneEnv")
agent.restore(checkpoint_path=model_paths[0])
return agent, video_dir
def print_additional_info(obs):
pass
def main(args):
ray.init(local_mode=True)#, redis_max_memory=int(6e9))
env, env_name, config = load_config_env_param(args)
env.reset()
agent, video_dir = load_agent(args,env_name,config)
## allow logs
env.log_folder = video_dir
env.logs = True
## MAIN LOOP
obs = env.reset()
#action = agent.compute_action(obs[0], policy_id=list(agent.config['multiagent']['policies'].keys())[0] if env.multiagent_policy else "default_policy")
# take the first key from a dict
print("everything's peachy")
# # MAIN LOOP
final = False
taux = 0
# we ran one full episode with random actions to check that everything works
# """
nepisodes = 0
while nepisodes < 50:
# action = {'0': agent.compute_action(obs[0]), '1':agent.compute_action(obs[1])}
action = {}
for r in range(env.nrobots):
action[str(r)] = agent.compute_action(obs[r], policy_id=list(agent.config['multiagent']['policies'].keys())[0] if env.multiagent_policy else "default_policy")
obs, reward, final, info = env.step(action) # , envtest = True)
env.render()
if (taux % 400 == 0 and taux != 0) or final[0]:
taux = 0
nepisodes +=1
print("episode:",nepisodes-1)
env.reset()
else:
taux += 1
ray.shutdown()
if __name__ == '__main__':
args = parse_args()
mode = "main"
if mode == "main":
nrobots = [1]
args.nrobots = nrobots
ntargetsList = [20]
for ntargets in ntargetsList:
args.ntargets=[ntargets]
args.heuristic_handcrafted = False
args.heuristic_policy = False or args.heuristic_handcrafted
args.heuristic_target_order = False or args.heuristic_policy or args.heuristic_handcrafted
args.test=True
main(args)