-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPerform_Preprocess.py
72 lines (38 loc) · 2.34 KB
/
Perform_Preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import cv2
import numpy as np
import math
# module level variables ##########################################################################
GAUSSIAN_SMOOTH_FILTER_SIZE = (5, 5)
ADAPTIVE_THRESH_BLOCK_SIZE = 19
ADAPTIVE_THRESH_WEIGHT = 9
###################################################################################################
def preprocess(imgOriginal):
imgGrayscale = extractValue(imgOriginal)
imgMaxContrastGrayscale = maximizeContrast(imgGrayscale)
height, width = imgGrayscale.shape
imgBlurred = np.zeros((height, width, 1), np.uint64)
#imgBlurred = cv2.GaussianBlur(imgMaxContrastGrayscale, GAUSSIAN_SMOOTH_FILTER_SIZE, 0)
imgBlurred =cv2.medianBlur(imgMaxContrastGrayscale,3)
#imgBlurred = cv2.GaussianBlur(imgMaxContrastGrayscale,(5,5),0)
#ret , imgThresh = cv2.threshold(imgBlurred,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
imgThresh = cv2.adaptiveThreshold(imgBlurred, 255.0, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, ADAPTIVE_THRESH_BLOCK_SIZE, ADAPTIVE_THRESH_WEIGHT)
imgThresh2 = cv2.adaptiveThreshold(imgBlurred, 255.0, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, ADAPTIVE_THRESH_BLOCK_SIZE, ADAPTIVE_THRESH_WEIGHT)
return imgGrayscale, imgThresh , imgThresh2
###################################################################################################
def extractValue(imgOriginal):
height, width, numChannels = imgOriginal.shape
imgHSV = np.zeros((height, width, 3), np.uint8)
imgHSV = cv2.cvtColor(imgOriginal, cv2.COLOR_BGR2HSV)
imgHue, imgSaturation, imgValue = cv2.split(imgHSV)
return imgValue
###################################################################################################
def maximizeContrast(imgGrayscale):
height, width = imgGrayscale.shape
imgTopHat = np.zeros((height, width, 1), np.uint8)
imgBlackHat = np.zeros((height, width, 1), np.uint8)
structuringElement = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
imgTopHat = cv2.morphologyEx(imgGrayscale, cv2.MORPH_TOPHAT, structuringElement)
imgBlackHat = cv2.morphologyEx(imgGrayscale, cv2.MORPH_BLACKHAT, structuringElement)
imgGrayscalePlusTopHat = cv2.add(imgGrayscale, imgTopHat)
imgGrayscalePlusTopHatMinusBlackHat = cv2.subtract(imgGrayscalePlusTopHat, imgBlackHat)
return imgGrayscalePlusTopHatMinusBlackHat