-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
152 lines (119 loc) · 4.88 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import time
from typing import Any
import requests
import streamlit as st
from dotenv import find_dotenv, load_dotenv
from langchain.chains import LLMChain
from langchain_community.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from transformers import pipeline
from utils.custom import css_code
load_dotenv(find_dotenv())
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_API_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
def progress_bar(amount_of_time: int) -> Any:
"""
A very simple progress bar that increases over time,
then disappears when it reaches completion.
:param amount_of_time: time taken
:return: None
"""
progress_text = "Please wait, Generative models hard at work"
my_bar = st.progress(0, text=progress_text)
for percent_complete in range(amount_of_time):
time.sleep(0.04)
my_bar.progress(percent_complete + 1, text=progress_text)
time.sleep(1)
my_bar.empty()
def generate_text_from_image(url: str) -> str:
"""
A function that uses the blip model to generate text from an image.
:param url: image location
:return: text: generated text from the image
"""
image_to_text: Any = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
generated_text: str = image_to_text(url)[0]["generated_text"]
print(f"IMAGE INPUT: {url}")
print(f"GENERATED TEXT OUTPUT: {generated_text}")
return generated_text
def generate_story_from_text(scenario: str) -> str:
"""
A function using a prompt template and GPT to generate a short story. LangChain is also
used for chaining purposes
:param scenario: generated text from the image
:return: generated story from the text
"""
prompt_template: str = f"""
You are a talented storyteller who can create a story from a simple narrative./
Create a story using the following scenario; the story should be maximum 100 words long;
CONTEXT: {scenario}
STORY:
"""
prompt: PromptTemplate = PromptTemplate(template=prompt_template, input_variables=["scenario"])
llm: Any = ChatOpenAI(model_name="gpt-4", temperature=0.9)
story_llm: Any = LLMChain(llm=llm, prompt=prompt, verbose=True)
generated_story: str = story_llm.predict(scenario=scenario)
print(f"TEXT INPUT: {scenario}")
print(f"GENERATED STORY OUTPUT: {generated_story}")
return generated_story
def generate_speech_from_text(message: str) -> Any:
"""
A function using the ESPnet text-to-speech model from HuggingFace
:param message: short story generated by the GPT model
:return: generated audio from the short story
"""
API_URL: str = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
headers: dict[str, str] = {"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}"}
payloads: dict[str, str] = {
"inputs": message
}
response: Any = requests.post(API_URL, headers=headers, json=payloads)
with open("Audios/generated_audio.flac", "wb") as file:
file.write(response.content)
def summarize_text(text: str) -> str:
"""
Summarize the generated story into a shorter version.
:param text: generated story
:return: summarized version of the story
"""
summarizer = pipeline("summarization")
summarized_text = summarizer(text, max_length=150, min_length=30, do_sample=False)
return summarized_text[0]['summary_text']
def main() -> None:
"""
Main function
:return: None
"""
st.set_page_config(page_title="IMAGE TO STORY CONVERTER", page_icon="🖼️")
st.markdown(css_code, unsafe_allow_html=True)
with st.sidebar:
st.write("---")
st.write("AI App created by @ Tushaa")
st.header("Image-to-Story Converter")
uploaded_file: Any = st.file_uploader("Please choose a file to upload", type="jpg")
if uploaded_file is not None:
print(uploaded_file)
bytes_data: Any = uploaded_file.getvalue()
pics_folder = "pics"
os.makedirs(pics_folder, exist_ok=True)
pic_path = os.path.join(pics_folder, uploaded_file.name)
with open(pic_path, "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
progress_bar(100)
scenario: str = generate_text_from_image(pic_path)
story: str = generate_story_from_text(scenario)
generate_speech_from_text(story)
with st.expander("Generated Image scenario"):
st.write(scenario)
with st.expander("Generated short story"):
st.write(story)
summarized_story = summarize_text(story)
st.subheader("Summarized Story")
st.write(summarized_story)
audio_folder = "Audios"
os.makedirs(audio_folder, exist_ok=True)
st.audio(f"{audio_folder}/generated_audio.flac")
if __name__ == "__main__":
main()