-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
54 lines (44 loc) · 1.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
from PIL import Image
from matplotlib import cm
from matplotlib import pyplot as plt
import torchvision
import torchvision.transforms as transforms
def _normalizer(denormalize=False):
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
if denormalize:
MEAN = [-mean/std for mean, std in zip(MEAN, STD)]
STD = [1/std for std in STD]
return transforms.Normalize(mean=MEAN, std=STD)
def _transformer(imsize=None, cropsize=None):
transformer = []
if imsize:
transformer.append(transforms.Resize(imsize))
if cropsize:
transformer.append(transforms.CenterCrop(cropsize))
transformer.append(transforms.ToTensor())
transformer.append(_normalizer())
return transforms.Compose(transformer)
def imload(path, imsize=None, cropsize=None):
transformer = _transformer(imsize=imsize, cropsize=cropsize)
return transformer(Image.open(path).convert("RGB")).unsqueeze(0)
def imsave(path, tensor):
denormalize = _normalizer(denormalize=True)
if tensor.is_cuda:
tensor = tensor.cpu()
tensor = torchvision.utils.make_grid(tensor)
torchvision.utils.save_image(denormalize(tensor).clamp_(0.0, 1.0), path)
return None
def imshow(tensor):
denormalize = _normalizer(denormalize=True)
if tensor.is_cuda:
tensor = tensor.cpu()
tensor = torchvision.utils.make_grid(denormalize(tensor.squeeze()))
image = torchvision.transforms.functional.to_pil_image(tensor)
return image
def array_to_cam(arr):
cam_pil = Image.fromarray(np.uint8(cm.gist_earth(arr)*255)).convert("RGB")
return cam_pil
def blend(image1, image2, alpha=0.75):
return Image.blend(image1, image2, alpha)