-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathfinetune.py
237 lines (180 loc) · 9.1 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#Script to finetune AlexNet using Tensorflow.
import os
import numpy as np
import tensorflow as tf
from alexnet import AlexNet
from datagenerator import ImageDataGenerator
from datetime import datetime
import load_emodb
import path
"""
Configuration Part.
"""
def train_session(train_file,val_file,alexnet_file):
"""
Main Part of the finetuning Script.
"""
# Create parent path if it doesn't exist
if not os.path.isdir(checkpoint_path):
os.makedirs(checkpoint_path)
# Place data loading and preprocessing on the cpu
with tf.device('/cpu:0'):
tr_data = ImageDataGenerator(train_file,
mode='training',
batch_size=batch_size,
num_classes=num_classes,
shuffle=True)
val_data = ImageDataGenerator(val_file,
mode='inference',
batch_size=batch_size,
num_classes=num_classes,
shuffle=False)
# create an reinitializable iterator given the dataset structure
iterator = tf.data.Iterator.from_structure(tr_data.data.output_types,
tr_data.data.output_shapes)
next_batch = iterator.get_next()
# Ops for initializing the two different iterators
training_init_op = iterator.make_initializer(tr_data.data)
validation_init_op = iterator.make_initializer(val_data.data)
# TF placeholder for graph input and output
#x = tf.placeholder(tf.float32, [batch_size, 227, 227, 3])
#y = tf.placeholder(tf.float32, [batch_size, num_classes])
# Link variable to model output
score = model.fc8
# List of trainable variables of the layers we want to train
var_list = [v for v in tf.trainable_variables() if v.name.split('/')[0] in train_layers]
# Op for calculating the loss
with tf.name_scope("cross_ent"):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=score,
labels=y))
# Train op
with tf.name_scope("train"):
# Get gradients of all trainable variables
gradients = tf.gradients(loss, var_list)
gradients = list(zip(gradients, var_list))
# Create optimizer and apply gradient descent to the trainable variables
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.apply_gradients(grads_and_vars=gradients)
with tf.name_scope("test"):
prob = tf.nn.softmax(score, name='prob')
# Add gradients to summary
for gradient, var in gradients:
tf.summary.histogram(var.name + '/gradient', gradient)
# Add the variables we train to the summary
for var in var_list:
tf.summary.histogram(var.name, var)
# Add the loss to summary
tf.summary.scalar('cross_entropy', loss)
# Evaluation op: Accuracy of the model
with tf.name_scope("accuracy"):
correct_pred = tf.equal(tf.argmax(score, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Add the accuracy to the summary
tf.summary.scalar('accuracy', accuracy)
# Merge all summaries together
merged_summary = tf.summary.merge_all()
# Initialize the FileWriter
writer = tf.summary.FileWriter(filewriter_path)
# Initialize an saver for store model checkpoints
saver = tf.train.Saver()
# Get the number of training/validation steps per epoch
train_batches_per_epoch = int(np.floor(tr_data.data_size/batch_size))
val_batches_per_epoch = int(np.floor(val_data.data_size / batch_size))
# Start Tensorflow session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5
with tf.Session(config=config) as sess:
# Initialize all variables
sess.run(tf.global_variables_initializer())
# Add the model graph to TensorBoard
writer.add_graph(sess.graph)
# Load the pretrained weights into the non-trainable layer
model.load_initial_weights(sess)
print("{} Start training...".format(datetime.now()))
print("{} Open Tensorboard at --logdir {}".format(datetime.now(),
filewriter_path))
# Loop over number of epochs
for epoch in range(num_epochs):
# print("{} Epoch number: {}".format(datetime.now(), epoch+1))
# Initialize iterator with the training dataset
sess.run(training_init_op)
train_acc = 0.
train_count = 0
train_loss = 0
for step in range(train_batches_per_epoch):
# get next batch of data
img_batch, label_batch = sess.run(next_batch)
# And run the training op
train_op_return,train_acc_value,train_loss_value = sess.run((train_op,accuracy,loss), feed_dict={x: img_batch,
y: label_batch,
keep_prob: dropout_rate})
# Generate summary with the current batch of data and write to file
if step % display_step == 0:
s = sess.run(merged_summary, feed_dict={x: img_batch,
y: label_batch,
keep_prob: 1.})
writer.add_summary(s, epoch*train_batches_per_epoch + step)
train_loss += train_loss_value
train_acc += train_acc_value
train_count += 1
train_acc /= train_count
train_loss /= train_count
# print("{} Training Loss = {:.4f}".format(datetime.now(),train_loss))
# print("{} Saving checkpoint of model...".format(datetime.now()))
# Validate the model on the entire validation set
# print("{} Start validation".format(datetime.now()))
sess.run(validation_init_op)
test_acc = 0.
test_count = 0
test_loss = 0
for _ in range(val_batches_per_epoch):
img_batch, label_batch = sess.run(next_batch)
acc,loss_value = sess.run((accuracy,loss), feed_dict={x: img_batch,
y: label_batch,
keep_prob: 1.})
test_loss += loss_value
test_acc += acc
test_count += 1
test_acc /= test_count
test_loss /= test_count
#print("{} test loss = {:.4f} acc = {:.4f}".format(datetime.now(),test_loss,test_acc))
print("speaker{} {}Epoch:{} Training loss= {:.4f} acc= {:.4f} test acc= {:.4f}".format(alexnet_file.split('/')[-2],datetime.now(),epoch+1,train_loss,train_acc,test_acc))
# print("{} Validation Loss = {:.4f}".format(datetime.now(),test_loss))
# print("{} Saving checkpoint of model...".format(datetime.now()))
# save checkpoint of the model
checkpoint_name = os.path.join(checkpoint_path,'model_epoch'+str(epoch+1)+'.ckpt')
save_path = saver.save(sess, checkpoint_name)
# print("{} Model checkpoint saved at {}".format(datetime.now(),checkpoint_name))
graph = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['test/prob'])
tf.train.write_graph(graph, '.', alexnet_file, as_text=False)
if __name__ == '__main__':
# Path to the textfiles for the trainings and validation set
DataDir = path.DataDir
root_dir = DataDir.DataRoot
num_classes = DataDir.nclasses
weights_path_url = 'http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/bvlc_alexnet.npy'
weights_path = root_dir+weights_path_url.split('/')[-1]
load_emodb.maybe_download(weights_path,weights_path_url)
# Learning params
learning_rate = 0.001
num_epochs = 300
batch_size = 30
# Network params
dropout_rate = 0.5
train_layers = ['fc6','fc7','fc8']
# How often we want to write the tf.summary data to disk
display_step = 20
# Path for tf.summary.FileWriter and to store model checkpoints
filewriter_path = "/tmp/finetune_alexnet/tensorboard"
checkpoint_path = "/tmp/finetune_alexnet/checkpoints"
x = tf.placeholder(tf.float32, [None, 227, 227, 3],name='input')
y = tf.placeholder(tf.float32, [None, num_classes])
keep_prob = tf.placeholder(tf.float32)
# Initialize model
model = AlexNet(x, keep_prob, num_classes, train_layers,weights_path=weights_path)
for i in range(0,len(DataDir.val_speaker)):
#for i in range(1):
train_file = DataDir.train_segments_path[i]
val_file = DataDir.val_segments_path[i]
alexnet_file = DataDir.alexnet[i]
train_session(train_file,val_file,alexnet_file)