-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
172 lines (159 loc) · 7.92 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
Python module to create visulalizations for the different empirical tests.
"""
import math
import matplotlib.pyplot as plt
import numpy as np
def main():
# visualize_random_walk()
# visualize_sac_test()
#visualize_sts_results("Ascon-128", "AlgorithmTesting_Ascon128/")
visualize_sts_results("Ascon-128a", "AlgorithmTesting_Ascon128a/")
visualize_sts_results("Isap-A-128a", "AlgorithmTesting_isap_a/")
visualize_sts_results("Isap-K-128a", "AlgorithmTesting_isap_k/")
visualize_sts_results("Oribatida-256-64", "AlgorithmTesting_Oribatida/")
visualize_sts_results("LOTUS-AEAD-64", "AlgorithmTesting_lotus/")
visualize_sts_results("LOCUS-AEAD-64", "AlgorithmTesting_locus/")
visualize_sts_results("SpoC-128s", "AlgorithmTesting_spoc/")
#visualize_sts_results("Calibration", "sts-2.1.2/experiments/AlgorithmTesting/")
# Ascon-128, Ascon-128a, Isap-A-128a, Isap-K-128a, SpoC-128s, Oribatida-256-64, LOTUS-AEAD-64, LOCUS-AEAD-64
def visualize_sac_test():
"""
Creates one general Plot about passing P-Values and several Histograms of each algorithm.
"""
with open("sac_results.txt") as file:
data = []
alg_counts = []
file.readline()
title = "Ascon-128"
algorithms = ["Ascon-128"]
for _ in range(0, 86023):
temp = file.readline()
if 'encryption' in temp:
plt.hist(data, bins=[0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0], align="mid")
best_fit = len(data) / 20
plt.plot([0.0, 1.0], [best_fit, best_fit], ':r')
plt.ylabel("Frequency Count")
plt.xlabel("Sub-Intervals")
plt.xticks(np.arange(0, 1.05, step=0.05))
plt.title("SAC Test for " + title.capitalize())
plt.xticks(rotation=45)
plt.savefig("plots/SAC-" + title.capitalize(),
dpi=350, bbox_inches='tight')
plt.clf()
count = len([i for i in data if i > 0.01]) / len(data)
print(count)
alg_counts.append(count)
title = temp[22:-3]
algorithms.append(title[:-1].capitalize())
data.clear()
else:
data.append(float(temp))
plt.hist(data, bins=[0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0], align="mid")
best_fit = len(data) / 20
plt.plot([0.0, 1.0], [best_fit, best_fit], ':r')
plt.ylabel("Frequency Count")
plt.xlabel("Sub-Intervals")
plt.xticks(np.arange(0, 1.05, step=0.05))
plt.title("SAC Test for " + title.capitalize())
plt.xticks(rotation=45)
plt.savefig("plots/SAC-" + title.capitalize(),
dpi=350, bbox_inches='tight')
plt.clf()
count = len([i for i in data if i > 0.01]) / len(data)
alg_counts.append(count)
print(alg_counts)
confidence_min = 0.99-3*math.sqrt(0.99*0.01/32768)
confidence_maxis = 0.99+3*math.sqrt(0.99*0.01/32768)
plt.scatter(algorithms, alg_counts)
xmin, xmaxis = plt.xlim()
plt.style.use("ggplot")
plt.fill_between([xmin, xmaxis], confidence_min,
confidence_maxis, alpha=0.05, color='gray')
plt.title("Proportion of passing p-Values")
plt.plot([xmin, xmaxis], [confidence_maxis, confidence_maxis],
':r', label='Confidence Intervall')
plt.plot([xmin, xmaxis], [confidence_min, confidence_min], ':r')
plt.plot([xmin, xmaxis], [0.99, 0.99], '-', label='1-\u03B1 = 0.99')
plt.xlabel("Algorithms")
plt.ylabel("Proportions")
plt.xticks(rotation=45)
plt.legend(loc="upper right")
plt.savefig("plots/SAC-Passing", dpi=450, bbox_inches='tight')
def visualize_sts_results(algorithm, path):
"""
Creates the different plots for the results of the STS.
Args:
algorithm (String): The Name of the examined Algorithm.
path (String): Path to the saved results for the algorithm.
"""
test_paths = ["Frequency", "BlockFrequency", "Runs", "LongestRun", "Rank", "FFT", "NonOverlappingTemplate", "OverlappingTemplate",
"Universal", "LinearComplexity", "Serial", "ApproximateEntropy", "CumulativeSums", "RandomExcursions", "RandomExcursionsVariant"]
test_names = ["Frequency", "Block Frequency", "Runs", "Longest Run", "Rank", "Spectral Test", "Non-Overlapping Template", "Overlapping Template",
"Universal", "Linear Complexity", "Serial", "Approximate Entropy", "Cumulative Sums", "Random Excursions", "Random Excursions Variant"]
test_counts = []
for index in range(0, 15):
with open(path + test_paths[index] + "/results.txt") as file:
data = file.read().splitlines()
data = [float(i) for i in data]
data = list(filter(lambda x: x != 0.000000, data))
count = len([i for i in data if i > 0.01]) / len(data)
test_counts.append(count)
best_fit = len(data) / 20
plt.hist(data, bins=[0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0])
plt.plot([0.0, 1.0], [best_fit, best_fit], ':r')
plt.title(test_names[index])
plt.xlabel("Sub-Intervalls")
plt.ylabel("Frequency Count")
plt.savefig("plots/" + algorithm + "/sts-histogramm-" +
algorithm + test_names[index], dpi=100, bbox_inches='tight')
plt.clf()
plt.figure(figsize=(13, 10))
confidence_min = 0.99-3*math.sqrt(0.99*0.01/1040)
confidence_maxis = 0.99+3*math.sqrt(0.99*0.01/1040)
plt.scatter(test_names, test_counts)
xmin, xmaxis = plt.xlim()
plt.fill_between([xmin, xmaxis], confidence_min,
confidence_maxis, alpha=0.05, color='gray')
plt.plot([xmin, xmaxis], [confidence_maxis, confidence_maxis],
':r', label='Confidence Intervall')
plt.plot([xmin, xmaxis], [0.99, 0.99], '-', label='1-\u03B1 = 0.99')
plt.plot([xmin, xmaxis], [confidence_min, confidence_min], ':r')
plt.xticks(rotation=45, ha="right", fontsize=14)
plt.title("Proportion of passing P-Values", fontsize=18)
plt.xlabel("Tests", fontsize=16)
plt.ylabel("Proportions", fontsize=16)
plt.legend(loc="upper right")
plt.savefig("plots/" + algorithm + "/sts-Passing" +
algorithm, dpi=450, bbox_inches='tight')
plt.clf()
nonoverlapping_proportions = []
for index in range(1, 149):
with open(path + "NonOverlappingTemplate" + "/data" + str(index) + ".txt") as file:
temp_data = file.read().splitlines()
temp_data = [float(i) for i in temp_data]
temp_data = list(filter(lambda x: x != 0.000000, temp_data))
proportion = len(
[i for i in temp_data if i > 0.01]) / len(temp_data)
nonoverlapping_proportions.append(proportion)
print(nonoverlapping_proportions)
print(len(nonoverlapping_proportions))
plt.figure(figsize=(10, 10))
plt.hist(nonoverlapping_proportions)
ymin, ymaxis = plt.ylim()
plt.plot([confidence_min, confidence_min], [ymin, ymaxis],
':r', label='Confidence Intervall')
plt.plot([0.99, 0.99], [ymin, ymaxis], '-', label='1-\u03B1 = 0.99')
plt.plot([confidence_maxis, confidence_maxis], [ymin, ymaxis], ':r')
plt.title(
"Proportion of passing P-Values of Non-Overlapping Template Test", fontsize=18)
plt.xlabel("Proportion", fontsize=15)
plt.ylabel("Frequency Count", fontsize=15)
plt.savefig("plots/" + algorithm + "/sts-Non-Overlapping-" +
algorithm, dpi=450, bbox_inches='tight')
plt.clf()
if __name__ == "__main__":
main()