forked from milesdai/TAoE3Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChapter3.tex
350 lines (324 loc) · 15.9 KB
/
Chapter3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
\chapter{Solutions for Chapter 3}
\ex{3.1}
\begin{circuit}{fig:3.1.1}{JFET current source}
(0,0) node[njfet] (Q1) {$Q_1$}
(Q1.D) to[generic, l=load] ++(0,2)
(Q1.S) to[R, l=$R_\text{S}$] ++(0,-2) coordinate(RS)
node[ground] {}
(RS) to[short] (RS-|Q1.G)
(Q1.G) to[short] (Q1.G|-RS)
\end{circuit}
From Figure 3.21 of the book, one can see that a drain current equal to \SI{1}{\milli\ampere} corresponds to a gate-source voltage of \SI{-0.6}{\volt}.
Therefore:
\[\mans{R_\text{S}=\frac{\SI{0.6}{\volt}}{\SI{1}{\milli\ampere}}=\SI{600}{\ohm}}\]
\ex{3.2}
At $V_\text{GS}=V_\text{G0}$:
\[r_\text{GS}=r_\text{G0}=\frac{1}{2k\left(V_\text{G0}-V_\text{th}\right)}\]
The ratio between $r_\text{DS}$ and $R_\text{G0}$ returns:
\[\mans{\frac{r_\text{DS}}{r_\text{G0}}=\frac{2k\left(V_\text{G0}-V_\text{th}\right)}{2k\left(V_\text{GS}-V_\text{th}\right)}}\]
\ex{3.3}
Being $g_\text{m}$ the differential conductance of the FET operated in aturation region, it can be expressed as:
\[g_\text{m}=\frac{\partial I_\text{D}}{\partial V_\text{GS}}=\frac{\partial}{\partial V_\text{GS}}k\left(V_\text{GS}-V_\text{th}\right)^2=2k\left(V_\text{GS}-V_\text{th}\right)\]
Therefore:
\[\mans{g_\text{m}=\frac{1}{r_\text{DS}}}\]
\ex{3.4}
\begin{enumerate}
\item The voltage change across the drain-gate capacitance when the JFET is switched on ($V_\text{DS}=\SI{0}{\volt}$) is equal to \SI{50}{\volt}-(\SI{0}{\volt}-\SI{10}{\volt})=\SI{60}{\volt}. Considering a maximum current across this capacitance equal to \SI{1}{\ampere}:
\[\mans{t_\text{ON}=\frac{\SI{60}{\volt}\,\SI{200}{\pico\farad}}{\SI{1}{\ampere}}=\SI{12}{\nano\second}}\]
\item Since the current is equal to the charge over time, we have:
\[\mans{t_\text{ON}=\frac{\SI{40}{\nano\coulomb}}{\SI{1}{\ampere}}=\SI{40}{\nano\second}}\]
\end{enumerate}
\ex{3.5}
The \SI{1}{\pico\farad} drain-source capacitance happens to be in series with the \SI{10}{\kilo\ohm} load resistance. The capacitive reactance is:
\[X_\text{DS}=\frac{1}{2\pi\SI{1}{\mega\hertz}\,\SI{1}{\pico\farad}}=\SI{160}{\kilo\ohm}\]
Therefore, the feedthrough is given by:
\[\mans{20\log_{10}\frac{\SI{10}{\kilo\ohm}}{\SI{10}{\kilo\ohm}+\SI{160}{\kilo\ohm}}=\SI{-25}{\decibel}}\]
\ex{3.6}
In this case, the output \SI{10}{\kilo\ohm} resistance is in parallel with the \SI{50}{\ohm} $R_\text{ON}$ resistance. Their equivalent resistance is about \SI{50}{\ohm}. Similarly to the previous exercise, the feedthorugh is given by:
\[\mans{20\log_{10}\frac{\SI{50}{\ohm}}{\SI{50}{\ohm}+\SI{160}{\kilo\ohm}}=\SI{-70}{\decibel}}\]
\ex{3.7}
\begin{circuit}{fig:3.7.1}{Zero ohm $R_\text{ON}$}
(0,0) node[ocirc] {}
node[above] {in}
(0,0) to[R,l=$R_\text{S}$] ++(2,0) coordinate(Rs)
to[C,l=$C_\text{D}$] ++(0,-2)
node[ground] {}
(Rs) -- ++(2,0) coordinate(out)
to[C,l=$C_\text{S}$] ++(0,-2)
node[ground] {}
(out) -- ++(1,0)
node[ocirc] {}
node[above] {out}
\end{circuit}
\begin{circuit}{fig:3.7.2}{\SI{75}{\ohm} $R_\text{ON}$}
(0,0) node[ocirc] {}
node[above] {in}
(0,0) to[short] ++(1,0) coordinate(Rs)
to[C,l=$C_\text{D}$] ++(0,-2)
node[ground] {}
(Rs) to[R,l=$R_\text{ON}$] ++(2.5,0) coordinate(out)
to[C,l=$C_\text{S}$] ++(0,-2)
node[ground] {}
(out) -- ++(1,0)
node[ocirc] {}
node[above] {out}
\end{circuit}
For this exercise we assume that the load resistance of \SI{100}{\kilo\ohm} does not load the circuit.
\begin{enumerate}
\item The circuit is that of Figure \ref{fig:3.7.1}. Since $C_\text{D}=C_\text{S}=C_\text{T}=\SI{8}{\pico\farad}$, there is a single pole at the frequency $f_\text{p}$:
\[\mans{f_\text{p}=\frac{1}{4\pi R_\text{S}C_\text{T}}\approx\SI{1}{\mega\hertz}}\]
\item In this case the circuit is depicted in Figure \ref{fig:3.7.2}. The circuit has one pole at DC and another pole at $f_\text{p}$:
\[\mans{f_\text{p}=\frac{1}{2\pi R_\text{ON}C_\text{T}}\approx\SI{265}{\mega\hertz}}\]
\end{enumerate}
\ex{3.8}
\begin{circuit}{fig:3.8.1}{OFF-OFF}
(0,0) node[ocirc] {}
node[above] {in}
(0,0) to[R,l=$R_\text{S}$] ++(2,0) coordinate(Rs)
to[C,l_=$C_\text{C}$] ++(0,-2)
to[C,l=$C_\text{DS}$] ++(2,0)
(Rs) to[C,l=$C_\text{DS}$] ++(2,0)
to[C,l=$C_\text{C}$] ++(0,-2)
-- ++(1,0)
node[ocirc] {}
node[above] {out}
to[R,l=$R_\text{out}$] ++(0,-2)
node[ground] {}
\end{circuit}
\begin{circuit}{fig:3.8.2}{OFF-ON}
(0,0) node[ocirc] {}
node[above] {in}
(0,0) to[R,l=$R_\text{S}$] ++(2,0) coordinate(Rs)
to[C,l_=$C_\text{C}$] ++(0,-2)
to[short] ++(2,0)
(Rs) to[C,l=$C_\text{DS}$] ++(2,0)
to[C,l=$C_\text{C}$] ++(0,-2)
-- ++(1,0)
node[ocirc] {}
node[above] {out}
to[R,l=$R_\text{out}$] ++(0,-2)
node[ground] {}
\end{circuit}
\begin{circuit}{fig:3.8.3}{ON-OFF}
(0,0) node[ocirc] {}
node[above] {in}
(0,0) to[R,l=$R_\text{S}$] ++(2,0) coordinate(Rs)
to[C,l_=$C_\text{C}$] ++(0,-2)
to[C,l=$C_\text{DS}$] ++(2,0)
(Rs) to[short] ++(2,0)
to[C,l=$C_\text{C}$] ++(0,-2)
-- ++(1,0)
node[ocirc] {}
node[above] {out}
to[R,l=$R_\text{out}$] ++(0,-2)
node[ground] {}
\end{circuit}
\begin{circuit}{fig:3.8.4}{ON-ON}
(0,0) node[ocirc] {}
node[above] {in}
(0,0) to[R,l=$R_\text{S}$] ++(2,0) coordinate(Rs)
to[C,l_=$C_\text{C}$] ++(0,-2)
to[short] ++(2,0)
(Rs) to[short] ++(2,0)
to[C,l=$C_\text{C}$] ++(0,-2)
-- ++(1,0)
node[ocirc] {}
node[above] {out}
to[R,l=$R_\text{out}$] ++(0,-2)
node[ground] {}
\end{circuit}
\begin{enumerate}
\item In this case the reference circuit is depicted in Figure \ref{fig:3.8.1}. The cross-coupling is given by:
\[\mans{20\log_{10}\frac{R_\text{out}}{R_\text{out}+R_\text{S}+0.5(X_\text{C}+X_\text{DS})}=\SI{-10.75}{\decibel}}\]
being $X_\text{C}=\frac{1}{2\pi f\,C_\text{C}}=\SI{320}{\kilo\ohm}$ and $X_\text{DS}=\frac{1}{2\pi f\,C_\text{DS}}=\SI{160}{\kilo\ohm}$
\item In this case the reference circuit is depicted in Figure \ref{fig:3.8.2}. The cross-coupling is given by:
\[\mans{20\log_{10}\frac{R_\text{out}}{R_\text{out}+R_\text{S}+\frac{X_\text{C}(X_\text{C}+X_\text{DS})}{2X_\text{C}+X_\text{DS}}}=\SI{-9.6}{\decibel}}\]
\item In this case the reference circuit is depicted in Figure \ref{fig:3.8.3}. The cross-coupling is the same as before
\item In this case the reference circuit is depicted in Figure \ref{fig:3.8.4}. The cross-coupling is given by:
\[\mans{20\log_{10}\frac{R_\text{out}}{R_\text{out}+R_\text{S}+0.5X_\text{C}}=\SI{-8.6}{\decibel}}\]
\end{enumerate}
\ex{3.9}
\begin{enumerate}
\item Considering the different combinations of resistors, the \SI{-3}{\decibel} frequencies can be computed as:
\[\mans{f_\text{3dB,n}=\frac{n\,G_\text{10k}}{2\pi C}\quad n=1\dots 15}\]
where $C=\SI{0.01}{\micro\farad}$ and $G_\text{10k}=\SI{0.1}{\milli\siemens}$
\item The glitch amplitude voltage can be computed as:
\[\mans{\Delta V=\frac{\SI{20}{\pico\coulomb}}{C}=\SI{2}{\milli\volt}}\]
\end{enumerate}
\ex{3.10}
The peak output current that the buffer has to provide can be given as the peak time derivative of the output voltage across the \SI{10}{\nano\farad} capacitor multiplied by its value:
\[\mans{I_\text{p}=\left.\SI{10}{\nano\farad}\frac{dV}{dt}\right|_\text{p}=\SI{10}{\nano\farad}\,2\pi\SI{10}{\kilo\hertz}\,\SI{1}{\volt}=\SI{0.6}{\milli\ampere}}\]
\ex{3.11}
\begin{circuit}{fig:3.11.1}{BJT-based inverter logic circuit}
(0,0) node[npn] (Q1) {$Q_1$}
(Q1.C) -- ++(0,0.5)
node[pnp, anchor=C] (Q2) {$Q_2$}
(Q2.E) -- ++(-0.5,0) -- ++(1,0)
node[above] {$V_\text{cc}$}
(Q1.B) to[short] (Q2.B)
($(Q1.B)!0.5!(Q2.B)$) to[short] ++(-0.5,0)
node[ocirc] {}
node[above] {in}
($(Q1.C)!0.5!(Q2.C)$) to[short] ++(0.5,0)
node[ocirc] {}
node[above] {out}
(Q1.E) node[ground] {}
\end{circuit}
The circuit of Figure \ref{fig:3.11.1} represents the complementary bjt inverter. It's easy to see that without a proper bias, if the input is grounder (low level) the $V_\text{BE}$ of the pnp transistor is equal to $V_\text{cc}$ which is likely to damage the transistor in a very short time
\ex{3.12}
\begin{circuit}{fig:3.12.1}{Logic AND symbols}
(0,0) node[nand port] (nand) {}
node[not port, anchor=in] (not) {}
(nand.in 1) node[above] {a}
(nand.in 2) node[above] {b}
(not.out) node[above] {out}
\end{circuit}
\begin{circuit}{fig:3.12.2}{Logic AND symbol and circuit}
(0,0) node[nmos] (Q1) {$Q_1$}
(Q1.D) -- ++(0,0.5)
node[pmos, anchor=D] (Q2) {$Q_2$}
(Q2.S) -- ++(-0.5,0) -- ++(1,0)
node[above] {$V_\text{dd}$}
(Q1.G) to[short] (Q2.G)
($(Q1.B)!0.5!(Q2.B)$) to[short] ++(-0.5,0) coordinate(NOT_IN)
node[ocirc] {}
($(Q1.D)!0.5!(Q2.D)$) to[short] ++(0.5,0)
node[ocirc] {}
node[above] {out}
(Q1.S) node[ground] {}
(NOT_IN) node[nand port, anchor=out] (nand) {}
(nand.in 1) node[above] {a}
(nand.in 2) node[above] {b}
\end{circuit}
In order to transform a NAND port into an AND port, we can use a NOT port as shown in Figures \ref{fig:3.12.1} and \ref{fig:3.12.2}
\ex{3.13}
\begin{circuit}{fig:3.13.1}{NOR circuit}
(0,0) node[nmos] (Q1) {$Q_1$}
(Q1.D) -- ++(0,0.5) coordinate(A)
-- ++(2,0) coordinate(B)
-- ++(0,-0.5)
node[nmos, anchor=D, xscale=-1] (Q2) {\ctikzflipx{$Q_2$}}
(Q1.S) to[short] (Q2.S)
($(Q1.S)!0.5!(Q2.S)$) to[short] ++(0,-0.5)
node[ground] {}
($(A)!0.5!(B)$) to[short] ++(0,0.5)
node[pmos, anchor=D] (Q3) {$Q_3$}
(Q3.S) node[pmos, anchor=D, xscale=-1] (Q4) {\ctikzflipx{$Q_4$}}
(Q4.S) ++(-0.5,0) -- ++(1,0)
node[above] {$V_\text{DD}$}
(Q1.G) to[short] (Q1.G |- Q3.G) coordinate(C)
to[short] (Q3.G)
($(Q1.G)!0.5!(C)$) to[short] ++(-0.5,0)
node[ocirc] {}
node[above] {a}
(Q2.G) to[short] (Q2.G |- Q4.G) coordinate(D)
to[short] (Q4.G)
($(Q2.G)!0.5!(D)$) to[short] ++(0.5,0)
node[ocirc] {}
node[above] {b}
(Q3.D) to[short] ++(0.5,0)
node[ocirc] {}
node[above] {out}
\end{circuit}
The solution is presented in Figure \ref{fig:3.13.1}
\ex{3.14}
\begin{circuit}{fig:3.14.1}{Logic OR symbols}
(0,0) node[nor port] (nor) {}
node[not port, anchor=in] (not) {}
(nor.in 1) node[above] {a}
(nor.in 2) node[above] {b}
(not.out) node[above] {out}
\end{circuit}
The OR circuit can be easily obtained by cascading a NOT circuit to the NOR circuit designed in exercise 3.13.
\ex{3.15}
\begin{circuit}{fig:3.15.1}{Three ports NAND circuit}
(0,0) node[pmos] (Q1) {$Q_1$}
(2,0) node[pmos] (Q2) {$Q_2$}
(4,0) node[pmos] (Q3) {$Q_3$}
(Q1.S) ++(-0.5,0) -- (Q3.S) -- ++(0.5,0)
node[above] {$V_\text{DD}$}
(Q1.D) to[short,*-*] (Q2.D)
(Q2.D) to[short,*-*] (Q3.D)
(Q3.D) to[short] ++(0,-0.5)
node[nmos, anchor=D] (Q4) {$Q_4$}
(Q4.S) node[nmos, anchor=D] (Q5) {$Q_5$}
(Q5.S) node[nmos, anchor=D] (Q6) {$Q_6$}
(Q6.S) node[ground] {}
(Q1.G) to[short,-*] (Q1.G |- Q4.G)
++(-0.5,0)
node[ocirc] {}
node[above] {a}
to[short] (Q4.G)
(Q2.G) to[short,-*] (Q2.G |- Q5.G)
++(-0.5,0)
node[ocirc] {}
node[above] {b}
to[short] (Q5.G)
(Q3.G) to[short,-*] (Q3.G |- Q6.G)
++(-0.5,0)
node[ocirc] {}
node[above] {c}
to[short] (Q6.G)
(Q4.D) to[short] ++(0.5,0)
node[ocirc] {}
node[above] {out}
\end{circuit}
The solution is represented in Figure \ref{fig:3.15.1}. The gate comply with the following truth table
\begin{center}
\begin{tabular}{c c c | c}
a & b & c & out \\
\hline
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
\end{tabular}
\end{center}
\ex{3.16}
As soon as the voltage across $R_5$ gets higher than the $V_\text{EB}$ threshold of Q3, a current starts flowing from its emitter to its collector. As long as Q1 does not saturate, its collector current is fixed (current sink) and Q3 collector current flows into $R_2$. This increases $V_\text{SG}$ of Q2 until it becomes higher than its threshold $V_\text{SG}^\text{th}$
The maximum allowed current $I_\text{S}^\text{max}$ can be computed as it follows:
\[I_\text{C}^\text{Q1}=\frac{\SI{3.3}{\volt}-\SI{0.65}{\volt}}{\SI{15}{\kilo\ohm}}=\SI{0.18}{\milli\ampere}\]
Therefore:
\[V_\text{SG}^\text{th}=(I_\text{C}^\text{Q1}-I_\text{C}^\text{Q3})R_2-R_5I_\text{lim}\]
Since:
\[I_\text{C}^\text{Q3}=I_\text{S}e^\frac{I_\text{lim}R_5}{V_\text{T}}\]
One can obtain, by substituting $I_\text{C}^\text{Q3}$ in the expression for $V_\text{SG}^\text{th}$:
\[V_\text{SG}^\text{th}=(I_\text{C}^\text{Q1}-I_\text{S}e^\frac{I_\text{lim}R_5}{V_\text{T}})R_2-R_5I_\text{lim}\]
This equation can be solved numerically and it gives $I_\text{lim}=\SI{1.25}{\ampere}$ if $V_\text{SG}^\text{th}=\SI{5}{\volt}$ or $I_\text{lim}=\SI{1.29}{\ampere}$ if $V_\text{SG}^\text{th}=\SI{0}{\volt}$.
In both cases, the $V_\text{EB}$ of Q3 is approximately it diode voltage drop \SI{0.65}{\volt}. Therefore, $I_\text{lim}$ can be approximately obtained is a easire way as:
\[\mans{I_\text{lim}=\frac{\SI{0.65}{\volt}}{R_5}=\SI{1.3}{\volt}}\]
\ex{3.17}
From the exercise data we have the following requirements:
\begin{itemize}
\item Q2 $V_\text{SD}^\text{max}=\SI{175}{\volt}$
\item $V_\text{CE}^\text{max}=\SI{175}{\volt}$
\item $V^\text{LED}=38\,\SI{3.2}{\volt}=\SI{121.6}{\volt}$
\item Q2 $I_\text{SD}^\text{max}=\SI{0.5}{\ampere}$
\end{itemize}
From Table at page 202 we see that the p-channel MOSFET FQP9P25 is suitable. Looking at the datasheet we see that the $V_\text{GS}^\text{th}=-\SI{5}{\volt}$ and $R_\text{ON}=\SI{0.62}{\ohm}$. Aiming for a $V_\text{GS}$ about \SI{-10}{\volt}, we can compute the ratio of $R_2$ and $R_1$ as:
\[\frac{R_2}{R_1}=\frac{\SI{10}{\volt}}{\SI{3.3}{\volt}-\SI{0.65}{\volt}=3.77}\]
Since the minimum supply voltage is equal to \SI{155}{\volt}, we have to account for a resistor in series with the led equal to:
\[\frac{\SI{155}{\volt}-\SI{121.6}{\volt}}{\SI{0.5}{\ampere}}=\SI{67}{\ohm}\]
From the previous exercise, if we want to limit the drain current through Q2 at \SI{0.5}{\ampere}, we should use a resistor $R_5$ equal to
\[R_5=\frac{\SI{0.65}{\volt}}{\SI{0.5}{\ampere}}=\SI{1.3}{\ohm}\]
For the transistor Q1, from Table 2.1 at page 74 we choose the model MPSA92 whose maximum collector current is equal to \SI{30}{\milli\ampere} and maximum power \SI{625}{\milli\watt}. The maximum power thorugh Q1 can be obtained as:
\[P^{Q1}=V_\text{CE}I_\text{C}=[\SI{175}{\volt}-I_\text{C}(R_1+R_2)]I_\text{C}\leq\SI{625}{\milli\watt}\]
Since:
\[I_\text{C}=\frac{\SI{3.3}{\volt}-\SI{0.65}{\volt}}{R_1}\]
Accounting for a Q1 power of \SI{500}{\milli\watt}:
\[R_1=\SI{860}{\ohm}\]
and
\[R_2=3.77\,R_1=\SI{3.2}{\kilo\ohm}\]
The maximum power dissipated by Q2 can be easily computed accounting for a maximum drain current ($I_\text{D}^\text{Q2}$) equal to \SI{0.5}{\ampere}:
\[P^\text{Q2}={I_\text{D}^\text{Q2}}^2R_\text{ON}=\SI{155}{\milli\watt}\]
Finally, from the datasheet of the FQP9P25 MOSFET, for a single \SI{10}{\milli\second} pulse, the tehermal impedance from junction to case is equal to \SI{0.3}{\celsius\per\watt}. Supposing that the case thermal capacitance is such as the case temperature is not affected by the \SI{10}{\milli\second} pulse, the junction temperature increase will be equal to:
\[\Delta T^\text{Q2}= \SI{0.3}{\celsius\per\watt}\,\SI{155}{\milli\watt}=\SI{0.04}{\celsius}\]
However, if we account for a continous \SI{10}{\milli\second} pulse with \num{0.5} duty cycle, the tehermal impedance from junction to case becomes equal to \SI{0.5}{\celsius\per\watt}. If we neglect the case thermal capacitance, the junction temperature increase will be equal to:
\[\Delta T^\text{Q2}= (\SI{0.5}{\celsius\per\watt}+\SI{1.04}{\celsius\per\watt})\,\SI{155}{\milli\watt}=\SI{0.24}{\celsius}\]
where \SI{1.04}{\celsius\per\watt} is the thermal resistance from case to ambient as given in the datasheet.
\ex{3.18}
The goal can be achieved by means of an analog switch of the type of Figure 3.106 B at the input of the circuit. With respect to the circuit of Figure 3.106 B, a resistor $R_2$ with a resistance of \SI{55}{\kilo\ohm} is needed because of the lower $V_\text{logic}$ equal to \SI{3}{\volt}.