-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
379 lines (252 loc) · 9.87 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# -- coding: utf-8 --
"""
DiamondStreetStyles - main.py
"""
import xpress as xp
import pandas as pd
import math
#### Helper Classes ####
## Product - {Name, Verkaufspreis, Maschinenkosten,
# Maximalprognose, Mindestproduktionsmenge, Materialien}
# Maximalprognose und Mindestproduktionsmenge können undefiniert sein
# Materialien - {name : m/Stück}
class Product:
def __init__(self, name, vk, mk, maxp, minp, materials):
self.name = name
self.materials = materials
self.vk = vk
self.mk = mk
self.maxp = maxp
self.minp = minp
## Material - {Name, Kosten / m, Limit}
class Material:
def __init__(self, name, costs, limit):
self.name = name
self.costs = costs
self.limit = limit
#### End Helper Classes ####
#### Read Excel ####
## load Excel
DSS = xp.problem("DiamondStreetStyles")
## XPRESS Settings
DSS.setControl('outputlog', 0)
# Laden der Excel File und auslesen von Material, Produkt und Fixkosten
file_path = 'Produktionsplanung.xlsx' # Replace with your file path
material_df = pd.read_excel(file_path, sheet_name='Material')
produkt_df = pd.read_excel(file_path, sheet_name='Produkt')
fixed_costs_df = pd.read_excel(file_path, sheet_name='Fixkosten')
variables_df = pd.read_excel(file_path, sheet_name='Variablen')
## Create a list with all products
productList = []
## for each product in Produkt Column
for idx in range(len(produkt_df['Produkt'])):
## read Row with the index of the Product
productData = produkt_df.iloc[idx]
## number of materials is dynamic
# first material name is always in column 5,
# materials required is always the next column
materials = {}
for matIdx in range(5, len(productData),2):
materials[productData[matIdx]] = productData[matIdx + 1]
# add Product to product list
productList.append(Product(productData[0], productData[1], productData[2], productData[3], productData[4], materials))
## create a map / dict with all materials
materialMap = {}
materialNames = material_df['Material']
materialCosts = material_df['Kosten / m']
materialLimits = material_df['Materialbeschränkungen']
for idx in range(len(materialNames)):
mat = Material(materialNames[idx], materialCosts[idx], materialLimits[idx])
materialMap[materialNames[idx]] = mat
## create a Map / Dict with all Variables
## each variable has the name of the corresponding product
variableMap = {}
for prod in productList:
minp, maxp = 0,0
if math.isnan(prod.minp):
minp = 0
else:
minp = prod.minp
if math.isnan(prod.maxp):
maxp = 30000
else:
maxp = prod.maxp
variableMap[prod.name] = xp.var(name=prod.name)
DSS.addVariable(variableMap[prod.name])
### Constraints
constraintList = []
## Materialbeschränkungen
for matName in materialMap:
tempList = []
for prod in productList:
if matName in prod.materials:
tempList.append(prod)
c_mat = xp.Sum(tempList[i].materials[matName] * variableMap[tempList[i].name] for i in range(len(tempList))) <= materialMap[matName].limit
DSS.addConstraint(c_mat)
constraintList.append(c_mat)
## Verschnittregelung
# TO-DO condition in excel
c_ver1 = variableMap['Fleece-Top'] >= variableMap['Fleece-Shirt']
c_ver2 = variableMap['Sweatshorts'] >= variableMap['Sweatshirt']
DSS.addConstraint(c_ver1)
DSS.addConstraint(c_ver2)
constraintList.append(c_ver1)
constraintList.append(c_ver2)
## Maximalprognose
for product in productList:
if product.maxp > 0:
# Erstelle eine Constraint
constraint = variableMap[product.name] <= product.maxp
# Füge die Constraint zum Optimierer hinzu
DSS.addConstraint(constraint)
# Füge die Constraint zur Liste hinzu
constraintList.append(constraint)
# Mindestproduktionsmenge
for product in productList:
if product.minp > 0:
# Erstelle eine Constraint
constraint = variableMap[product.name] >= product.minp
# Füge die Constraint zum Optimierer hinzu
DSS.addConstraint(constraint)
# Füge die Constraint zur Liste hinzu
constraintList.append(constraint)
## Übriges Material
remainingMaterial = {}
for matName in materialMap:
tempList = []
for prod in productList:
if matName in prod.materials:
tempList.append(prod)
remainingMaterial[matName] = materialMap[matName].limit - sum(tempList[i].materials[matName] * variableMap[tempList[i].name] for i in range(len(tempList)))
#### Kosten ####
## Fixed Costs
totalFixedCosts = sum(fixed_costs_df['Betrag'])
## Material Kosten
totalMaterialCosts = sum(material.limit * material.costs for material in materialMap.values())
## Rücksendekosten ##
returnCosts = sum(remainingMaterial.values()) * variables_df.loc[0, 'Rücksendekosten']
## Rückerstattungspreis
returnMoney = sum(quantity * materialMap[matName].costs for matName, quantity in remainingMaterial.items())
### Total Costs ###
totalCosts = totalFixedCosts + totalMaterialCosts + returnCosts - returnMoney
######## Zielfunktion
objective = sum((product.vk - product.mk) * variableMap[product.name] for product in productList) - totalCosts
DSS.setObjective(objective, sense=xp.maximize)
# ************
# LP-OPTIMIERUNG
# ************
DSS.lpoptimize()
print("------------------")
print("LP-OPTIMIERUNG")
print("------------------")
solution = DSS.getSolution()
schlupf = DSS.getSlack()
dualwerte = DSS.getDual()
redkosten = DSS.getRCost()
ZFWert = DSS.getObjVal()
optimal_values = {var: DSS.getSolution(var) for var in variableMap.values()}
print("Lösung:", solution)
print("ZFW:", ZFWert)
print("Schlupf:", schlupf)
print("Dualwerte:", dualwerte)
print("Reduzierte Kosten:", redkosten)
print()
## Produktion pro Variable
print('Produktion pro Variable')
print()
gesamt = 0
for name, var in variableMap.items():
print(name + ": " + str(DSS.getSolution(name)))
gesamt += DSS.getSolution(name)
print('Gesamt')
print(gesamt)
## Zurücksendungen
print()
print('Zurücksendungen')
print()
for matName in materialMap:
tempList = []
for prod in productList:
if matName in prod.materials:
tempList.append(prod)
print(matName + ': ' + str(materialMap[matName].limit - sum(tempList[i].materials[matName] * optimal_values[variableMap[tempList[i].name]] for i in range(len(tempList)))))
## Deckungsbeitrag
## Deckungsbeitrag pro Produkt
print()
print("Deckungsbeitrag pro Produkt")
print()
for product in productList:
db_product = (product.vk - product.mk) * optimal_values[variableMap[product.name]]
print(f"DB - {product.name}: {db_product}")
## Deckungsbeitrag gesamt
dbgesamt = sum((product.vk - product.mk) * optimal_values[variableMap[product.name]] for product in productList) - totalMaterialCosts
print()
print('DB gesamt: ' + str(dbgesamt))
for matName in materialMap:
tempList = []
for prod in productList:
if matName in prod.materials:
tempList.append(prod)
remainingMaterial[matName] = materialMap[matName].limit - sum(tempList[i].materials[matName] * optimal_values[variableMap[tempList[i].name]] for i in range(len(tempList)))
print(remainingMaterial.values())
print('Return Costs: ' + str(sum(remainingMaterial.values()) * variables_df.loc[0, 'Rücksendekosten']))
print('Return Money: ' + str(sum(quantity * materialMap[matName].costs for matName, quantity in remainingMaterial.items())))
print()
# ************
# Sensitivitaetsanalyse
# ************
print("------------------")
print("SENSITIVITÄTSANALYSE")
print("------------------")
# Sensitivitätsanalyse für Zielfunktionskoeffizienten
all_variables = list(variableMap.values())
# Prepare empty lists for the lower and upper bounds.
lower_obj = []
upper_obj = []
# Call the objsa function with the correct parameters.
DSS.objsa(all_variables, lower_obj, upper_obj)
start = []
DSS.getcols(start, rowind=None, rowcoef=None, maxcoefs=100, first=0, last=DSS.attributes.cols - 1)
print(start)
# Now lower_obj and upper_obj lists will be populated with the sensitivity ranges for the objective coefficients.
print("\nSensitivity for Objective Function Coefficients:")#
print()
for var, lo, up in zip(all_variables, lower_obj, upper_obj):
print(f"{var.name}: Lower = {lo}, Upper = {up}")
# Sensitivitätsanalyse für Rechte Seiten (b-Vektor)
lower_rhs, upper_rhs = [], []
DSS.rhssa(constraintList, lower_rhs, upper_rhs)
print("\nSensitivität für Rechte Seiten:")
print("Untere Grenzen:", lower_rhs)
print("Obere Grenzen:", upper_rhs)
# Schlupfvariablen für jede Nebenbedingung
# Liste der aktiven und inaktiven Nebenbedingungen erstellen
active_constraints = []
inactive_constraints = []
# Schlupf für jede Nebenbedingung überprüfen
for idx, constr in enumerate(constraintList):
slack_value = DSS.getSlack(constr)
if slack_value == 0:
active_constraints.append(f'NB{idx+1}') # +1, weil die Zählung der Constraints bei 1 beginnt
else:
inactive_constraints.append(f'NB{idx+1}')
# Ausgabe der aktiven und inaktiven Nebenbedingungen
print("Aktive Nebenbedingungen:", active_constraints)
print("Inaktive Nebenbedingungen:", inactive_constraints)
# Erstellen Sie zwei leere Listen für rowstat und colstat
rowstat = [0] * DSS.attributes.rows
colstat = [0] * DSS.attributes.cols
# Rufen Sie getbasis auf, um die Basisstatus zu erhalten
DSS.getbasis(rowstat, colstat)
# Finden Sie die Basis- und Nicht-Basisvariablen
basis_vars = []
nonbasis_vars = []
variable_names = list(variableMap.values())
for i, status in enumerate(colstat):
if status == 1:
basis_vars.append(variable_names[i])
else:
nonbasis_vars.append(variable_names[i])
# Ausgabe der Basis- und Nicht-Basisvariablen
print("Basisvariablen:", basis_vars)
print("Nicht-Basisvariablen:", nonbasis_vars)