generated from Lightning-AI/deep-learning-project-template
-
Notifications
You must be signed in to change notification settings - Fork 117
/
Copy pathconvert_weights.py
57 lines (48 loc) · 1.47 KB
/
convert_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
import hashlib
from collections import OrderedDict
import torch
def main():
"""Converts saved checkpoint to the expected format for detoxify."""
checkpoint = torch.load(ARGS.checkpoint, map_location=ARGS.device)
new_state_dict = {
"state_dict": OrderedDict(),
"config": checkpoint["hyper_parameters"]["config"],
}
for k, v in checkpoint["state_dict"].items():
if k.startswith("model."):
k = k[6:] # remove `model.`
new_state_dict["state_dict"][k] = v
torch.save(new_state_dict, ARGS.save_to)
if ARGS.hash:
with open(ARGS.save_to, "rb") as f:
bytes = f.read() # read entire file as bytes
readable_hash = hashlib.sha256(bytes).hexdigest()
print("Hash: ", readable_hash)
torch.save(new_state_dict, ARGS.save_to[:-5] + f"-{readable_hash[:8]}.ckpt")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint",
type=str,
help="path to model checkpoint",
)
parser.add_argument(
"--save_to",
type=str,
help="path to save the model to",
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="device to load the checkpoint on",
)
parser.add_argument(
"--hash",
type=bool,
default=True,
help="option to save hash in name",
)
ARGS = parser.parse_args()
main()