-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
305 lines (251 loc) · 12.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import sys
from pipeline import *
import argparse
import h5py
import os
import random
import time
import numpy as np
import torch
from torch.autograd import Variable
from torch import nn
from torch import cuda
from holder import *
from optimizer import *
from data import *
from util import *
from ema import *
from multiclass_loss import *
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# data parameters
parser.add_argument('--dir', help="Path to the data dir", default="data/nli_aug/")
parser.add_argument('--train_data', help="Path to training data hdf5 file.", default="snli-train.hdf5")
parser.add_argument('--val_data', help="Path to validation data hdf5 file.", default="snli-val.hdf5")
parser.add_argument('--train_res', help="Path to training resource files, seperated by comma.", default="")
parser.add_argument('--val_res', help="Path to validation resource files, seperated by comma.", default="")
parser.add_argument('--word_vecs', help="The path to word embeddings", default = "glove.hdf5")
parser.add_argument('--char_idx', help="The path to word2char index file", default = "char.idx.hdf5")
parser.add_argument('--dict', help="The path to word dictionary", default = "snli.word.dict")
parser.add_argument('--char_dict', help="The path to char dictionary", default = "char.dict.txt")
parser.add_argument('--save_file', help="Path to where model to be saved.", default="model")
# training generic parameter
parser.add_argument('--percent', help="The percent of training data to use", type=float, default=1.0)
parser.add_argument('--epochs', help="The number of epoches for training", type=int, default=100)
parser.add_argument('--optim', help="The name of optimizer to use for training", default='adam')
parser.add_argument('--param_init_type', help="The type of parameter initialization", default='xavier_uniform')
parser.add_argument('--param_init', help="The scale of the normal distribution from which weights are initialized", type=float, default=0.01)
parser.add_argument('--clip_epoch', help="The starting epoch to enable clip", type=int, default=1)
parser.add_argument('--clip', help="The norm2 threshold to clip, set it to negative to disable", type=float, default=-1.0)
parser.add_argument('--ema', help="Whether to use EMA", type=int, default=0)
parser.add_argument('--mu', help="The mu ratio used in EMA", type=float, default=0.999)
parser.add_argument('--adam_betas', help="The betas used in adam", default='0.9,0.999')
parser.add_argument('--learning_rate', help="The learning rate for training", type=float, default=0.001)
parser.add_argument('--fix_word_vecs', help="Whether to make word embeddings NOT learnable", type=int, default=1)
parser.add_argument('--dropout', help="The dropout probability", type=float, default=0.2)
parser.add_argument('--print_every', help="Print stats after this many batches", type=int, default=1000)
parser.add_argument('--seed', help="The random seed", type=int, default=3435)
parser.add_argument('--gpuid', help="The GPU index, if -1 then use CPU", type=int, default=-1)
parser.add_argument('--use_char_enc', help="Whether to use char encoding", type=int, default=0)
parser.add_argument('--acc_batch_size', help="The accumulative batch size, -1 to disable", type=int, default=-1)
# dimensionality
parser.add_argument('--char_filters', help="The list of filters for char cnn", default='5')
parser.add_argument('--num_char', help="The number of distinct chars", type=int, default=61)
parser.add_argument('--char_emb_size', help="The input char embedding dim", type=int, default=20)
parser.add_argument('--char_enc_size', help="The input char encoding dim", type=int, default=100)
parser.add_argument('--hidden_size', help="The general hidden size of the pipeline", type=int, default=200)
parser.add_argument('--cls_hidden_size', help="The hidden size of the classifier", type=int, default=200)
parser.add_argument('--word_vec_size', help="The input word embedding dim", type=int, default=300)
parser.add_argument('--token_l', help="The maximal token length", type=int, default=16)
## pipeline specs
parser.add_argument('--encoder', help="The type of encoder", default="rnn")
parser.add_argument('--attention', help="The type of attention", default="local")
parser.add_argument('--classifier', help="The type of classifier", default="local")
parser.add_argument('--rnn_layer', help="The number of layers of rnn encoder", type=int, default=1)
parser.add_argument('--rnn_type', help="What type of rnn to use, default lstm", default='lstm')
parser.add_argument('--birnn', help="Whether to use bidirectional rnn", type=int, default=1)
parser.add_argument('--num_att_label', help='The number of attention labels', type=int, default=1)
parser.add_argument('--num_label', help="The number of prediction labels", type=int, default=3)
parser.add_argument('--constr_on', help="Directions of attentions to apply constraints on", default='1')
parser.add_argument('--cross_constr', help="The list of constraint layers to use, no if empty", default="")
parser.add_argument('--within_constr', help="The list of att constraint layers to use, no if empty", default="")
parser.add_argument('--rho_c', help="The weight of cross layer constraint", default='')
parser.add_argument('--rho_w', help="The weight of within layer constraint", type=float, default=1.0)
# train batch by batch, accumulate batches until the size reaches acc_batch_size
def train_epoch(opt, shared, m, optim, ema, data, epoch_id, sub_idx):
train_loss = 0.0
num_ex = 0
start_time = time.time()
num_correct = 0
min_grad_norm2 = 1000000000000.0
max_grad_norm2 = 0.0
loss = MulticlassLoss(opt, shared)
# subsamples of data
# if subsample indices provided, permutate from subsamples
# else permutate from all the data
data_size = sub_idx.size()[0]
batch_order = torch.randperm(data_size)
if sub_idx is not None:
batch_order = sub_idx[batch_order]
acc_batch_size = 0
m.train(True)
loss.begin_pass()
m.begin_pass()
for i in range(data_size):
(data_name, source, target, char_source, char_target,
batch_ex_idx, batch_l, source_l, target_l, label, res_map) = data[batch_order[i]]
wv_idx1 = Variable(source, requires_grad=False)
wv_idx2 = Variable(target, requires_grad=False)
cv_idx1 = Variable(char_source, requires_grad=False)
cv_idx2 = Variable(char_target, requires_grad=False)
y_gold = Variable(label, requires_grad=False)
# update network parameters
shared.epoch = epoch_id
m.update_context(batch_ex_idx, batch_l, source_l, target_l, res_map)
# forward pass
output = m.forward(wv_idx1, wv_idx2, cv_idx1, cv_idx2)
# loss
batch_loss = loss(output, y_gold)
# stats
train_loss += float(batch_loss.data)
num_ex += batch_l
time_taken = time.time() - start_time
acc_batch_size += batch_l
# accumulate grads
batch_loss.backward()
# accumulate current batch until the rolled up batch size exceeds threshold or meet certain boundary
if i == data_size-1 or acc_batch_size >= opt.acc_batch_size or (i+1) % opt.print_every == 0:
grad_norm2 = optim.step(m, acc_batch_size)
if opt.ema == 1:
ema.step(m)
# clear up grad
m.zero_grad()
acc_batch_size = 0
# stats
grad_norm2_avg = grad_norm2
min_grad_norm2 = min(min_grad_norm2, grad_norm2_avg)
max_grad_norm2 = max(max_grad_norm2, grad_norm2_avg)
time_taken = time.time() - start_time
loss_stats = loss.print_cur_stats()
if (i+1) % opt.print_every == 0:
stats = '{0}, Batch {1:.1f}k '.format(epoch_id+1, float(i+1)/1000)
stats += 'Grad {0:.1f}/{1:.1f} '.format(min_grad_norm2, max_grad_norm2)
stats += 'Loss {0:.4f} '.format(train_loss / num_ex)
stats += loss.print_cur_stats()
stats += 'Time {0:.1f}'.format(time_taken)
print(stats)
perf, extra_perf = loss.get_epoch_metric()
m.end_pass()
loss.end_pass()
return perf, extra_perf, train_loss / num_ex, num_ex
def train(opt, shared, m, optim, ema, train_data, val_data):
best_val_perf = 0.0
test_perf = 0.0
train_perfs = []
val_perfs = []
extra_perfs = []
train_idx, train_num_ex = train_data.subsample(opt.percent)
print('{0} examples sampled for training'.format(train_num_ex))
print('for the record, the first 10 training batches are: {0}'.format(train_idx[:10]))
# sample the same proportion from the dev set as well
# but we don't want this to be too small
minimal_dev_num = max(int(train_num_ex * 0.1), 1000)
val_idx, val_num_ex = val_data.subsample(opt.percent, minimal_num=minimal_dev_num)
print('{0} examples sampled for dev'.format(val_num_ex))
print('for the record, the first 10 dev batches are: {0}'.format(val_idx[:10]))
start = 0
for i in range(start, opt.epochs):
train_perf, extra_train_perf, loss, num_ex = train_epoch(opt, shared, m, optim, ema, train_data, i, train_idx)
train_perfs.append(train_perf)
extra_perf_str = ' '.join(['{:.4f}'.format(p) for p in extra_train_perf])
print('Train {0:.4f} All {1}'.format(train_perf, extra_perf_str))
# evaluate
# and save if it's the best model
val_perf, extra_val_perf, val_loss, num_ex = validate(opt, shared, m, val_data, val_idx)
val_perfs.append(val_perf)
extra_perfs.append(extra_val_perf)
extra_perf_str = ' '.join(['{:.4f}'.format(p) for p in extra_val_perf])
print('Val {0:.4f} All {1}'.format(val_perf, extra_perf_str))
perf_table_str = ''
cnt = 0
print('Epoch | Train | Val ...')
for train_perf, extra_perf in zip(train_perfs, extra_perfs):
extra_perf_str = ' '.join(['{:.4f}'.format(p) for p in extra_perf])
perf_table_str += '{0}\t{1:.4f}\t{2}\n'.format(cnt+1, train_perf, extra_perf_str)
cnt += 1
print(perf_table_str)
if val_perf > best_val_perf:
best_val_perf = val_perf
print('saving model to {0}'.format(opt.save_file))
param_dict = m.get_param_dict()
save_param_dict(param_dict, '{0}.hdf5'.format(opt.save_file))
save_opt(opt, '{0}.opt'.format(opt.save_file))
# save ema
if opt.ema == 1:
ema_param_dict = ema.get_param_dict()
save_param_dict(ema_param_dict, '{0}.ema.hdf5'.format(opt.save_file))
else:
print('skip saving model for perf <= {0:.4f}'.format(best_val_perf))
def validate(opt, shared, m, val_data, val_idx):
m.train(False)
val_loss = 0.0
num_ex = 0
loss = MulticlassLoss(opt, shared)
data_size = val_idx.size()[0]
print('validating on the {0} batches...'.format(val_idx.size()[0]))
m.begin_pass()
for i in range(data_size):
(data_name, source, target, char_source, char_target,
batch_ex_idx, batch_l, source_l, target_l, label, res_map) = val_data[val_idx[i]]
wv_idx1 = Variable(source, requires_grad=False)
wv_idx2 = Variable(target, requires_grad=False)
cv_idx1 = Variable(char_source, requires_grad=False)
cv_idx2 = Variable(char_target, requires_grad=False)
y_gold = Variable(label, requires_grad=False)
# update network parameters
m.update_context(batch_ex_idx, batch_l, source_l, target_l, res_map)
# forward pass
pred = m.forward(wv_idx1, wv_idx2, cv_idx1, cv_idx2)
# loss
batch_loss = loss(pred, y_gold)
# stats
val_loss += float(batch_loss.data)
num_ex += batch_l
perf, extra_perf = loss.get_epoch_metric()
m.end_pass()
return (perf, extra_perf, val_loss / num_ex, num_ex)
def main(args):
opt = parser.parse_args(args)
shared = Holder()
#
opt.train_data = opt.dir + opt.train_data
opt.val_data = opt.dir + opt.val_data
opt.train_res = '' if opt.train_res == '' else ','.join([opt.dir + path for path in opt.train_res.split(',')])
opt.val_res = '' if opt.val_res == '' else ','.join([opt.dir + path for path in opt.val_res.split(',')])
opt.word_vecs = opt.dir + opt.word_vecs
opt.char_idx = opt.dir + opt.char_idx
opt.dict = opt.dir + opt.dict
opt.char_dict = opt.dir + opt.char_dict
torch.manual_seed(opt.seed)
if opt.gpuid != -1:
torch.cuda.set_device(opt.gpuid)
torch.cuda.manual_seed_all(opt.seed)
print(opt)
# build model
m = Pipeline(opt, shared)
optim = Optimizer(opt, shared)
ema = EMA(opt, shared)
m.init_weight()
model_parameters = filter(lambda p: p.requires_grad, m.parameters())
num_params = sum([np.prod(p.size()) for p in model_parameters])
print('total number of trainable parameters: {0}'.format(num_params))
if opt.gpuid != -1:
m = m.cuda()
# loading data
train_res_files = None if opt.train_res == '' else opt.train_res.split(',')
train_data = Data(opt, opt.train_data, train_res_files)
val_res_files = None if opt.val_res == '' else opt.val_res.split(',')
val_data = Data(opt, opt.val_data, val_res_files)
print('{0} batches in train set'.format(train_data.size()))
train(opt, shared, m, optim, ema, train_data, val_data)
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))