-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathgenerate.py
executable file
·172 lines (143 loc) · 6.02 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python3
from typing import List
import argparse
import hashlib
import logging
import os
import pathlib
import subprocess
import sys
import tarfile
import pkgconfig
import wget
LLVM_DIR = os.path.dirname(os.path.realpath(sys.argv[0])) + "/llvm"
CLANG_LIB_DIR = LLVM_DIR + "/build"
SENTINEL_FILE = ".unpacked"
LLVM_URL = "https://github.com/utcs-scea/ava-llvm/releases/download/v7.1.0/ava-llvm-release-7.1.0.tar.gz"
LLVM_MD5 = "400832522ed255314d6a5848e8f7af6c"
logger = logging.getLogger(__file__)
logging.basicConfig(format="%(asctime)s %(levelname)s: %(message)s", level=logging.INFO, datefmt="%m/%d/%Y %I:%M:%S %p")
def download_llvm_lib():
if not os.path.exists(LLVM_DIR):
raise RuntimeError("LLVM submodule has not been initialized")
pathlib.Path(CLANG_LIB_DIR).mkdir(parents=False, exist_ok=True)
# Download LLVM tarball
download_llvm = True
download_target = CLANG_LIB_DIR + "/" + LLVM_URL.split("/")[-1]
if os.path.isfile(download_target):
if LLVM_MD5 == hashlib.md5(open(download_target, "rb").read()).hexdigest():
download_llvm = False
if download_llvm:
wget.download(LLVM_URL, download_target)
print()
logger.info(f"ava-llvm downloaded to {download_target}")
else:
logger.info(f"ava-llvm ready exists at {download_target}")
# Unzip downloaded LLVM tarball
sentinel_target = CLANG_LIB_DIR + "/" + SENTINEL_FILE
unzip_llvm = not os.path.isfile(sentinel_target)
if download_llvm or unzip_llvm:
with tarfile.open(download_target) as f:
f.extractall(LLVM_DIR)
logger.info(f"ava-llvm unpacked to {CLANG_LIB_DIR}")
with open(sentinel_target, "w") as f:
logger.info(f"Sentinel file created at {sentinel_target}")
else:
logger.info(f"ava-llvm already unpacked to {CLANG_LIB_DIR}")
CAVA_DIR = os.path.dirname(os.path.realpath(sys.argv[0])) + "/cava"
CUDA_10_1_CFLAGS = "-I/usr/local/cuda-10.1/include -I/usr/local/cuda-10.1/nvvm/include".split(" ")
GLIB2_CFLAGS = pkgconfig.cflags("glib-2.0").split(" ")
FMT_CFLAGS = ["-I" + os.path.dirname(os.path.realpath(sys.argv[0])) + "/third_party/fmt/include"]
GSL_CFLAGS = ["-I" + os.path.dirname(os.path.realpath(sys.argv[0])) + "/third_party/GSL/include"]
ABSL_CFLAGS = ["-I" + os.path.dirname(os.path.realpath(sys.argv[0])) + "/third_party/abseil-cpp"]
def check_cflags(force_build: bool = False):
any_warning = False
def include_dir_exists(cflag: str) -> bool:
assert cflag.startswith("-I"), "Invalid header include flag"
if not os.path.exists(cflag[2:]):
logger.warning(f"Include directory not found: {cflag[2:]}")
return False
return True
if not GLIB2_CFLAGS:
logger.warning("GLIB2_CFLAGS is empty. Are you running in a virtual environment?")
any_warning = True
for cflag in CUDA_10_1_CFLAGS + GLIB2_CFLAGS + FMT_CFLAGS + GSL_CFLAGS:
if cflag.startswith("-I"):
if not include_dir_exists(cflag):
any_warning = True
if any_warning and not force_build:
input("Press Enter to continue...")
SPEC_LIST = {
"cudadrv": ("samples/cudadrv/cuda_driver.c", [] + CUDA_10_1_CFLAGS),
"cudart": (
"samples/cudart/cudart.cpp",
["-Iheaders"] + CUDA_10_1_CFLAGS + GLIB2_CFLAGS + FMT_CFLAGS + GSL_CFLAGS + ABSL_CFLAGS,
),
"demo": ("samples/demo/demo.c", ["-Iheaders"]),
"gti": ("samples/gti/gti.c", []),
"ncsdk": ("samples/ncsdk/mvnc.c", []),
"onnx_dump": (
"samples/onnxruntime/onnx_dump.cpp",
["-Iheaders"] + CUDA_10_1_CFLAGS + GLIB2_CFLAGS + FMT_CFLAGS + GSL_CFLAGS + ABSL_CFLAGS,
),
"onnx_opt": (
"samples/onnxruntime/onnx_opt.cpp",
["-Iheaders"] + CUDA_10_1_CFLAGS + GLIB2_CFLAGS + FMT_CFLAGS + GSL_CFLAGS + ABSL_CFLAGS,
),
"opencl": ("samples/opencl/opencl.c", []),
"pt_dump": (
"samples/pytorch/pt_dump.cpp",
["-Iheaders"] + CUDA_10_1_CFLAGS + GLIB2_CFLAGS + FMT_CFLAGS + GSL_CFLAGS + ABSL_CFLAGS,
),
"pt_opt": (
"samples/pytorch/pt_opt.cpp",
["-Iheaders"] + CUDA_10_1_CFLAGS + GLIB2_CFLAGS + FMT_CFLAGS + GSL_CFLAGS + ABSL_CFLAGS,
),
"qat": (
"samples/quickassist/qat.c",
[
f"-I{os.getenv('ICP_ROOT')}/quickassist/include",
f"-I{os.getenv('ICP_ROOT')}/quickassist/lookaside/access_layer/include",
],
),
"test": ("samples/test/libtrivial.c", ["-I../test"]),
"tf_c": ("samples/tensorflow_c/tf_c.c", []),
"tf_dump": (
"samples/tensorflow/tf_dump.cpp",
["-Iheaders"] + CUDA_10_1_CFLAGS + GLIB2_CFLAGS + FMT_CFLAGS + GSL_CFLAGS + ABSL_CFLAGS,
),
"tf_opt": (
"samples/tensorflow/tf_opt.cpp",
["-Iheaders"] + CUDA_10_1_CFLAGS + GLIB2_CFLAGS + FMT_CFLAGS + GSL_CFLAGS + ABSL_CFLAGS,
),
}
def generate_code(spec_name: str, enabled_optimizations: List[str] = None):
if spec_name not in SPEC_LIST:
logger.warning(f"Unsupported {spec_name} specification")
return
spec_file, spec_parameter = SPEC_LIST[spec_name]
opt_parameter = []
if enabled_optimizations and len(enabled_optimizations) > 0:
opt_parameter = ["--optimization"] + enabled_optimizations
_ = subprocess.run(["./nwcc", spec_file] + opt_parameter + spec_parameter, cwd=CAVA_DIR, check=True)
logger.info(f"Code generation for {spec_name} specification is done")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-s", "--specs", nargs="+", default=[], choices=SPEC_LIST.keys(), help="Specification shortnames"
)
parser.add_argument("-f", "--force", action="store_true", help="Build specifications regardless any warnings")
parser.add_argument(
"-O",
"--opt",
type=str,
action="append",
dest="optimizations",
choices=["batching"],
help="Enable optimizations",
)
args = parser.parse_args()
download_llvm_lib()
check_cflags(args.force)
for spec in args.specs:
generate_code(spec, args.optimizations)