forked from pytorch-labs/gpt-fast
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
470 lines (406 loc) · 18.7 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import sys
import time
from pathlib import Path
from typing import Optional, Tuple, Union
import torch
import torch._dynamo.config
import torch._inductor.config
def device_sync(device):
if "cuda" in device:
torch.cuda.synchronize(device)
elif ("cpu" in device) or ("mps" in device):
pass
else:
print(f"device={device} is not yet suppported")
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True
# Experimental features to reduce compilation times, will be on by default in future
torch._inductor.config.fx_graph_cache = True
torch._functorch.config.enable_autograd_cache = True
default_device = 'cuda' if torch.cuda.is_available() else 'cpu'
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from model import Transformer
from tokenizer import get_tokenizer
def multinomial_sample_one_no_sync(probs_sort): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(logits, temperature: float = 1.0, top_k: Optional[int] = None):
probs = logits_to_probs(logits[:, -1], temperature, top_k)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
def prefill(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> torch.Tensor:
# input_pos: [B, S]
logits = model(x, input_pos)
return sample(logits, **sampling_kwargs)[0]
def decode_one_token(model: Transformer, x: torch.Tensor, input_pos: torch.Tensor, **sampling_kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
# input_pos: [B, 1]
assert input_pos.shape[-1] == 1
logits = model(x, input_pos)
return sample(logits, **sampling_kwargs)
def decode_n_tokens(model: Transformer, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, callback=lambda _: _, **sampling_kwargs):
new_tokens, new_probs = [], []
for i in range(num_new_tokens):
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): # Actually better for Inductor to codegen attention here
next_token, next_prob = decode_one_token(
model, cur_token, input_pos, **sampling_kwargs
)
input_pos += 1
new_tokens.append(next_token.clone())
callback(new_tokens[-1])
new_probs.append(next_prob.clone())
cur_token = next_token.clone()
return new_tokens, new_probs
def model_forward(model, x, input_pos):
return model(x, input_pos)
def speculative_decode(
model: Transformer,
draft_model: Transformer,
cur_token: torch.Tensor,
input_pos: int,
speculate_k: int,
**sampling_kwargs
) -> torch.Tensor:
# draft model inference sequentially
device = cur_token.device
orig_input_pos = torch.tensor([input_pos], dtype=torch.int64, device=cur_token.device)
draft_tokens, draft_probs = decode_n_tokens(draft_model, cur_token.view(1, -1), orig_input_pos.clone(), speculate_k, **sampling_kwargs)
draft_tokens = torch.cat(draft_tokens)
# parallel inference on target model using draft tokens
target_logits = model_forward(
model,
torch.cat([cur_token.view(1), draft_tokens]).view(1, -1),
torch.arange(input_pos, input_pos + speculate_k + 1, device=cur_token.device)
)
target_probs = logits_to_probs(target_logits[0], **sampling_kwargs)
draft_probs = torch.stack(draft_probs)
# q: target prob, p: draft prob
# q >= p: always accept draft token
# q < p: q/p prob to accept draft token
p = draft_probs[torch.arange(0, speculate_k, device=device), draft_tokens]
q = target_probs[torch.arange(0, speculate_k, device=device), draft_tokens]
accept_draft_prob = torch.minimum(torch.ones(()), q[:speculate_k]/ p)
rejected_locations = (torch.rand_like(accept_draft_prob) > accept_draft_prob).nonzero()
if rejected_locations.shape[0] == 0: # All draft tokens have been accepted
accept_length = speculate_k + 1
last_token = multinomial_sample_one_no_sync(target_probs[-1])
# fill last token into draft model
model_forward(
draft_model,
draft_tokens[-1].view(1, -1),
orig_input_pos + speculate_k,
)
return torch.cat([draft_tokens, last_token])
else:
accept_length = rejected_locations[0].item()
p = draft_probs[accept_length]
q = target_probs[accept_length]
new = q - p
new = torch.where(new > 0, new, 0.0)
new = new / new.sum()
next_token = multinomial_sample_one_no_sync(new)
return torch.cat([draft_tokens[:accept_length], next_token])
@torch.no_grad()
def generate(
model: Transformer,
prompt: torch.Tensor,
max_new_tokens: int,
batch_size: int,
*,
interactive: bool,
draft_model: Transformer,
speculate_k: Optional[int] = 8,
callback = lambda x: x,
**sampling_kwargs
) -> torch.Tensor:
"""
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
"""
is_speculative = draft_model is not None
# create an empty tensor of the expected final shape and fill in the current tokens
T = prompt.size(-1)
T_new = T + max_new_tokens
if interactive:
max_seq_length = 350
else:
max_seq_length = min(T_new, model.config.block_size)
device, dtype = prompt.device, prompt.dtype
max_seq_length = max_seq_length + speculate_k + 1 if is_speculative else max_seq_length
with torch.device(device):
model.setup_caches(max_batch_size=batch_size, max_seq_length=max_seq_length)
if is_speculative and draft_model is not model:
draft_model.setup_caches(max_batch_size=batch_size, max_seq_length=max_seq_length)
# create an empty tensor of the expected final shape and fill in the current tokens
empty = torch.empty(batch_size, T_new, dtype=dtype, device=device)
# We are just making the same prompt for every batch
prompt = prompt.view(1, -1).repeat(batch_size, 1)
empty[:, :T] = prompt
seq = empty
input_pos = torch.arange(0, T, device=device)
next_token = prefill(model, prompt.view(batch_size, -1), input_pos, **sampling_kwargs).clone()
if is_speculative:
prefill(draft_model, prompt.view(batch_size, -1), input_pos, **sampling_kwargs)
seq[:, T] = next_token.squeeze()
input_pos = torch.tensor([T], device=device, dtype=torch.int)
accept_counts = [0] * (speculate_k + 1)
if is_speculative:
input_pos = input_pos.item() # for speculative decoding easier to keep on host
while input_pos < T_new - 1:
cur_token = next_token.view(())
next_tokens = speculative_decode(
model, draft_model, cur_token, input_pos, speculate_k, **sampling_kwargs
)
accept_counts[len(next_tokens) - 1] += 1
num_added = min(T_new - input_pos - 1, len(next_tokens))
seq[input_pos + 1 : input_pos + num_added + 1] = next_tokens[: num_added]
for i in next_tokens[: num_added,]:
callback(i)
input_pos = input_pos + num_added
next_token = next_tokens[-1]
else:
generated_tokens, _ = decode_n_tokens(model, next_token.view(batch_size, -1), input_pos, max_new_tokens - 1, callback=callback, **sampling_kwargs)
seq[:, T + 1:] = torch.cat(generated_tokens, dim=-1)
generate_stats = {
'accept_counts': accept_counts
}
return seq, generate_stats
def encode_tokens(tokenizer, string, bos=True, device=default_device):
tokens = tokenizer.encode(string)
if bos:
tokens = [tokenizer.bos_id()] + tokens
return torch.tensor(tokens, dtype=torch.int, device=device)
def _load_model(checkpoint_path, device, precision, use_tp):
use_cuda = 'cuda' in device
with torch.device('meta'):
model = Transformer.from_name(checkpoint_path.parent.name)
if "int8" in str(checkpoint_path):
print("Using int8 weight-only quantization!")
from quantize import WeightOnlyInt8QuantHandler
simple_quantizer = WeightOnlyInt8QuantHandler(model)
model = simple_quantizer.convert_for_runtime()
if "int4" in str(checkpoint_path):
print("Using int4 weight-only quantization!")
path_comps = checkpoint_path.name.split(".")
groupsize = int(path_comps[-2][1:])
from quantize import WeightOnlyInt4QuantHandler
simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize)
model = simple_quantizer.convert_for_runtime()
checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=True)
if "model" in checkpoint and "stories" in str(checkpoint_path):
checkpoint = checkpoint["model"]
model.load_state_dict(checkpoint, assign=True)
if use_tp:
from tp import apply_tp
print("Applying tensor parallel to model ...")
apply_tp(model)
model = model.to(device=device, dtype=precision)
return model.eval()
def _get_model_size(model):
model_size = 0
params = 0
for name, child in model.named_children():
if not isinstance(child, torch.nn.Embedding):
model_size += sum(
[
p.numel() * p.dtype.itemsize
for p in itertools.chain(child.parameters(), child.buffers())
]
)
params += sum(
[
p.numel()
for p in itertools.chain(child.parameters(), child.buffers())
]
)
return model_size, params
B_INST, E_INST = "[INST]", "[/INST]"
def main(
prompt: Union[int, str] = "Hello, my name is",
interactive: bool = False,
num_samples: int = 5,
max_new_tokens: int = 100,
batch_size: int = 1,
top_k: int = 200,
temperature: float = 0.8,
checkpoint_path: Path = Path("checkpoints/meta-Transformer/Transformer-2-7b-chat-hf/model.pth"),
compile: bool = True,
compile_prefill: bool = False,
profile: Optional[Path] = None,
draft_checkpoint_path: Optional[Path] = None,
speculate_k: int = 5,
device=default_device,
) -> None:
"""Generates text samples based on a pre-trained Transformer model and tokenizer.
"""
assert checkpoint_path.is_file(), checkpoint_path
tokenizer_path = checkpoint_path.parent / "tokenizer.model"
assert tokenizer_path.is_file(), str(tokenizer_path)
global print
from tp import maybe_init_dist
rank = maybe_init_dist()
use_tp = rank is not None
if use_tp:
if rank != 0:
# only print on rank 0
print = lambda *args, **kwargs: None
print(f"Using device={device}")
precision = torch.bfloat16
is_speculative = draft_checkpoint_path is not None
is_chat = "chat" in str(checkpoint_path)
print("Loading model ...")
t0 = time.time()
model = _load_model(checkpoint_path, device, precision, use_tp)
if is_speculative:
draft_model = _load_model(draft_checkpoint_path, device, precision, use_tp)
else:
draft_model = None
device_sync(device=device) # MKG
print(f"Time to load model: {time.time() - t0:.02f} seconds")
tokenizer = get_tokenizer(tokenizer_path, checkpoint_path)
if isinstance(prompt, str):
encoded = encode_tokens(tokenizer, prompt, bos=True, device=device)
else:
# generate a fully synthetic prompt
encoded = torch.randint(0, 1024, (prompt,), device=device, dtype=torch.int64)
prompt_length = encoded.size(-1)
torch.manual_seed(1234)
model_size, params = _get_model_size(model)
if compile:
if is_speculative and use_tp: # and ("cuda" in device):
torch._inductor.config.triton.cudagraph_trees = False # Bug with cudagraph trees in this case
if is_speculative:
global model_forward, logits_to_prob
model_forward = torch.compile(model_forward, mode="reduce-overhead", fullgraph=True)
global decode_one_token, prefill
decode_one_token = torch.compile(decode_one_token, mode="reduce-overhead", fullgraph=True)
# Uncomment to squeeze more perf out of prefill
if compile_prefill:
prefill = torch.compile(prefill, fullgraph=True, dynamic=True)
aggregate_metrics = {
'tokens_per_sec': [],
'accept_counts': [],
}
start = -1 if compile else 0
for i in range(start, num_samples):
device_sync(device=device) # MKG
if i >= 0 and interactive:
prompt = input("What is your prompt? ")
if is_chat:
prompt = f"{B_INST} {prompt.strip()} {E_INST}"
encoded = encode_tokens(tokenizer, prompt, bos=True, device=device)
if interactive and i >= 0:
buffer = []
period_id = tokenizer.encode('.')[0]
done_generating = False
def callback(x):
nonlocal done_generating
if done_generating:
return
buffer.append(tokenizer.decode([period_id] + x.tolist())[1:])
if x.item() == tokenizer.eos_id():
done_generating = True
if len(buffer) == 4 or done_generating:
print(''.join(buffer), end='', flush=True)
buffer.clear()
# print(, end='', flush=True)
else:
callback = lambda x : x
t0 = time.perf_counter()
import contextlib
if (i != num_samples - 1 or not profile) or (use_tp and rank != 0):
prof = contextlib.nullcontext()
else:
torch.profiler._utils._init_for_cuda_graphs()
prof = torch.profiler.profile()
with prof:
y, metrics = generate(
model,
encoded,
max_new_tokens,
batch_size=batch_size,
draft_model=draft_model,
speculate_k=speculate_k,
interactive=interactive,
callback=callback,
temperature=temperature,
top_k=top_k,
)
aggregate_metrics['accept_counts'].append(metrics['accept_counts'])
if i == -1:
print(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")
continue
if hasattr(prof, "export_chrome_trace"):
if use_tp:
prof.export_chrome_trace(f"{profile}_rank_{rank}.json")
else:
prof.export_chrome_trace(f"{profile}.json")
device_sync(device=device) # MKG
t = time.perf_counter() - t0
if not interactive:
# Just displaying the first generation
if batch_size > 1:
print("Only displaying the first generation of the batch")
print(tokenizer.decode(y[0].tolist()))
else:
print()
tokens_generated = y.size(-1) - prompt_length
generated_tokens_sec = tokens_generated / t
aggregate_metrics['tokens_per_sec'].append(generated_tokens_sec)
print(f"Time for inference {i + 1}: {t:.02f} sec total, {generated_tokens_sec:.02f} tokens/sec")
print(f"Bandwidth achieved: {model_size * generated_tokens_sec / 1e9:.02f} GB/s")
total_tokens_sec = y.numel() / t
print(f"FLOPS achieved: {params * total_tokens_sec * 2 / 1e12:.02f} TF/s")
print()
print("==========")
if is_speculative:
counts_aggregated = [sum(i) for i in zip(*aggregate_metrics['accept_counts'])]
acceptance_probs = [i/sum(counts_aggregated) for i in counts_aggregated]
print(f"Acceptance probs: {acceptance_probs}")
print(f"Mean Accepted: {sum([idx * i for idx, i in enumerate(counts_aggregated)])/sum(counts_aggregated)}")
print(f"Batch Size: {batch_size}")
print(f"Prompt Length: {prompt_length}")
print(f"Generated tokens: {max_new_tokens}")
print(f"Average tokens/sec: {torch.mean(torch.tensor(aggregate_metrics['tokens_per_sec'])).item():.2f}")
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB")
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Your CLI description.')
def int_or_str(x):
try:
return int(x)
except:
return x
parser.add_argument('--prompt', type=int_or_str, default="Hello, my name is", help="Input prompt. If it's an integer, will instead generate a synthetic prompt.")
parser.add_argument('--interactive', action='store_true', help='Whether to launch in interactive mode')
parser.add_argument('--num_samples', type=int, default=5, help='Number of samples.')
parser.add_argument('--max_new_tokens', type=int, default=200, help='Maximum number of new tokens.')
parser.add_argument('--batch_size', type=int, default=1, help='Batch size to benchmark with')
parser.add_argument('--top_k', type=int, default=200, help='Top-k for sampling.')
parser.add_argument('--temperature', type=float, default=0.8, help='Temperature for sampling.')
parser.add_argument('--checkpoint_path', type=Path, default=Path("checkpoints/meta-Transformer/Transformer-2-7b-chat-hf/model.pth"), help='Model checkpoint path.')
parser.add_argument('--compile', action='store_true', help='Whether to compile the model.')
parser.add_argument('--compile_prefill', action='store_true', help='Whether to compile the prefill (improves prefill perf, but higher compile times)')
parser.add_argument('--profile', type=Path, default=None, help='Profile path.')
parser.add_argument('--speculate_k', type=int, default=5, help='Speculative execution depth.')
parser.add_argument('--draft_checkpoint_path', type=Path, default=None, help='Draft checkpoint path.')
parser.add_argument('--device', type=str, default=default_device, help='Device to use')
args = parser.parse_args()
main(
args.prompt, args.interactive, args.num_samples, args.max_new_tokens, args.batch_size, args.top_k,
args.temperature, args.checkpoint_path, args.compile, args.compile_prefill, args.profile, args.draft_checkpoint_path,
args.speculate_k, args.device
)